Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material of Research
2.2. Procedures of Research
2.2.1. Synthesis of ZnO/CNS and ZnCr2O4/CNS
- Rice husk without ZnCl2 activator—GM4, GM6, GM8;
- Rice husk with ZnCl2 activator (Z)—GMZ4, GMZ6, GMZ8;
- Sawdust without ZnCl2 activator—SGM4, SGM6, SGM8;
- Sawdust with ZnCl2 activator (Z)—SGMZ4, SGMZ6, SGMZ8.
- Rice husk without ZnCl2 activator—TGM4, TGM6, TGM8;
- Rice husk with ZnCl2 activator (Z)—TGMZ4, TGMZ6, TGMZ8;
- Sawdust without ZnCl2 activator—TSGM4, TSGM6, TSGM8;
- Sawdust with ZnCl2 activator (Z)—TSGMZ4, TSGMZ6, TSGMZ8.
- Rice husk with ZnCl2 activator (Z)—CTGMZ4, CTGMZ8;
- Sawdust with ZnCl2 activator (Z)—CTSGMZ4, CTSGMZ8.
2.2.2. Characterization
2.2.3. Application of Composite for Dark Degradation Reaction of Pesticide
3. Results and Discussion
3.1. Synthesis of ZnO/CNS from Different Biomass
3.2. Influence of Biomass Type and Microwave Pyrolysis Parameters toward Functional Groups of the ZnO/CNS Composites
3.3. Influence of Biomass and Microwave Pyrolysis Parameters toward Structure of the ZnO/CNS
3.4. Influence of Biomass and Microwave Pyrolysis Parameters toward Morphology of the ZnO/CNS
3.5. Influence of Biomass and Microwave Pyrolysis Parameters toward Stability of the ZnO/CNS Colloid
3.6. Characterization of the Final Product ZnCr2O4/CNS Composite by XRD and SEM-EDX
3.6.1. Characterization by XRD
3.6.2. Characterization by SEM-EDX
3.7. Application of ZnCr2O4 Composite for Dark Degradation of Pesticide in Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subandi, M.; Chaidir, L.; Nurjanah, U. Keefektifan Insektisida BPMC dan Ekstrak Daun Suren terhadap Hama Wereng Batang Coklat (Nilaparvata lugens Stal.) dan Populasi Musuh Alami pada Padi Varietas Ciherang. J. Agrik. 2016, 27, 160–166. [Google Scholar] [CrossRef]
- Ardiwinata, A.N.; Nursyamsi, D. Residu Pestisida di Sentra Produksi Padi di Jawa Tengah. Pangan 2012, 21, 39–58. Available online: https://jurnalpangan.com/index.php/pangan/article/view/103/90 (accessed on 1 June 2021).
- Fitriadi, B.R.; Putri, A.C. Metode-Metode Pengurangan Residu Pestisida pada Hasil Pertanian. J. Rekayasa Kim. Lingkung. 2016, 11, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Young, R.O. Colloids and Colloidal Systems in Human Health and Nutrition. Int. J. Complement. Altern. Med. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Sinko, P.J.; Singh, Y. Martin’s Physical Pharmacy and Pharmaceutical Sciences, 6th ed.; Physical, Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences; Wolters Kluwer Health, Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; p. 1. Available online: https://innocentbalti.files.wordpress.com/2015/01/martins-physical-pharmacy-6th-ed-2011-dr-murtadha-alshareifi.pdf (accessed on 1 June 2021).
- Hielscher, T. Ultrasonic Production of Nano—Size Dispersions and Emulsions. In Proceedings of the ENS’05, Paris, France, 14–16 December 2005; Available online: https://arxiv.org/abs/0708.1831 (accessed on 1 June 2021).
- Milanovi, M.; Stijepovi, I.; Pavlovi, V.; Srdi, V. Functionalization of Zinc Ferrite Nanoparticles: Influence of Modification Procedure on Colloidal Stability. Process. Appl. Ceram. 2016, 10, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Setianingsih, T.; Mutrofin, S. Sintesis Karbon Nanomaterial dari Limbah Biomassa yang Dimodifikasi MFe2O4 Secara Green Technology Sebagai Campuran Pupuk Cair Untuk Remediator Tanah Sawah dan Saluran Irigasi Tercemar Pesticida. In Laporan akhir HPU.; Universitas Brawijaya: Malang, Indonesia, 2019. [Google Scholar]
- Zaytseva, O.; Neumann, G. Carbon Nanomaterials: Production, Impact on Plant Development. Agric. Environ. Appl. Chem. Biol. Technol. Agric. 2016, 3, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2004; Available online: https://3lib.net/book/2086739/44936e (accessed on 1 June 2021).
- Li, L.; Sun, Z.; Li, H.; Keener, T.C. Effects of activated carbon surface properties on theadsorption of volatile organic compounds. J. Air Waste Manag. Assoc. 2012, 62, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qu, Y.; Xu, J. Microwave-Assisted Conversion of Lignin. In Production of Biofuels and Chemicals with Microwave; Fang, Z., Smith, R.L., Jr., Qi, X., Eds.; Springer Science+Business Media Dordrecht: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Al Shra’ah, A.; Helleur, R. Microwave pyrolysis of cellulose at low temperature. J. Anal. Appl. Pyrolysis 2014, 105, 91–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Chem, P.; Liu, S.; Peng, P.; Min, M.; Cheng, Y.; Anderson, E.; Zhou, N.; Fan, L.; Liu, L.; et al. Effects of Feedstock Characteristics on Microwave-assisted Pyrolisis—A Review. Bioresour. Technol. 2017, 230, 143–153. [Google Scholar] [CrossRef]
- Hoan, B.T.; Tam, P.D.; Pha, V.H. Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Hindawi J. Nanotechnol. 2019, 2019, 2852816. [Google Scholar] [CrossRef] [Green Version]
- Adewumi, G.A.; Revaprasadu, N.; Eloka-Eboka, A.C.; Inambao, F.L.; Gervas, C. A Facile Low-cost Synthesis of Carbon Nanosphere from Coconut Fibre. In Proceedings of the World Congress on Engineering and Computer Science (WCECS) 2017, San Francisco, CA, USA, 25–27 October 2017; Volume II. Available online: http://www.iaeng.org/publication/WCECS2017/WCECS2017_pp577-582.pdf (accessed on 1 June 2021).
- Schwenke, A.M.; Hoeppener, S.; Schubert, U.S. Synthesis and Modification of Carbon Nanomaterials Utilizing Microwave Heating. Adv. Mater. 2015, 27, 4113–4141. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Chiueh, P.T.; Shih, C.H.; Lo, S.L.; Sun, L.; Zhong, Y.; Qiu, C. Microwave Pyrolisis of Rice Straw to Produce Biochar as Adsorbent for CO2 Capture. Energy 2015, 84, 75–82. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Zimmerman, A.; Zhang, M.; Chena, H. Synthesis, Characterization, and Dye Sorption Ability of Carbon Nanotube—Biochar Nanocomposites. Chem. Eng. J. 2014, 236, 39–46. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Park, M.; Park, S.J.; Zhang, Y.; Akanda, M.R.; Park, B.Y.; Kim, H.Y. Green Synthesis of Fluorescent Carbon Dots from Carrot Juice for In Vitro Cellular Imaging. Carbon Lett. 2017, 21, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Microwave-assisted Synthesis of ZnO Nanoparticles Stabilized with Gum Arabic: Effect of Microwave Irradiation Time on ZnO Nanoparticles Size and Morphology. Bull. Chem. React. Eng. Catal. 2019, 14, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.Z.; Khorasani-Motlagh, M.; Jahani, S.; Yousefi, M. Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microwave Method. Int. J. Nanosci. Nanotechnol. 2012, 8, 87–92. Available online: http://www.ijnnonline.net/article_3909_75ca9bcd50a49f70f707d5a9ef0848fc.pdf (accessed on 1 June 2021).
- Taylor, L.A.; Meek, T.T. Microwave Sintering of Lunar Soil: Properties, Theoy, and Practice. J. Aerosp. Eng. 2005, 18, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Setianingsih, T.; Purwonugroho, D.; Prananto, Y.P.; Mutrofin, S. Sintesis Nanokarbon dan Komposit Nanokarbon dari Biomassa dengan Metode Pirolisis Fasa Padat dengan Mirowave—Sonikasi untuk Remediator Lahan Tanah Pertanian Tercemar Pestisida. In Laporan akhir Hibah Doktor Lektor Kepala; Universitas Brawijaya: Malang, Indonesia, 2020. [Google Scholar]
- Dippong, T.; Andrea, E.; Cadar, O. Review Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. Nanomaterials 2021, 11, 1560. [Google Scholar] [CrossRef]
- Mayedwa, N.; Mulaudzi-Masuku, T.; Matinise, N.; Nkosi, M. Biosynthesis and characterization of multifunctional mixed oxides of ZnCr2O4/ZnCrO4 nanoparticulate from natural leaf extracts of Hibiscus Rosa Sinensis. Mater. Today Proc. 2021, 36, 309–312. [Google Scholar] [CrossRef]
- Song, H.; Laudenschleger, D.; Carey, J.J.; Ruland, H.; Nolan, M.; Muhler, M. Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis. ACS Catal. 2017, 7, 7610–7622. [Google Scholar] [CrossRef]
- Kumar, V.; Chakra, C.H.S. Synthesis and Structural Characterization of ZnCr2O4 Nano Particles Prepared by Citrate-gel Auto Combustion Method. Asian J. Phys. Chem. Sci. 2017, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dumitru, R.; Manea, F.; Păcurariu, C.; Lupa, L.; Pop, A.; Cioablă, A.; Surdu, A.; Ianculescu, A. Synthesis, Characterization of Nanosized ZnCr2O4 and Its Photocatalytic Performance in the Degradation of Humic Acid from Drinking Water. Catalysts 2018, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Kamarulzaman, N.; Kasim, M.F.; Rusdi, R. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Res. Lett. 2015, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keihan, E.R.; Aliabadi, H.A.M.; Radinekiyan, F.; Sobhani, M.; Khalili, F.; Maleki, A.; Madanchi, H.; Mahdavi, M.; Shalan, A.E. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 2021, 11, 17914–17923. [Google Scholar] [CrossRef]
- Assem, L.; Zhu, H. Chromium, Toxicological Overview; Cranfield University: Bedford, UK, 2007; pp. 1–14. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/338694/Chromium_toxicological_overview.pdf (accessed on 1 June 2021).
- Sun, H.; Brocato, J.; Costa, M. Oral Chromium Exposure and Toxicity. Curr. Environ. Health Rep. 2015, 2, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Maignan, A.; Simon, C.; Martin, C. FeCr2O4 and CoCr2O4 spinels: Multiferroicity in the collinear magnetic state? Appl. Phys. Lett. 2011, 99, 1–3. [Google Scholar] [CrossRef]
- Bielicka, A.; Bojanowska, I.; Wiśniewski, A. Two Faces of Chromium—Pollutant and Bioelement. Pol. J. Environ. Stud. 2005, 14, 5–10. Available online: http://www.pjoes.com/Two-Faces-of-Chromium-Pollutant-and-Bioelement,87721,0,2.html (accessed on 1 June 2021).
- Chen, Y.; Wu, H.; Sun, P.; Liu, J.; Qiao, S.; Zhang, D.; Zhang, Z. Remediation of Chromium-Contaminated Soil Based on Bacillus cereus WHX-1 Immobilized on Biochar: Cr(VI) Transformation and Functional Microbial Enrichment. Front. Microbiol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Srivastava, D.; Tiwari, M.; Dutta, P.; Singh, P.; Chawda, K.; Kumari, M.; Chakrabarty, D. Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation. Sustainability 2021, 13, 4629. [Google Scholar] [CrossRef]
- Panda, S.K.; Choudhury, S. Chromium stress in plant. Braz. J. Plant Physiol. 2005, 17, 95–102. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe. Chromium. In Air Quality Guidelines, 2nd ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; pp. 1–4. Available online: http://www.euro.who.int/document/e71922.pdf (accessed on 1 June 2021).
- DesMarias, T.L.; Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Triyanto, K.B.T. Manfaat Hidrogen Peroksida (H2O2) Bagi Tanaman, Kabar Tani.com, 2016, 18/11/2016. Available online: https://kabartani.com/manfaat-hidrogen-perok (accessed on 1 June 2021).
- Hany, R.C.R. Efektivitas Pemberian Hidrogen Peroksida terhadap Kualitas Media, Kelangsungan Hidup dan Pertumbuhan Benih Ikan Patin Pangasius sp. Skripsi, Departemen Budidaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, IPB, Bogor. 2014. Available online: https://repository.ipb.ac.id/handle/123456789/74423 (accessed on 1 June 2021).
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose, and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Balat, M. Experimental Study on Pyrolysis of Black Alder Wood. Energy Explor. Exploit. 2008, 26, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier Sci.: Alpharetta, GA, USA, 2006. [Google Scholar]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of the Properties of Activated Carbons Produced in One-Stage andTwo-Stage Processes. C J. Carbon Res. 2018, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Setianingsih, T.; dan Prananto, Y.P. Spektroskopi Inframerah Untuk Material Anorganik; UB Press: Malang, Indonesia, 2020; pp. 82–90. [Google Scholar]
- Bakti, A.I.; Gareso, P.L. Characterization of Active Carbon Prepared From Coconuts Shells Using FTIR, XRD and SEM Techniques. J. Ilm. Pendidik. Fis. Al-Biruni 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, J.; Kazehaya, A.; Muroyama, K.; Watkinson, A.P. Preparation of activated carbon from lignin by chemical activation. Carbon 2000, 38, 1873–1878. [Google Scholar] [CrossRef]
- Lomboan, F.O.; Kumaat, E.J.; Windah, R.S. Pengujian Kuat Tekan Mortar dan Beton Ringan Dengan Menggunakan AgregatRingan Batu Apung Dan Abu Sekam Padi Sebagai Substitusi Parsial Semen. J. Sipil Statik 2016, 4, 271–278. Available online: https://ejournal.unsrat.ac.id/index.php/jss/article/view/11918/11507 (accessed on 1 June 2021).
- Lukmandaru, G.; Hidayah, R.N. Studi Mutu Kayu Jati di Hutan Rakyat Gunungkidul. VI. Kadar Zat Anorganik dan Keasaman. J. Ilmu Kehutan. 2017, 10, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Ummah, H.; Suriamihardja, D.A.; Selintung, M.; Wahab, A.W. Analysis of Chemical Composition of Rice Husk Used as Absorber Plates Sea Water into Clean Water. ARPN J. Eng. Appl. Sci. 2015, 10, 6046–6050. Available online: http://digilib.unhas.ac.id/uploaded_files/temporary/DigitalCollection/YzdkNDNjZjU5OTYwYThjZTM2YzYyNzllYzFkNzE0MjYzNmQ4NWE0Ng==.pdf (accessed on 1 June 2021).
- Ghani, W.A.W.A.K.; da Silva, G.; Alias, A.B. Physico-chemical characterizations of sawdust-derived biochar as potential solid fuels. Malays. J. Anal. Sci. 2014, 18, 724–729. Available online: http://www.ukm.my/mjas/v18_n3/Wan%20Azlina_18_3_30.pdf (accessed on 1 June 2021).
- Li, S.; Zhu, H.; Xi, G.; Lin, Q.; Wang, C.; Wu, Q.; Wang, Z. Synthesis and characterization of mesoporous carbon spheres. Mater. Sci. Pol. 2019, 37, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Rufford, T.E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G.Q. A comparative study of chemical treatment by FeCl3, MgCl2, and ZnCl2 on microstructure, surface chemistry, and double-layer capacitance of carbons from waste biomass. J. Mater. Res. 2010, 25, 1451–1459. [Google Scholar] [CrossRef]
- Windolz, M.; Budavari, S.; Blumeti, R.F.; Otterbein, E.S. The Merc Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 10th ed.; Merck & Co, Inc.: Kenilworth, NJ, USA, 1983. [Google Scholar]
- Setianingsih, T.; Sutarno, M. Prinsip Dasar dan Aplikasi Metode Difraksi Sinar-X untuk Karakterisasi Material; UB Press, Universitas Brawijaya: Malang, Indonesia, 2018. [Google Scholar]
- He, W.; Jiang, S.; Zhang, Q.; Pan, M. Isolation and Characterization of Cellulose Nanofiber from Bambusa Rigida. BioResources 2013, 8, 5678–5689. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_08_4_5678_He_Nanofiber_Bambusa/2364 (accessed on 1 June 2021). [CrossRef] [Green Version]
- Tsaneva, V.N.; Kwapinski, W.; Teng, X.; Glowacki, B.A. Assessment of the Structural Evolution of Carbons from Microwave Plasma Natural Gas Reforming and Biomass Pyrolisis Using Raman Spectroscopy. Carbon 2014, 80, 617–628. [Google Scholar] [CrossRef]
- Tyagi, S.; Verma, P.; Baskey, H.B.; Agarwala, R.C.; Agarwala, V.; Shami, T.C. Microwave Absorption Study of Carbon Nano Tube Dispersed Hard/Soft Ferrite Nanocomposite. Ceram. Int. 2012, 38, 4561–4571. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Y.; Huo, J. Porous graphitic carbon materials prepared from cornstarch with the assistance of microwaveirradiation. Microporous Mesoporous Mater. 2015, 210, 39–45. [Google Scholar] [CrossRef]
- Setianingsih, T. Mikroskop Elektron Transmisi: Teori dan Aplikasinya untuk Karakterisasi Material; UB Press: Malang, Indonesia, 2017; pp. 6–7. [Google Scholar]
- Mahbubul, M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A. Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina−Water Nanofluid I. Ind. Eng. Chem. Res. 2014, 53, 6677–6684. [Google Scholar] [CrossRef]
- Kirankumar, V.S.; Sumathi, S. A Review on Photodegradation of Organic Pollutants Using Spinel Oxide. Mater. Today Chem. 2020, 18, 1–15. [Google Scholar] [CrossRef]
- Venkataramana, C.; Botsa, S.M.; Shyamala, P.; Muralikrishna, R. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization. Chemosphere 2021, 265, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shriver, D.F.; Atkins, P.W.; Langford, C.H. Inorganic Chemistry; Oxford University Press: Oxford, MI, USA, 1990. [Google Scholar]
- Tsou, T.; Yang, J. Formation of Reactive Oxygen Species and DNA Strand Breakage During Interaction of Chromium(III) and Hydrogen Peroxide in Vitro: Evidence for a Chromium(III)-mediated Fenton-like Reaction. Chem. Biol. Interact. 1996, 02, 133–153. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Kimia Anorganik Dasar; Suharto, S., Translator; UI Press: Jakarta, Indonesia, 1989; pp. 23–26. [Google Scholar]
No. | Purpose | Code | Experiment | Indicator |
---|---|---|---|---|
1. | Adsorption test of pesticide by the thermal deactivated soil | BT | A 5 g of dry soil + 25 mL of BPMC solution (0.5 g/L) + 10 mL water, kept in the dark for 5 days. | TOC |
2. | Degradation test of pesticide by catalytic oxidation reaction with H2O2–ZnCr2O4 | CTGMZX | A 5 g of dry soil + 25 mL of BPMC solution (0.5 g/L) + 10 mL of H2O2 solution (0.15%) + 0.1 g of composite, kept in the dark for 5 days. | TOC |
Biomass | I200 | Iam | CI (%) |
---|---|---|---|
Sawdust (SG) | 4.3 | 1.6 | 62.8 |
Rice husk (G) | 2.7 | 1.0 | 63.0 |
Substance | 2θ(IR) | 2θ(IR) | 2θ(IR) |
---|---|---|---|
ZnO | 31.00(53) | 34.47(40) | 36.29(100) |
ZnCr2O4 | 30.35(43) | 35.75(100) | 63.15(38) |
Cr2O3 | 33.65(100) | 36.27(93) | 54.94(85) |
KCl | 28.39(100) | 40.58(63) | 50.26(20) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setianingsih, T.; Purwonugroho, D.; Prananto, Y.P. Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil. ChemEngineering 2021, 5, 58. https://doi.org/10.3390/chemengineering5030058
Setianingsih T, Purwonugroho D, Prananto YP. Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil. ChemEngineering. 2021; 5(3):58. https://doi.org/10.3390/chemengineering5030058
Chicago/Turabian StyleSetianingsih, Tutik, Danar Purwonugroho, and Yuniar Ponco Prananto. 2021. "Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil" ChemEngineering 5, no. 3: 58. https://doi.org/10.3390/chemengineering5030058
APA StyleSetianingsih, T., Purwonugroho, D., & Prananto, Y. P. (2021). Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil. ChemEngineering, 5(3), 58. https://doi.org/10.3390/chemengineering5030058