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Abstract: Polylactic acid (PLA), the second most produced biopolymer, was selected for the fab-
rication of mixed-matrix membranes (MMMs) via the incorporation of HKUST-1 metal–organic
framework (MOF) particles into a PLA matrix with the aim of improving mechanical characteristics.
A deep learning neural network (DLNN) model was developed on the TensorFlow 2 backend to
predict the mechanical properties, stress, strain, elastic modulus, and toughness of the PLA/HKUST-1
MMMs with different input parameters, such as PLA wt%, HKUST-1 wt%, casting thickness, and
immersion time. The model was trained and validated with 1214 interpolated datasets in stratified
fivefold cross validation. Dropout and early stopping regularizations were applied to prevent model
overfitting in the training phase. The model performed consistently for the unknown interpolated
datasets and 26 original experimental datasets, with coefficients of determination (R2) of 0.93–0.97
and 0.78–0.88, respectively. The results suggest that the proposed method can build effective DLNN
models using a small dataset to predict material properties.

Keywords: biopolymer; PLA; mechanical properties; artificial intelligence; machine learning; deep
neural network

1. Introduction

Petroleum-derived polymers such as polystyrene, polyethylene terephthalate,
polypropylene, and polyethylene are environmentally hazardous and unsustainable [1,2].
They produce undesirable waste and release hazardous gases during their decomposi-
tion. Nevertheless, many industrial applications rely on them. Researchers around the
world are exploring bio-based polymers as a sustainable alternative to traditional polymers.
Environmentally friendly biopolymers are usually extracted from biomass like vegetable
oil and sugar or they are derived from natural monomers like starch, bacteria, and cellu-
lose [3]. A few examples of commercial biopolymers are polylactic acid (PLA), chitosan,
and cellulose [4].

Polylactic acid is an eco-friendly biopolymer derived from lactic acid and known for
its biocompatibility and ease of processing [5,6]. However, compared to inorganic and
hybrid materials like zeolites and metal–organic frameworks (MOFs), PLA has limitations
in terms of thermal and chemical stability, selectivity, and mechanical properties [7–12]. To
overcome these limitations, researchers have investigated composite mixed-matrix mem-
branes (MMMs) that combine PLA with MOFs. Alhulaybi incorporated MOF particles into
a PLA matrix to create porous PLA films [13]. He examined different fabrication conditions
and introduced HKUST-1 MOF to form a PLA/HKUST-1 MMM. The mechanical proper-
ties, degradation, water flux, and separation performance of the MMM were evaluated,
highlighting the potential of MOFs in enhancing MMM properties. However, measurement
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of the mechanical properties of these membranes is complex and time-consuming and is
currently done manually, which poses challenges due to the need for multiple specimens
and sensitivity to environmental factors [14–16].

The utilization of an AI-based computational model has the potential to assist design
engineers and materials experts in predicting mechanical properties, enabling informed
decisions during the design stage. This approach is advantageous due to lower costs
during the design phase [17]. By using an efficient model, industrial demands can be met
more effectively by avoiding or reducing the time-consuming and labor-intensive trial-
and-error process that involves costly experimental investigations, benefiting inspection,
testing, and manufacturing processes [18]. Machine learning has been applied to predict
the mechanical properties of various polymers, such as polycarbonate (PC), polymethyl-
methacrylate (PMMA), aluminum alloys, polypropylene (PP), and cotton fiber [18–21].
However, few studies that specifically address the prediction of the mechanical properties
for PLA biopolymer films/membranes have been conducted.

Park et al. [19] developed a deep learning neural network (DLNN) model with a
4-(133-200)-4 architecture to predict material properties of PC and PMM using 200 data
points that were generated by finite element (FE) simulation and the Latin hypercube
sampling (LHS) algorithm. Whether the NN model is equally effective in predicting the
simulated and experimental data points cannot be concluded based this study, as only two
experimental data points for PC and PMM were used. Moreover, the issue of overfitting in
modeling was not addressed, although it is very common for small datasets [22]. Merayo
et al. [20] developed a CAD tool to predict the yield strength and tensile strength of alu-
minum alloys using a DLNN with 3-(100-100-10)-2 architecture. They constructed 713 data
points by extorting the commercial material datasheets to train and test their DLNN by
splitting them in an 80:20% ratio. Although they applied early stopping techniques to pre-
vent overfitting, the performance of the DLNN model was not tested with the experimental
dataset. They evaluated the model performance using only one experimental data point
and reported >95% accuracy. In [21], Kazi et al. proposed a DLNN model with 8-(200-200-
200-200)-1 architecture that predicts the optimal filler content of cotton fiber/polypropylene
composite to achieve the targeted mechanical properties. They used six experimental data
points for modelling and applied dropout regulation to avoid overfitting. Although the
sensitivity of the input parameters was analyzed, the model’s prediction accuracy was
not addressed in sufficient detail. On the other hand, Sterjovski et al. [18] proposed three
different shallow NNs (SNNs) for prediction of three material characteristics of steels: (i)
impact toughness, (ii) simulated heat-affected zone toughness, and (iii) hot ductility and
hot tensile strength. The architectures of the SNN models were 10-(5)-1, 16-(12)-1, and
9-(14)-2. The models were trained and tested with experimental datasets. However, the
size of each dataset was not mentioned clearly. The model was evaluated by combining the
training and testing results for each output parameter, which obstructs the realization of the
actual model performances for the unknown data points. SNN models are also known to
have less prediction capability than DLNNs for modeling of complex relations [23]. Thus,
the limitations of the previous studies can be identified as follows:

(i) Underestimation of model overfitting, which is significant for NN models trained
with small datasets [24];

(ii) Inadequate evaluation of the model accuracy, with the experimental data distributed
over a wide range.

In the current study, we developed a DLNN model with dropout and early stopping
regularization to optimize the model overfittings and tested our model with twenty-six
(26) experimental data points distributed over a wide range. The overfitting issues were
addressed and optimized by applying dropout and ES regularizations while training the
model. The prediction performance was tested by both interpolated and experimental data
points covering the entire data range. The results confirm a consistent and reliable predic-
tion performance of the proposed DLNN model compared to existing models (Table 1).
The current model was developed to predict the following mechanical properties of the
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PLA/HKUST-1 MMM based on the input parameters of PLA wt%, HKUST-1 wt%, casting
thickness, and immersion time:

a. Stress;
b. Stain;
c. Elastic modulus;
d. Toughness.
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Table 1. Comparison of NN regression models for prediction of material characteristics.

Ref. Material NN Type
Hidden
Layer

Architecture

# of Pre-
dicted

Parameters

Technique to
Optimize Model

Overfitting
Dataset Size

Were
Experimental

Data Points Used
to Test the

Model?
(# of Data Points)

Model Performance
Evaluation

(Using Experimental
Data)

Model
Evaluation

Performance
(Using Non-

Experimental
Data)

[19] PC and PMMA
(polymers) DLNN (133-200) 4 NM $

200 simulated data
points +
4 EDPL *

Yes (2) NM $ Correlation
coefficient = 0.99

[20] Aluminum alloys DLNN (100-100-10) 2 ES regularization

713 data points
extracted from

commercial material
datasheet +
1 EDPL *

Yes (1) Confidence level >
95%

Pearson
correlation

coefficient =
0.86–0.88

[21]
Cotton fiber/

polypropylene
composite

DLNN (200-200-
200-200) 1 Dropout

regularization
6 EDPL * + ±10%

deviation of EDPLs * Yes (NM $) NM $ NM

[18] Steels SNN

Model 1: (5)
Model 2: (12)

Model 3:
(14)

4 NM $

Only experimental
datasets were used,
but the size was not

mentioned

Yes (NM $)

Combined training
(known data) and
testing (unknown

data) performances
reported as RMSE =

6.38j, 11.69; HV,
7.79%; 8.68 MPA

NA #

Current
study

PLA
(polymers) DLNN (16-12-8-4) 4

Dropout
regularization +

ES regularization

1214 interpolated data
points + 26 EDPL * Yes (26) R2 = 0.78–0.88 R2 = 0.93–0.95

* Experimental data points from the literature = EDPL; $ Not mentioned = NM; # Not Applicable = NA.
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2. Data Generation
2.1. Manufacturing Methodology

Various preliminary fabrication conditions for PLA/HKUST-1 MMMs were tested,
and ultimately, a specific set of manufacturing conditions was selected. The hybrid
PLA/HKUST-1 MMMs were created with different amounts of HKUST-1 on glass sub-
strates, which were then immersed in distilled water at 25 ◦C and dried in an oven at 40 ◦C
for 24 h. The study evaluated different variables, including immersion time (10, 90, and
1440 min), initial film-casting thicknesses (150, 100, and 50 µm), and HKUST-1 loadings
into the PLA matrix (5, 10, and 20 wt%). The details of the manufacturing methodology are
available in Alhulaybi (2020).

2.2. Mechanical Properties

A tensile stress testing system (Linkam TST350, Linkam Scientific Instruments Ltd.,
Redhill, UK) was used to study the mechanical properties of selected films. All tests were
conducted at room temperature under dry conditions. A laser cutting machine was used to
cut a specimen into a dog bone shape with a width of 4 mm and a length of 11 mm. The
testing system had a fixed distance of 15 mm between the grips, while the tensile speed
was fixed at 0.15 mm/s, corresponding to a strain rate of 0.014 s−1. The tensile force was
measured by a load cell of 20 N. Experimentally measured parameters included applied
force (F) and the cross-sectional area (A) of the specimen, as well as the change in the
specimen length caused by the applied force (L − L0), where L0 was the original length,
and L was the length of the specimen after testing. Results obtained from tensile testing
were used to evaluate the tensile stress (σ = F

A ), strain at peak stress (ε = L−L0
L0

), Young’s
elastic modulus (E = σ

ε ), and toughness. A stress–strain curve was used to estimate
film toughness based on the trapezoidal integration rule using Microsoft Excel. The data
generated in the experiments are presented in Table 2. It is important to mention that the
measured mechanical properties can be used to evaluate the durability of PLA/HKUST-1
MMM under various fabrication conditions using mechanical characteristics.

Table 2. Results of experimental measurements.

Input 1 Input 2 Input 3 Input 4 Output 1 Output 2 Output 3 Output 4

PLA wt% HKUST-1
wt%

Casting
Thickness

(µm)

Immersion
Time (min) Stress (MPa) Strain E (MPa) Toughness

(KJ/m3)

100 0 150 1440 1.43 0.11 39.30 10.26

100 0 150 90 1.07 0.13 27 9.94

100 0 150 10 0.96 0.08 30.40 4.48

100 0 100 1440 1.28 0.16 32.30 15.61

100 0 100 90 1.14 0.16 23.90 11.96

100 0 100 10 1.87 0.18 42.50 21.90

100 0 50 1440 1.61 0.08 60.80 12.07

100 0 50 90 1.12 0.06 52.50 7.53

100 0 50 10 1.2 0.08 46.70 7.68

100 0 25 1440 1.43 0.07 65.20 7.32

100 0 25 90 1.06 0.04 48.50 3.25

100 0 25 10 1.34 0.08 43.50 6.85

95 5 150 1440 0.80 0.10 26.60 6.98

95 5 150 90 0.98 0.09 30.10 4.80

95 5 150 10 0.86 0.08 30.70 4.37
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Table 2. Cont.

Input 1 Input 2 Input 3 Input 4 Output 1 Output 2 Output 3 Output 4

PLA wt% HKUST-1
wt%

Casting
Thickness

(µm)

Immersion
Time (min) Stress (MPa) Strain E (MPa) Toughness

(KJ/m3)

95 5 100 1440 0.90 0.12 25.70 8.65

95 5 100 90 1.22 0.08 37 9.72

95 5 100 10 1.01 0.06 27.60 3.65

95 5 50 1440 0.91 0.13 18.60 9.80

95 5 50 90 0.91 0.05 39.50 3.64

95 5 50 10 1.02 0.04 41.60 3.68

95 5 25 1440 0.96 0.04 45.70 2.57

95 5 25 90 1.21 0.04 49 4.78

95 5 25 10 1.17 0.05 44.70 4.72

90 10 50 90 0.76 0.05 39.54 3.64

80 20 50 90 0.48 0.05 18.68 1.78

3. Computational Methodology

Recent literature suggests ANN (ANN) models achieve the best performance among
ML algorithms in predicting material characteristics [25–28]. Among the different ANN
models, DLNNs have proven most effective in extracting hidden features from datasets [25].
In the proposed work, we chose DLNN models to predict the mechanical properties of
PLA/HKUST-1 MMMs.

3.1. Background
3.1.1. DLNN Modeling

A DLNN comprises one input layer, one output layer, and two or more hidden
layers [21]. Each hidden layer contains multiple nodes, termed neurons. Figure 1 shows
a DNN model with a 3-(8-8-8)-1 architecture, where each neuron is fully connected to
the neurons of the immediately previous layer. Initially, all these neurons are initialized
by a random weight vector and biases. After the input data are fed to the input layer,
they gradually propagate from the left to the rightmost side of the network through the
activated hidden layer neurons. Then, the output layer predicts the output. After that, the
DLNN model determines the errors by comparing the predicted and actual output. Finally,
the errors backpropagate to the hidden layers and update the weight vector and biases
accordingly before the forward feeding of the next iteration. Repeated forward feed and
error backpropagation gradually improve the prediction performance of the DLNN on the
training dataset.

Mathematically, the output of the neurons in the hidden and output layers can be
computed as [21]:

yl+1
j = ϕl

(
m

∑
i=1

wl
i ·xl

i + bl

)
(1)

where wl and xl are the weight vector and input vector of layer l, respectively; m is the total
number of neurons in layer l; and ϕl() and bl are the activation function and bias of layer-l,
respectively. The activation function (ϕl()) is a non-linear function that passes the value
only if it is above the threshold.
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Figure 1. A DNN model with a 3-(8-8-8)-1 architecture.

3.1.2. Dropout

Dropout is an effective regularization method to optimize overfitting issues, partic-
ularly for small training datasets [29–31]. In this technique, n% of units from the hidden
layers and input features are disabled randomly during training. During testing, all the
weights of the units are set to (1 − n)%. Since any unit can be turned off, dropout reduces
the dependency on a particular unit in the neural network model during feature extrac-
tion [24,31]. Figure 2 elaborates on the dropout effects during training of a simple neural
network (NN) model with two hidden layers. We used this method to avoid overfitting
our trained model.
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while training the NN model.

3.1.3. Early Stopping

NN models are prone to overfitting, in general, if they are trained for multiple it-
erations [32]. Then, the model starts to copy the training data instead of extracting the
generalized features. Early stopping (ES) is a regularization method that generalizes the
model for the whole dataset. This method uses a validation dataset to detect overfitting
and stop training the model before fully converging [24,33]. We applied this to generalize
our NN models.
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3.1.4. Stratified K-Fold Cross Validation

The traditional hold-out cross-validation (CV) technique, where the dataset is split
into fixed training and testing datasets, is not practical for small datasets, as the testing
dataset may contain important data features that are missed during the model training
process. K-fold CV is advantageous, as it divides the whole database into K folds [34].
Then, the model is trained and tested K times separately; for every iteration, unique (K-1)
folds are used as training data, and the remaining fold is used as the unseen testing dataset,
as shown in Figure 3. The final model performance is calculated either from the best model
or by averaging all the results.
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However, for a biased dataset where the outputs are unevenly distributed throughout
the range, stratified K-fold CV has been proven better [22]. Stratified K-fold CV ensures that
data points in each fold cover the whole output range evenly. In this work, we performed
stratified K-fold CV for K = 5 folds. We split the entire dataset into 15 subgroups based
on the output distributions, then ensured that each fold contained data points from those
15 subgroups evenly.

3.1.5. Data Interpolation

Ideally, an effective machine learning (ML) model is trained with adequate and contin-
uous data points [23]. Recently in the literature, several ML model implementations have
been reported, where the original datasets were very small (<100 data points) due to the
complication and high cost of the experiments in the biomedical engineering, chemical
engineering, and material science domains [35–37]. Those models were trained with the
assistance of interpolated data points to successfully overcome the issue of small and dis-
continuous datasets. In this work, we used the cubic-spline interpolation (CSI) technique
to interpolate our small dataset (26 data points). In CSI, the data points are fitted with
a piecewise function composed of several third-degree polynomial functions, where all
polynomials and their first and second derivatives are continuous all over the dataset [38].
CSI performs better than other spatial interpolation techniques by providing a smother
curve with fewer interpolation errors and no distortion in the boundary region [36,39]. The
effectiveness of which technique has been proven in building various ML models for small
datasets [36,37,40]. To interpolate data, we followed the CSI steps as described in [36].
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3.1.6. ReLU

Rectified linear unit (ReLU) is a recently developed activation function for NNs that
can be represented mathematically as [41]:

g(x) = max(0, x) =
{

x i f x ≥ 0
0 i f x < 0

(2)

ReLU has proven advantageous over traditional activation functions, such as sigmoid
and hyperbolic tangent functions, as its first derivative (g(x)′) is constant for x ≥ 0,
overcoming the vanishing-gradient problem [29,41]. ReLU is used as the activation function
for the hidden layers of our proposed NNs.

3.1.7. Model Evaluation

We used three metrics from the scikit-learn Python machine learning package to
evaluate the performance of our deep learning neural network (DL-NN) models [42]: mean
absolute error (MAE), root mean square error (RMSE), and coefficient of determination
(R2). The fourth evaluation metric was the residual error (%). Among them, the residual
error (%) is the simplest metric that shows the difference between the actual and predicted
outcome out of 100:

Residual Error (%) =

(
ytrue

i − ypred
i

)
ytrue

i
× 100 (3)

where ytrue
i is the i-th actual outcome, and ypred

i is the i-th outcome predicted by the model.
MAE represents the mean of total absolute error:

MAE =
1
N

N

∑
i

∣∣∣ytrue
i − ypred

i

∣∣∣ (4)

where N is the total number of data points.
RMSE is another standard metric used to evaluate the prediction performance of the

model. It corresponds to the Euclidean distance between the predicted and true values:

RMSE =

√√√√ 1
N

N

∑
i

(
ytrue

i − ypred
i

)2
(5)

R2 is a popular regression score function that provides a numerical value between 1
and 0, where 1 means that the model predicts the outcome perfectly, and 0 means that the
model does not predict the outcome. R2 is calculated as:

R2 = 1−
∑i

(
ytrue

i − ypred
i

)2

∑i
(
ytrue

i − ytrue)2 (6)

where ytrue is the mean of the actual outcome.

3.1.8. Computational Framework

Training DLNN models consist of multiple layers of fully connected neurons and
require a hardware platform that can perform extensive computations in parallel during ev-
ery iteration. Rather using a local machine, in this work, the DLNN models are developed,
trained, and tested using cloud based hardware resources provided by Google Collabora-
tory (Colab) [43]. Colab works based on Jupyter notebook service, which needs zero-setup
and provides on-demand remote access to extensive computing resources, such as GPUs.
Python 3.11.2 programming language and Keras API on the TensorFlow 2 platform were
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used to develop all the models in this work [44]. A Python library named Regressio under
the MIT open-source license was used for the CSI of our dataset [45].

3.2. Model Development

In the current study, we built a DL-NN model to predict the stress, strain, elastic
modulus, and toughness of PLA film. All these models have four inputs, which: weight
percentage (wt%) of PLA, wt% of HKUST-1, casting thickness (µm), and immersion time
(minutes). The flow chart presented in Figure 4 demonstrates the steps of the workflow for
the proposed work:
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3.2.1. Data Preprocessing

We started data preprocessing by normalizing our dataset’s input and output pa-
rameters, a common practice before DL-NN training [46]. Next, we interpolated data
points following the CSI technique to ensure that we had enough data points spread
over the entire input space in which the model was to be applied [36,46]. Our orig-
inal dataset comprised 26 data points and four output parameters. We interpolated
1214 data points in total: 286, 288, 338, and 302 data points for the DL-NN models to
predict the stress, strain, elastic modulus, and toughness, respectively. The interpolated
data were used for model tuning, training, and cross-validation purposes, whereas the
original 26 data points were kept isolated only for testing purposes. Stratified K-fold CV
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allowed us to use all 1214 interpolated data points for training and validation/testing
purposes.

3.2.2. Tuning Hyperparameters and Model Selection

We used the grid search method to individually tune the critical hyperparameters
of the Keras-based DL-NNs, such as the number of hidden layers, number of neurons,
kernel initializer, activation function, model optimizer, learning rate, number of epochs,
and dropout rate. First, a set of proper ranges/options were selected as grids for each of
these parameters. Then, each of the grids was evaluated 4–5 times to determine the actual
model performance. Finally, the best grid options for all the hypermeters were selected
for the training phases. In Appendix A, we summarize all the tuned hyperparameters for
our DL-NNs. The selected DL-NN model has 4 hidden layers, with a total of 40 neurons
distributed in a 4-(16-12-8-4)-4 architecture, as shown in Figure 5, where ReLU is the
activation function for the hidden layers, and a linear activation function is used for the
output layer [41].
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We used the NN illustrated above with the hyperparameters mentioned in Table A1
to build four individual regression models for each output of our dataset.

3.2.3. Training the Models

The four models used to predict each output were trained separately with their
corresponding interpolated data, obtaining their optimized weight metrics. Identical
training procedures were followed for each model, initiated by splitting the interpolated
data into five sets following stratified K-fold CV for K = 5 folds. Then, the model was trained
in 5 iterations, and the evaluation performance was noted in terms of MAE, MSE, and R2.
MAE was the loss function used to train all models. Each iteration used the corresponding
stratified 4 folds as the training dataset. The dropout and early stopping techniques were
applied to prevent overfitting and generalize the model performance [29,30,33,35]. After
completing the 5 iterations, the best-trained mode in terms of the evaluation metrics was
chosen for the testing phases.

3.2.4. Testing and Performance Analysis of the Trained Models

The 4 selected and trained models of each output were tested with the original dataset,
which was unknown during the model training phases. The trained models were also
tested with the unseen interpolated data fold, i.e., the unused 1 fold of data points during
the training iteration of the selected model. Finally, data were analyzed and presented.

4. Results and Discussion
4.1. Dataset Analysis

As previously mentioned, we applied CSI techniques to interpolate the original dataset.
Table 3 shows the statistical properties of all the output parameters in the original and
interpolated datasets, and Figure 6 shows their distribution in detail. The original dataset
not only has a small number of data points, but their distribution is also uneven and
discontinuous. However, in order to build an effective NN model, the dataset needs to be
continuous all over the range and sufficiently large [23,35]. We can also see from Figure 6
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that the interpolated dataset meets these requirements. Table 3 shows that the min. and
max. of all the output parameters are identical in most cases between the original and
interpolated dataset. Conversely, we see differences in their means and standard deviations
with redistribution of the data points evenly without discontinuity for the interpolated
dataset.

Table 3. Statistical properties of the original and interpolated data points for stress, strain, elastic
modulus, and toughness.

Statistical
Properties

Original Dataset Interpolated Dataset

Stress
(MPa) Strain

Elastic
Modulus

(MPa)

Toughness
(Kj/m3)

Stress
(MPa) Strain

Elastic
Modulus

(MPa)

Toughness
(Kj/m3)

Data
Points 26 26 26 26 286 288 338 302

Min. 0.48 0.04 18.60 1.78 0.46 0.04 16.60 1.28

Max. 1.87 0.18 65.2 21.9 1.89 0.18 67.15 22.35

Mean 1.10 0.09 37.99 7.37 1.17 0.11 41.88 11.82

Std.
Deviation 0.29 0.04 12.03 4.54 0.41 0.04 14.66 6.11
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4.2. Model Generalization

In the proposed work, all the models were generalized and optimized from the over
fittings by applying the dropout and ES regularization techniques. For example, Figure 7
shows the training and validation losses for the E model of iteration #3 with and without
the dropout and ES regularizations. When there was no regularization, the training loss
reached <0.05 MAE after convergence, which is the minimum reported MAE in this figure.
However, at that point, the validation loss was ~0.10 MAE, which is 100% more than the
training loss. Optimum validation loss is crucial, as it indicates the model’s efficiency for
the unknown dataset [24,30]. This significant difference between the training and validation
loss suggests the model was overfitted and follows the training data instead of extracting
the data features. Figure 7 also shows that this overfitting issue is overcome when we
train the same model with the dropout and ES regulations. This approach generalized the
model’s evaluation performance for the known (training) and unknown (validation) data.
It also reduced the validation loss up to ~0.06 MAE, which is 40% less than the validation
loss reported for the model without dropouts and ES. It is also observed from this figure
that the validation loss reached its minimum before the training loss fully converged, as
indicated by the green dot. Subsequently, as we trained the model for more epochs, the
training loss decreased gradually, while the validation loss slightly increased, ES provided
the advantage of stopping the training process when the validation loss was optimum.
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4.3. Performance Evaluation

Table 4 compares the evaluation performances of the four DL-NN models for the
prediction of stress, strain, E, and toughness in terms of MAE, MSE, and R2. We evaluated
each model using three types of datasets: (type 1) the known interpolated data point folds
used in the model, (type 2) the unknown interpolated data point folds used in the model,
and (type 3) the original data points, which were also unknown to the model. All the
models performed identically for the type-1 and type-2 datasets: MSE, 0.39–0.59; RMSE,
0.045–0.071; R2, 0.93–0.97. We believe these similar model performances for the known
and unknown interpolated datasets were archived due to the dropout and ES techniques,
as shown in Figure 7. The same statistical properties of the interpolated data points in
for type 1 and type 2 is another reason for the similar performances. The three rightmost
columns in Table 4 summarize the model performance for the type-3 dataset. The evaluation
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performance of all models dropped compared to that of type-1 and type-2 datasets, but
they still maintained a satisfactory level [47]: MSE, 0.48–0.062; RMSE, 0.063–0.095; R2,
0.78–0.88. We can attribute this performance dropoff to the statistical differences between
the interpolated and original datasets, as visible in Table 3 and Figure 6. The main objective
of data interpolation in this work was to generate sufficient and continuous data points
with the same features as the original dataset, not necessarily with the same statistical
properties. Table 4 also shows that the evaluation performance of the toughness model
is slightly less accurate than that the three other output models for type-1, type-2, and
type-3 datasets. The typically reduced performance of the toughness model can be linked
to one of the following assumptions: the toughness of the PLA film has a relatively weaker
correlation with all input parameters of our dataset or measurement errors exists within
the toughness data [48].

Table 4. Evolution of the models using known interpolated, unknown interpolated, and unknown
original datasets.

#
Modeling

Output
Dropout

Rate

Model Performance Evaluation

Using Type-1 Dataset
(Known

Interpolated Data Points)

Using Type-2 Dataset
(Unknown Interpolated Data

Points)

Using Type-3 Dataset
(Unknown Original Data

Points)

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 Stress 7.5% 0.04 0.05 0.95 0.04 0.05 0.95 0.05 0.06 0.82

2 Strain 4.5% 0.03 0.05 0.97 0.03 0.05 0.97 0.05 0.08 0.88

3 Elastic
modulus 12.5% 0.04 0.05 0.96 0.04 0.05 0.96 0.05 0.07 0.82

4 Toughness 11.5% 0.06 0.07 0.93 0.06 0.07 0.93 0.06 0.10 0.78

Figure 8 shows a graphic representation of the prediction performances and residual
errors of the stress, strain, E, and toughness models for the original data points and those
unknown to the model (i.e., type-3 dataset). Figure 8a,c,e,g show that the perfect prediction
line (y = T) closely surrounds the predictions of all the models, and Figure 8b,d,f,h show
that the majority of the predictions have <±15% residual errors. The strain model has the
best R2 score of 0.88: 73.1% of its predictions have <±15% residual errors—the third-best
residual error performance compared to the other models. Figure 6b,c show that this mode
predicted the larger strains in the 0.4–1 range more precisely, whereas for the smaller strains,
the prediction contained more errors. The stress model showed the best performance in
terms of residual errors, i.e., 88.5% of its predictions had < ±15% residual errors, but its
R2 score was 0.82, which is the second-best among all the modes. Figure 6a,b indicate the
reason for this; the model achieves consistent prediction performance all over the stress
range of 0–1, with a certain percentage of moderate error. The toughness model exhibited
the worse performance regarding the R2 score and residual errors, as evident in Table 2.

To summarize the discussion, we generated sufficiently large and continuous inter-
polated data points by mimicking the data features of the original dataset by applying
CSI techniques. Then, the interpolated data were used in the training phases so that our
NN models could extract and learn the data features and predict the outputs from the
unknown original dataset. Table 2 and Figure 8 show that our models achieved satisfactory
precision in predicting the unknown data points, regardless of whether they belonged to
the interpolated or original dataset.
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blue line represents the 0% residual errors.
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5. Conclusions

We developed a DLNN model to predict four mechanical properties of the PLA/HKUST-
1 MMM: stress, strain, elastic modulus, and toughness. The model was developed using
the TensorFlow 2 backend Keras API in Python programming language. A total of 1214 CSI
data points were generated from the 26 experimental data points reported in [13] and
split into stratified K-fold CV of five folds to train and validate the mode. The grid search
methods were used to tune all the model hyperparameters. Dropout and early stopping
regulation were used to generalize the model and optimize the overfitting issues during
model training. Finally, the model was tested using unknown CSI data point folds and
experimental data points. The model’s R2 score was between 0.9 and 0.97 for the CSI
data points and between 0.78 and 0.88 for the experimental data points. In both cases, the
model achieved the highest score for strain prediction and the lowest score for toughness
prediction. The distinctiveness of this work is that we demonstrated the performance of
our model for the full range of experimental data points, unlike in other recent works, as
illustrated in Table 1. This also suggests that following our proposed method, an effective
NN model can be built using a small dataset for prediction of material properties.
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Appendix A. Tuned Hyperparameters

Table A1 summarizes all the tuned hyperparameters used to train and test out
DL-NN models.
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Table A1. Tuned hyperparameters the DL-NNs.

Hyperparameter Tuning Option

Hidden layers 4

Neurons 40

Kernel initializer GlorotNormal

Activation function ReLU (for hidden layers)
Linear (for output layers)

Model optimizer Adam

Learning rate 10−4 (for NN model without dropout)
10−3 (for NN model with dropout)

Loss function MSE

Epochs 1000–1500

Dropout rate

Stress modeling: 7–8%
Strain modeling: 4–5%

E modeling: 12–15%
Toughness modeling: 10–13%

References
1. La Rosa, D. Life cycle assessment of biopolymers. In Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials;

Pacheco-Torgal, F., Ivanov, V., Karak, N., Jonkers, H., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 57–78. [CrossRef]
2. Sternberg, J.; Sequerth, O.; Pilla, S. Green chemistry design in polymers derived from lignin: Review and perspective. Prog. Polym.

Sci. 2021, 113, 101344. [CrossRef]
3. Muneer, F.; Nadeem, H.; Arif, A.; Zaheer, W. Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic

Pollution. Polym. Sci. Ser. C 2021, 63, 47–63. [CrossRef]
4. Kumari, S.V.G.; Pakshirajan, K.; Pugazhenthi, G. Recent advances and future prospects of cellulose, starch, chitosan, polylactic

acid and polyhydroxyalkanoates for sustainable food packaging applications. Int. J. Biol. Macromol. 2022, 221, 163–182. [CrossRef]
[PubMed]

5. Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.;
Razman, M.R.; Nurazzi, N.M.; et al. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced
Applications. Polymers 2021, 13, 1326. [CrossRef] [PubMed]

6. Bioplastics Market Development Update 2019. Available online: https://www.european-bioplastics.org/wp-content/uploads/
2019/11/Report_Bioplastics-Market-Data_2019_short_version.pdf (accessed on 10 June 2023).

7. Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed
inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507. [CrossRef]

8. Shah, M.; McCarthy, M.C.; Sachdeva, S.; Lee, A.K.; Jeong, H.-K. Current Status of Metal–Organic Framework Membranes for Gas
Separations: Promises and Challenges. Ind. Eng. Chem. Res. 2012, 51, 2179–2199. [CrossRef]

9. Li, Y.; Fu, Z.; Xu, G. Metal-organic framework nanosheets: Preparation and applications. Coord. Chem. Rev. 2019, 388, 79–106.
[CrossRef]

10. Knebel, A.A.; Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for
energy-efficient gas separation. Nat. Nanotechnol. 2022, 17, 911–923. [CrossRef]

11. Richardson, N. Investigating Mechano-Chemical Encapsulation of Anti-cancer Drugs on Aluminum Metal-Organic Framework
Basolite A100—ProQuest. Master’s Thesis, Morgan State University, Baltimore, MD, USA, 2021. Available online: https:
//www.proquest.com/openview/9adc81f41808abbc2bf9a503d2095a45 (accessed on 10 June 2023).

12. Lin, R. MOFs-Based Mixed Matrix Membranes for Gas Separation. Ph.D. Thesis, The University of Queensland, Saint Lucia,
Australia, 2016. Available online: https://core.ac.uk/reader/83964620 (accessed on 10 June 2023).

13. Alhulaybi, Z.A. Fabrication of Porous Biopolymer/Metal-Organic Framework Composite Membranes for Filtration Applications.
Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2020. Available online: https://eprints.nottingham.ac.uk/63048/
(accessed on 10 June 2023).

14. Stănescu, M.M.; Bolcu, A. A Study of the Mechanical Properties in Composite Materials with a Dammar Based Hybrid Matrix
and Reinforcement from Crushed Shells of Sunflower Seeds. Polymers 2022, 14, 392. [CrossRef]

15. Soltane, H.B.; Roizard, D.; Favre, E. Effect of pressure on the swelling and fluxes of dense PDMS membranes in nanofiltration: An
experimental study. J. Membr. Sci. 2013, 435, 110–119. [CrossRef]

16. Miao, Z.; Ji, X.; Wu, M.; Gao, X. Deep learning-based evaluation for mechanical property degradation of seismically damaged RC
columns. Earthq. Eng. Struct. Dyn. 2023, 52, 2498–2519. [CrossRef]

https://doi.org/10.1016/B978-0-08-100214-8.00004-X
https://doi.org/10.1016/j.progpolymsci.2020.101344
https://doi.org/10.1134/S1811238221010057
https://doi.org/10.1016/j.ijbiomac.2022.08.203
https://www.ncbi.nlm.nih.gov/pubmed/36067847
https://doi.org/10.3390/polym13081326
https://www.ncbi.nlm.nih.gov/pubmed/33919530
https://www.european-bioplastics.org/wp-content/uploads/2019/11/Report_Bioplastics-Market-Data_2019_short_version.pdf
https://www.european-bioplastics.org/wp-content/uploads/2019/11/Report_Bioplastics-Market-Data_2019_short_version.pdf
https://doi.org/10.1016/j.progpolymsci.2007.01.008
https://doi.org/10.1021/ie202038m
https://doi.org/10.1016/j.ccr.2019.02.033
https://doi.org/10.1038/s41565-022-01168-3
https://www.proquest.com/openview/9adc81f41808abbc2bf9a503d2095a45
https://www.proquest.com/openview/9adc81f41808abbc2bf9a503d2095a45
https://core.ac.uk/reader/83964620
https://eprints.nottingham.ac.uk/63048/
https://doi.org/10.3390/polym14030392
https://doi.org/10.1016/j.memsci.2013.01.053
https://doi.org/10.1002/eqe.3749


ChemEngineering 2023, 7, 80 18 of 19

17. Gyurova, L.A. Sliding Friction and Wear of Polyphenylene Sulfide Matrix Composites: Experimental and Artificial Neural
Network Approach. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 2010. Available online:
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/4717 (accessed on 10 June 2023).

18. Sterjovski, Z.; Nolan, D.; Carpenter, K.R.; Dunne, D.P.; Norrish, J. Artificial neural networks for modelling the mechanical
properties of steels in various applications. J. Mater. Process. Technol. 2005, 170, 536–544. [CrossRef]

19. Park, S.; Marimuthu, K.P.; Han, G.; Lee, H. Deep learning based nanoindentation method for evaluating mechanical properties of
polymers. Int. J. Mech. Sci. 2023, 246, 108162. [CrossRef]

20. Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of Mechanical Properties by Artificial Neural Networks to Charac-
terize the Plastic Behavior of Aluminum Alloys. Materials 2020, 13, 5227. [CrossRef]

21. Kazi, M.-K.; Eljack, F.; Mahdi, E. Optimal filler content for cotton fiber/PP composite based on mechanical properties using
artificial neural network. Compos. Struct. 2020, 251, 112654. [CrossRef]

22. Charilaou, P.; Battat, R. Machine learning models and over-fitting considerations. World J. Gastroenterol. 2022, 28, 605–607.
[CrossRef] [PubMed]

23. Zhang, Y.; Ling, C. A strategy to apply machine learning to small datasets in materials science. npj Comput. Mater. 2018, 4, 25.
[CrossRef]

24. Marin, A.; Skelin, K.; Grujic, T. Empirical Evaluation of the Effect of Optimization and Regularization Techniques on the
Generalization Performance of Deep Convolutional Neural Network. Appl. Sci. 2020, 10, 7817. [CrossRef]

25. Feng, S.; Zhou, H.; Dong, H. Using deep neural network with small dataset to predict material defects. Mater. Des. 2019, 162,
300–310. [CrossRef]
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