Catalytic Performance of Bimetallic Cobalt–Nickel/Graphene Oxide for Carbon Dioxide Reforming of Methane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation
2.3. Catalyst Characterization
3. Results and Discussion
3.1. Catalysts Characterization
3.2. Catalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, B.; Wang, Y.; Xu, Z.; Han, W.; Jin, H.; Wang, H. Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture. Energy Convers. Manag. 2022, 270, 116199. [Google Scholar] [CrossRef]
- Alipour, Z.; Babu Borugadda, V.; Wang, H.; Dalai, A.K. Syngas Production through Dry Reforming: A Review on Catalysts and Their Materials, Preparation Methods and Reactor Type. Chem. Eng. J. 2023, 452, 139416. [Google Scholar] [CrossRef]
- Jabbour, K.; El Hassan, N.; Arabi, M.; Chemali, R.; Nasr, Y. A Thermodynamic Methodology toward an Optimized Methane Decomposition Process for Enhanced Hydrogen Production and Low Carbon Accumulation: Effect of Non-Hydrocarbon Co-Feeds. Chem. Eng. Res. Des. 2022, 188, 50–68. [Google Scholar] [CrossRef]
- Mu, W.-H.; Chasse, G.A.; Fang, D.-C. High Level Ab Initio Exploration on the Conversion of Carbon Dioxide into Oxazolidinones: The Mechanism and Regioselectivity. J. Phys. Chem. A 2008, 112, 6708–6714. [Google Scholar] [CrossRef]
- Yentekakis, I.V.; Panagiotopoulou, P.; Artemakis, G. A Review of Recent Efforts to Promote Dry Reforming of Methane (DRM) to Syngas Production via Bimetallic Catalyst Formulations. Appl. Catal. B 2021, 296, 120210. [Google Scholar] [CrossRef]
- Summa, P.; Samojeden, B.; Motak, M. Dry and Steam Reforming of Methane. Comparison and Analysis of Recently Investigated Catalytic Materials. A Short Review. Pol. J. Chem. Technol. 2019, 21, 31–37. [Google Scholar] [CrossRef]
- Vogt, C.; Kranenborg, J.; Monai, M.; Weckhuysen, B.M. Structure Sensitivity in Steam and Dry Methane Reforming over Nickel: Activity and Carbon Formation. ACS Catal. 2020, 10, 1428–1438. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Manna, J.; Jha, P.; Sarkhel, R.; Banerjee, C.; Tripathi, A.K.; Nouni, M.R. Opportunities for Green Hydrogen Production in Petroleum Refining and Ammonia Synthesis Industries in India. Int. J. Hydrogen Energy 2021, 46, 38212–38231. [Google Scholar] [CrossRef]
- Jang, W.-J.; Jeong, D.-W.; Shim, J.-O.; Kim, H.-M.; Roh, H.-S.; Son, I.H.; Lee, S.J. Combined Steam and Carbon Dioxide Reforming of Methane and Side Reactions: Thermodynamic Equilibrium Analysis and Experimental Application. Appl. Energy 2016, 173, 80–91. [Google Scholar] [CrossRef]
- Sasson Bitters, J.; He, T.; Nestler, E.; Senanayake, S.D.; Chen, J.G.; Zhang, C. Utilizing Bimetallic Catalysts to Mitigate Coke Formation in Dry Reforming of Methane. J. Energy Chem. 2022, 68, 124–142. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Zhang, Q.; Vinokurov, V.A.; Huang, W. Carbon Deposition Behaviors in Dry Reforming of CH4 at Elevated Pressures over Ni/MoCeZr/MgAl2O4-MgO Catalysts. Fuel 2022, 310, 122449. [Google Scholar] [CrossRef]
- Yang, B.; Deng, J.; Li, H.; Yan, T.; Zhang, J.; Zhang, D. Coking-Resistant Dry Reforming of Methane over Ni/γ-Al2O3 Catalysts by Rationally Steering Metal-Support Interaction. iScience 2021, 24, 102747. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Plata, D.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Cauqui, M.A.; Yeste, M.P. Improving Noble Metal Catalytic Activity in the Dry Reforming of Methane by Adding Niobium. Fuel 2022, 308, 121996. [Google Scholar] [CrossRef]
- Karemore, A.L.; Sinha, R.; Chugh, P.; Vaidya, P.D. Syngas Production by Dry Methane Reforming over Alumina-Supported Noble Metals and Kinetic Studies. Chem. Eng. Technol. 2022, 45, 907–917. [Google Scholar] [CrossRef]
- Singh, R.; Dhir, A.; Mohapatra, S.K.; Mahla, S.K. Dry Reforming of Methane Using Various Catalysts in the Process: Review. Biomass Convers. Biorefin. 2020, 10, 567–587. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L.E.; Su, D.; Xu, W.; Cen, J.; Attenkofer, K.; et al. Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ruδ+–Ce3+ Interactions for Enhanced Conversion. ACS Catal. 2019, 9, 3349–3359. [Google Scholar] [CrossRef]
- de Araújo Moreira, T.G.; de Carvalho Filho, J.F.S.; Carvalho, Y.; De Almeida, J.M.A.R.; Nothaft Romano, P.; Falabella Sousa-Aguiar, E. Highly Stable Low Noble Metal Content Rhodium-Based Catalyst for the Dry Reforming of Methane. Fuel 2021, 287, 119536. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, L.; Zhu, J.; Han, B.; Fan, W.; Xu, L.; Yu, H.; Cai, W.; Li, Z.; et al. Performance Enhancement of Methane Dry Reforming Reaction for Syngas Production over Ir/Ce0.9La0.1O2-Nanorods Catalysts. Catal. Today 2020, 355, 502–511. [Google Scholar] [CrossRef]
- Jiménez, J.D.; Betancourt, L.E.; Danielis, M.; Zhang, H.; Zhang, F.; Orozco, I.; Xu, W.; Llorca, J.; Liu, P.; Trovarelli, A.; et al. Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd–CeO2. ACS Catal. 2022, 12, 12809–12822. [Google Scholar] [CrossRef]
- Shen, D.; Li, Z.; Shan, J.; Yu, G.; Wang, X.; Zhang, Y.; Liu, C.; Lyu, S.; Li, J.; Li, L. Synergistic Pt-CeO2 Interface Boosting Low Temperature Dry Reforming of Methane. Appl. Catal. B 2022, 318, 121809. [Google Scholar] [CrossRef]
- Cai, X.; Hu, Y.H. Advances in Catalytic Conversion of Methane and Carbon Dioxide to Highly Valuable Products. Energy Sci. Eng. 2019, 7, 4–29. [Google Scholar] [CrossRef]
- Shafiqah, M.-N.N.; Abidin, S.Z.; Roslan, N.A.; Osazuwa, O.U.; Chanakaewsomboon, I. The Synergistic Role of Ni-Co Bimetallic Catalyst for H2-Rich Syngas Production via Glycerol Dry Reforming. J. Energy Inst. 2022, 105, 293–308. [Google Scholar] [CrossRef]
- San-José-Alonso, D.; Juan-Juan, J.; Illán-Gómez, M.J.; Román-Martínez, M.C. Ni, Co and Bimetallic Ni–Co Catalysts for the Dry Reforming of Methane. Appl. Catal. A Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- Erdogan, B.; Arbag, H.; Yasyerli, N. SBA-15 Supported Mesoporous Ni and Co Catalysts with High Coke Resistance for Dry Reforming of Methane. Int. J. Hydrogen Energy 2018, 43, 1396–1405. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Esmaeilkhanian, A.; Bazli, L.; Eskandarinezhad, S.; Khaksar, S.; Shafiee, P.; Yusuf, M.; Abdullah, B.; Salahshour, P.; Sadeghi, F. A Review on Recent Advances in Dry Reforming of Methane over Ni- and Co-Based Nanocatalysts. Int. J. Hydrogen Energy 2022, 47, 42213–42233. [Google Scholar] [CrossRef]
- Horlyck, J.; Lawrey, C.; Lovell, E.C.; Amal, R.; Scott, J. Elucidating the Impact of Ni and Co Loading on the Selectivity of Bimetallic NiCo Catalysts for Dry Reforming of Methane. Chem. Eng. J. 2018, 352, 572–580. [Google Scholar] [CrossRef]
- Ay, H.; Üner, D. Dry Reforming of Methane over CeO2 Supported Ni, Co and Ni–Co Catalysts. Appl. Catal. B 2015, 179, 128–138. [Google Scholar] [CrossRef]
- Zhang, X.; Han, X.; Gao, C.; Wang, X.; Wei, Y.; Zhang, N.; Bao, J.; Xu, N.; He, G. In-Situ Growth of Co/Zn Bimetallic MOF on GO Surface to Prepare GO Supporting Co@C Single-Atom Catalyst for Hg0 Oxidation. Fuel 2023, 333, 126135. [Google Scholar] [CrossRef]
- Buttersack, C. Modeling of Type IV and v Sigmoidal Adsorption Isotherms. Phys. Chem. Chem. Phys. 2019, 21, 5614–5626. [Google Scholar] [CrossRef]
- ZHANG, R.; XIA, G.; LI, M.; WU, Y.; NIE, H.; LI, D. Effect of Support on the Performance of Ni-Based Catalyst in Methane Dry Reforming. J. Fuel Chem. Technol. 2015, 43, 1359–1365. [Google Scholar] [CrossRef]
- Lyu, L.; Han, Y.; Ma, Q.; Makpal, S.; Sun, J.; Gao, X.; Zhang, J.; Fan, H.; Zhao, T.S. Fabrication of Ni-Based Bimodal Porous Catalyst for Dry Reforming of Methane. Catalysts 2020, 10, 1220. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhao, S.; Zhu, J.; Jin, L.; Hu, H. Preparation of Bimetallic Catalysts Ni-Co and Ni-Fe Supported on Activated Carbon for Methane Decomposition. Carbon Resour. Convers. 2020, 3, 190–197. [Google Scholar] [CrossRef]
- Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Ng, Y.H.; Clark, J.H.; Fan, J.; Zhang, S.; Hu, C.; Ok, Y.S. Graphite Oxide- and Graphene Oxide-Supported Catalysts for Microwave-Assisted Glucose Isomerisation in Water. Green Chem. 2019, 21, 4341–4353. [Google Scholar] [CrossRef]
- Sharma, S.; Groves, M.N.; Fennell, J.; Soin, N.; Horswell, S.L.; Malardier-Jugroot, C. Carboxyl Group Enhanced CO Tolerant GO Supported Pt Catalysts: DFT and Electrochemical Analysis. Chem. Mater. 2014, 26, 6142–6151. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Chen, C.; He, C.; Miao, J.; Li, H.; Chen, J. Effects of Calcination Temperature on Physicochemical Property and Activity of CuSO4/TiO2 Ammonia-Selective Catalytic Reduction Catalysts. J. Environ. Sci. 2020, 91, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Ma, F.; Ma, Y.; Fan, X. The Optimization of Ni–Al2O3 Catalyst with the Addition of La2O3 for CO2–CH4 Reforming to Produce Syngas. Int. J. Hydrogen Energy 2019, 44, 24510–24524. [Google Scholar] [CrossRef]
- Cichy, M.; Pańczyk, M.; Słowik, G.; Zawadzki, W.; Borowiecki, T. Ni–Re Alloy Catalysts on Al2O3 for Methane Dry Reforming. Int. J. Hydrogen Energy 2022, 47, 16528–16543. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, Z.; Huang, X.; Ran, J.; Chen, J.; Qin, C. Understanding the Role of Support Structure in Methane Dry Reforming for Syngas Production. Fuel 2022, 327, 125163. [Google Scholar] [CrossRef]
- Lyu, L.; Shengene, M.; Ma, Q.; Sun, J.; Gao, X.; Fan, H.; Zhang, J.; Zhao, T.-S. Synergy of Macro-Meso Bimodal Pore and Ni-Co Alloy for Enhanced Stability in Dry Reforming of Methane. Fuel 2022, 310, 122375. [Google Scholar] [CrossRef]
- Ekeoma, B.C.; Yusuf, M.; Johari, K.; Abdullah, B. Mesoporous Silica Supported Ni-Based Catalysts for Methane Dry Reforming: A Review of Recent Studies. Int. J. Hydrogen Energy 2022, 47, 41596–41620. [Google Scholar] [CrossRef]
Catalyst | Co (wt%) | Ni (wt%) | Total Metal (wt%) |
---|---|---|---|
1Co—1Ni/GO | 10 | 10 | 20 |
1Co—2Ni/GO | 10 | 20 | 30 |
2Co—1Ni/GO | 20 | 10 | 30 |
Catalyst | ABET (m2/g) a | Vp (cm3/g) b | Å (nm) c |
---|---|---|---|
1Co—1Ni/GO | 9.5921 | 0.0396 | 16.4504 |
1Co—2Ni/GO | 12.0215 | 0.0427 | 14.1692 |
2Co—1Ni/GO | 9.1568 | 0.0362 | 15.9061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakar, S.N.S.S.A.; Alsaffar, M.A.; Abdullah, B.; Shaharun, M.S.; Abdullah, S.; Ayodele, B.V. Catalytic Performance of Bimetallic Cobalt–Nickel/Graphene Oxide for Carbon Dioxide Reforming of Methane. ChemEngineering 2023, 7, 107. https://doi.org/10.3390/chemengineering7060107
Bakar SNSSA, Alsaffar MA, Abdullah B, Shaharun MS, Abdullah S, Ayodele BV. Catalytic Performance of Bimetallic Cobalt–Nickel/Graphene Oxide for Carbon Dioxide Reforming of Methane. ChemEngineering. 2023; 7(6):107. https://doi.org/10.3390/chemengineering7060107
Chicago/Turabian StyleBakar, Sharifah Nur Sorfina Syed Abu, May Ali Alsaffar, Bawadi Abdullah, Maizatul Shima Shaharun, Sureena Abdullah, and Bamidele Victor Ayodele. 2023. "Catalytic Performance of Bimetallic Cobalt–Nickel/Graphene Oxide for Carbon Dioxide Reforming of Methane" ChemEngineering 7, no. 6: 107. https://doi.org/10.3390/chemengineering7060107
APA StyleBakar, S. N. S. S. A., Alsaffar, M. A., Abdullah, B., Shaharun, M. S., Abdullah, S., & Ayodele, B. V. (2023). Catalytic Performance of Bimetallic Cobalt–Nickel/Graphene Oxide for Carbon Dioxide Reforming of Methane. ChemEngineering, 7(6), 107. https://doi.org/10.3390/chemengineering7060107