Optimizing Extract Preparation from Laurel (Laurus nobilis L.) Leaves Using a Pulsed Electric Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Plant Extraction
2.4. Optimization with Response Surface Methodology (RSM) and Experimental Design
2.5. Kinetics Analysis
2.6. Polyphenol Determination
2.6.1. Total Polyphenol Content (TPC)
2.6.2. HPLC Quantification of Polyphenolic Compounds
2.7. Antioxidant Capacity of the Extracts
2.7.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.7.2. DPPH• Antiradical Activity Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Optimal Solvent and Liquid-to-Solid Ratio
3.2. Optimization of PEF Conditions
3.3. Impact of Extraction Parameters to Assays through Pareto Plot Analysis
3.4. Optimal Extraction Conditions
3.5. Kinetic Modelling of Optimal Extract
3.6. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)
3.7. Partial Least Squares (PLS) Analysis and Variable Importance Plot (VIP) Coefficient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef]
- Kumar, S.; Saini, R.; Suthar, P.; Kumar, V.; Sharma, R. Plant Secondary Metabolites: Their Food and Therapeutic Importance. In Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications; Sharma, A.K., Sharma, A., Eds.; Springer Nature: Singapore, 2022; pp. 371–413. ISBN 9789811647796. [Google Scholar]
- Guimarães, R.; Sousa, M.J.; Ferreira, I.C.F.R. Contribution of Essential Oils and Phenolics to the Antioxidant Properties of Aromatic Plants. Ind. Crops Prod. 2010, 32, 152–156. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The Effect of Developmental and Environmental Factors on Secondary Metabolites in Medicinal Plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, F.; Arroyo, J. Reconstructing the Demise of Tethyan Plants: Climate-Driven Range Dynamics of Laurus since the Pliocene. Glob. Ecol. Biogeogr. 2008, 17, 685–695. [Google Scholar] [CrossRef]
- Paparella, A.; Nawade, B.; Shaltiel-Harpaz, L.; Ibdah, M. A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of Laurus nobilis. Plants 2022, 11, 1209. [Google Scholar] [CrossRef] [PubMed]
- Anzano, A.; de Falco, B.; Grauso, L.; Motti, R.; Lanzotti, V. Laurel, Laurus nobilis L.: A Review of Its Botany, Traditional Uses, Phytochemistry and Pharmacology. Phytochem. Rev. 2022, 21, 565–615. [Google Scholar] [CrossRef]
- Batool, S.; Khera, R.A.; Hanif, M.A.; Ayub, M.A. Chapter 5—Bay Leaf. In Medicinal Plants of South Asia; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–74. ISBN 978-0-08-102659-5. [Google Scholar]
- Dobroslavić, E.; Repajić, M.; Dragović-Uzelac, V.; Elez Garofulić, I. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022, 11, 235. [Google Scholar] [CrossRef]
- Stefanova, G.; Girova, T.; Gochev, V.; Stoyanova, M.; Petkova, Z.; Stoyanova, A.; Zheljazkov, V.D. Comparative Study on the Chemical Composition of Laurel (Laurus nobilis L.) Leaves from Greece and Georgia and the Antibacterial Activity of Their Essential Oil. Heliyon 2020, 6, e05491. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.; Teixeira, B.; Batista, I.; Matos, O.; Serrano, C.; Neng, N.R.; Nogueira, J.M.F.; Nunes, M.L.; Marques, A. Antioxidant and Antibacterial Activity of Essential Oil and Extracts of Bay Laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat. Prod. Res. 2012, 26, 518–529. [Google Scholar] [CrossRef]
- Cheynier, V. Polyphenols in Foods Are More Complex than Often Thought. Am. J. Clin. Nutr. 2005, 81, 223S–229S. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, M.; Rajan, A.; Radhakrishnan, M. Valorisation of Food Processing Wastes Using PEF and Its Economic Advances—Recent Update. Int. J. Food Sci. Technol. 2023, 58, 2021–2041. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int. J. Mol. Sci. 2023, 24, 15914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lyu, X.; Arshad, R.N.; Aadil, R.M.; Tong, Y.; Zhao, W.; Yang, R. Pulsed Electric Field as a Promising Technology for Solid Foods Processing: A Review. Food Chem. 2023, 403, 134367. [Google Scholar] [CrossRef] [PubMed]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of Pulsed Electric Field as a Low-Temperature and High-Performance “Green” Extraction Technique for the Recovery of High Added Value Compounds from Olive Leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Ghoshal, G. Comprehensive Review on Pulsed Electric Field in Food Preservation: Gaps in Current Studies for Potential Future Research. Heliyon 2023, 9, e17532. [Google Scholar] [CrossRef]
- Ziagova, M.G.; Mavromatidou, C.; Samiotis, G.; Amanatidou, E. Total Phenolic Content and Antioxidant Capacity of Greek Medicinal and Aromatic Plant Extracts Using Pulsed Electric Field Followed by Ultrasounds Extraction Process. J. Food Process. Preserv. 2022, 46, e16639. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Stavropoulos, G.; Samanidis, I.; Athanasiadis, V.; Dourtoglou, V.G.; Makris, D.P.; Lalas, S.I. Enhancement of Polyphenols Recovery from Rosa canina, Calendula officinalis and Castanea sativa Using Pulsed Electric Field. Beverages 2021, 7, 63. [Google Scholar] [CrossRef]
- Neri, L.; Giancaterino, M.; Rocchi, R.; Tylewicz, U.; Valbonetti, L.; Faieta, M.; Pittia, P. Pulsed Electric Fields (PEF) as Hot Air Drying Pre-Treatment: Effect on Quality and Functional Properties of Saffron (Crocus sativus L.). Innov. Food Sci. Emerg. Technol. 2021, 67, 102592. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Antioxidant-Rich Extracts from Lemon Verbena (Aloysia citrodora L.) Leaves through Response Surface Methodology. Oxygen 2024, 4, 1–19. [Google Scholar] [CrossRef]
- Hobbi, P.; Okoro, O.V.; Delporte, C.; Alimoradi, H.; Podstawczyk, D.; Nie, L.; Bernaerts, K.V.; Shavandi, A. Kinetic Modelling of the Solid–Liquid Extraction Process of Polyphenolic Compounds from Apple Pomace: Influence of Solvent Composition and Temperature. Bioresour. Bioprocess. 2021, 8, 114. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. An Investigation into Crithmum maritimum L. Leaves as a Source of Antioxidant Polyphenols. Compounds 2023, 3, 532–551. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Yu, X.-L.; He, Y. Application of Box-Behnken Designs in Parameters Optimization of Differential Pulse Anodic Stripping Voltammetry for Lead(II) Determination in Two Electrolytes. Sci. Rep. 2017, 7, 2789. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages 2022, 8, 71. [Google Scholar] [CrossRef]
- Conidi, C.; Drioli, E.; Cassano, A. Membrane-Based Agro-Food Production Processes for Polyphenol Separation, Purification and Concentration. Curr. Opin. Food Sci. 2018, 23, 149–164. [Google Scholar] [CrossRef]
- Giovanoudis, I.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Gortzi, O.; Nanos, G.D.; Lalas, S.I. Implementation of Cloud Point Extraction Using Surfactants in the Recovery of Polyphenols from Apricot Cannery Waste. Eng 2023, 4, 1225–1235. [Google Scholar] [CrossRef]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-Efficient Biomass Processing with Pulsed Electric Fields for Bioeconomy and Sustainable Development. Biotechnol. Biofuels 2016, 9, 94. [Google Scholar] [CrossRef]
- Bocker, R.; Keven Silva, E. Pulsed Electric Field Technology as a Promising Pre-Treatment for Enhancing Orange Agro-Industrial Waste Biorefinery. RSC Adv. 2024, 14, 2116–2133. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhao, M.; Xu, J.; Qian, D.; Jiang, S.; Shang, E.; Guo, J.; Duan, J. Analysis of the Metabolites of Isorhamnetin 3-O-Glucoside Produced by Human Intestinal Flora in Vitro by Applying Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 2489–2495. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective Effects of Kaempferol 3-O-Rutinoside and Kaempferol 3-O-Glucoside from Carthamus tinctorius L. on CCl4-Induced Oxidative Liver Injury in Mice. J. Food Drug Anal. 2015, 23, 310–317. [Google Scholar] [CrossRef]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Adv. Pharmacol. Sci. 2018, 2018, 9794625. [Google Scholar] [CrossRef] [PubMed]
- Septembre-Malaterre, A.; Boumendjel, A.; Seteyen, A.-L.S.; Boina, C.; Gasque, P.; Guiraud, P.; Sélambarom, J. Focus on the High Therapeutic Potentials of Quercetin and Its Derivatives. Phytomed. Plus 2022, 2, 100220. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Zeng, X.-A.; Brennan, C.S.; Brennan, M.; Han, Z.; Xiong, X.-Y. Effects of Pulsed Electric Fields (PEF) on Vitamin C and Its Antioxidant Properties. Int. J. Mol. Sci. 2015, 16, 24159–24173. [Google Scholar] [CrossRef] [PubMed]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and Nonconventional Extraction Techniques for Optimal Extraction Processes of Rosmarinic Acid from Six Lamiaceae Plants as Determined by HPLC-DAD Measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar] [CrossRef]
- Puértolas, E.; Saldaña, G.; Raso, J. Pulsed Electric Field Treatment for Fruit and Vegetable Processing. In Handbook of Electroporation; Miklavcic, D., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–21. ISBN 978-3-319-26779-1. [Google Scholar]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Zbinden, M.D.A.; Sturm, B.S.M.; Nord, R.D.; Carey, W.J.; Moore, D.; Shinogle, H.; Stagg-Williams, S.M. Pulsed Electric Field (PEF) as an Intensification Pretreatment for Greener Solvent Lipid Extraction from Microalgae. Biotechnol. Bioeng. 2013, 110, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- Monroy, Y.M.; Rodrigues, R.A.F.; Sartoratto, A.; Cabral, F.A. Influence of Ethanol, Water, and Their Mixtures as Co-Solvents of the Supercritical Carbon Dioxide in the Extraction of Phenolics from Purple Corn Cob (Zea mays L.). J. Supercrit. Fluids 2016, 118, 11–18. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Skroza, D.; Ljubenkov, I.; Katalinić, V.; Šimat, V. Antioxidant and Antimicrobial Potential of Phenolic Metabolites from Traditionally Used Mediterranean Herbs and Spices. Foods 2019, 8, 579. [Google Scholar] [CrossRef] [PubMed]
- Segovia, F.J.; Luengo, E.; Corral-Pérez, J.J.; Raso, J.; Almajano, M.P. Improvements in the Aqueous Extraction of Polyphenols from Borage (Borago officinalis L.) Leaves by Pulsed Electric Fields: Pulsed Electric Fields (PEF) Applications. Ind. Crops Prod. 2015, 65, 390–396. [Google Scholar] [CrossRef]
- Peiró, S.; Luengo, E.; Segovia, F.; Raso, J.; Almajano, M.P. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste Biomass Valoriz. 2019, 10, 889–897. [Google Scholar] [CrossRef]
- Rincón, E.; Balu, A.M.; Luque, R.; Serrano, L. Mechanochemical Extraction of Antioxidant Phenolic Compounds from Mediterranean and Medicinal Laurus nobilis: A Comparative Study with Other Traditional and Green Novel Techniques. Ind. Crops Prod. 2019, 141, 111805. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
Design Point | Independent Variables | Response TPC (mg GAE/g) | ||
---|---|---|---|---|
X1 (C %, v/v) | X2 (R, mL/g) | Actual | Predicted | |
1 | 1 (0) | 2 (20) | 15.91 | 17.15 |
2 | 2 (25) | 2 (20) | 35.44 | 34.56 |
3 | 3 (50) | 3 (30) | 38.10 | 36.80 |
4 | 4 (75) | 4 (40) | 29.33 | 31.10 |
5 | 5 (100) | 4 (40) | 15.53 | 14.55 |
6 | 1 (0) | 1 (10) | 25.37 | 24.38 |
7 | 2 (25) | 1 (10) | 38.50 | 39.45 |
8 | 3 (50) | 5 (50) | 33.42 | 33.01 |
9 | 4 (75) | 3 (30) | 30.35 | 30.79 |
10 | 5 (100) | 5 (50) | 17.29 | 17.45 |
Independent Variables | Code Units | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Electric field strength (E, kV/cm) | X1 | 0.6 | 0.8 | 1.0 |
Pulse duration (tpulse, μs) | X2 | 10 | 55 | 100 |
Pulse period (T, μs) | X3 | 100 | 550 | 1000 |
Extraction duration (t, min) | X4 | 10 | 20 | 30 |
Design Point | Independent Variables | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | FRAP (μmol AAE/g) | DPPH (μmol AAE/g) | ||||||||
X1 (E, kV/cm) | X2 (tpulse, μs) | X3 (T, μs) | X4 (t, min) | Actual | Predicted | Actual | Predicted | Actual | Predicted | |
1 | −1 (0.6) | −1 (10) | 0 (550) | 0 (20) | 34.07 | 33.74 | 558.40 | 557.34 | 214.45 | 216.03 |
2 | −1 (0.6) | 1 (100) | 0 (550) | 0 (20) | 34.68 | 34.50 | 543.18 | 545.75 | 230.09 | 231.82 |
3 | 1 (1.0) | −1 (10) | 0 (550) | 0 (20) | 33.64 | 33.43 | 478.21 | 483.94 | 211.26 | 209.75 |
4 | 1 (1.0) | 1 (100) | 0 (550) | 0 (20) | 31.85 | 31.79 | 548.48 | 557.84 | 195.49 | 194.13 |
5 | 0 (0.8) | 0 (55) | −1 (100) | −1 (10) | 32.33 | 31.94 | 476.86 | 476.50 | 200.77 | 201.47 |
6 | 0 (0.8) | 0 (55) | −1 (100) | 1 (30) | 34.07 | 34.27 | 529.46 | 529.58 | 209.25 | 212.37 |
7 | 0 (0.8) | 0 (55) | 1 (1000) | −1 (10) | 32.99 | 32.41 | 496.32 | 504.51 | 207.08 | 204.17 |
8 | 0 (0.8) | 0 (55) | 1 (1000) | 1 (30) | 31.75 | 31.75 | 484.38 | 493.05 | 204.83 | 204.34 |
9 | −1 (0.6) | 0 (55) | 0 (550) | −1 (10) | 35.49 | 35.63 | 476.10 | 469.08 | 203.28 | 205.85 |
10 | −1 (0.6) | 0 (55) | 0 (550) | 1 (30) | 35.13 | 34.65 | 581.47 | 571.18 | 228.20 | 227.14 |
11 | 1 (1.0) | 0 (55) | 0 (550) | −1 (10) | 32.34 | 32.30 | 519.49 | 519.72 | 198.85 | 199.62 |
12 | 1 (1.0) | 0 (55) | 0 (550) | 1 (30) | 35.61 | 34.96 | 462.27 | 459.23 | 192.26 | 189.40 |
13 | 0 (0.8) | −1 (10) | −1 (100) | 0 (20) | 30.97 | 30.75 | 538.17 | 538.73 | 220.05 | 216.48 |
14 | 0 (0.8) | −1 (10) | 1 (1000) | 0 (20) | 32.75 | 32.84 | 508.48 | 494.76 | 209.72 | 209.45 |
15 | 0 (0.8) | 1 (100) | −1 (100) | 0 (20) | 34.02 | 33.42 | 526.50 | 530.17 | 212.23 | 212.21 |
16 | 0 (0.8) | 1 (100) | 1 (1000) | 0 (20) | 29.58 | 29.29 | 576.24 | 565.63 | 210.62 | 213.90 |
17 | −1 (0.6) | 0 (55) | −1 (100) | 0 (20) | 33.97 | 34.44 | 508.78 | 513.81 | 220.84 | 218.28 |
18 | −1 (0.6) | 0 (55) | 1 (1000) | 0 (20) | 31.43 | 31.80 | 544.07 | 554.83 | 216.71 | 214.46 |
19 | 1 (1.0) | 0 (55) | −1 (100) | 0 (20) | 30.78 | 31.31 | 537.45 | 528.44 | 192.82 | 195.15 |
20 | 1 (1.0) | 0 (55) | 1 (1000) | 0 (20) | 31.48 | 31.90 | 482.17 | 478.89 | 190.98 | 193.62 |
21 | 0 (0.8) | −1 (10) | 0 (550) | −1 (10) | 32.04 | 32.36 | 482.30 | 485.14 | 208.71 | 209.99 |
22 | 0 (0.8) | −1 (10) | 0 (550) | 1 (30) | 34.93 | 35.28 | 514.34 | 519.98 | 213.71 | 216.20 |
23 | 0 (0.8) | 1 (100) | 0 (550) | −1 (10) | 33.45 | 34.00 | 534.22 | 530.33 | 213.16 | 210.75 |
24 | 0 (0.8) | 1 (100) | 0 (550) | 1 (30) | 32.18 | 32.76 | 538.20 | 537.10 | 216.82 | 215.61 |
25 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 35.53 | 35.80 | 514.71 | 515.10 | 208.03 | 208.95 |
26 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 36.39 | 35.80 | 514.03 | 515.10 | 210.73 | 208.95 |
27 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 35.49 | 35.80 | 516.57 | 515.10 | 208.10 | 208.95 |
DP | Independent Variables | Responses | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 (E, kV/cm) | X2 (tpulse, μs) | X3 (T, μs) | X4 (t, min) | NCA | VA | RT | EC | FA | Q3G | L7G | NRT | K3R | K3G | A7G | I3G | KMP | |
1 | −1 (0.6) | −1 (10) | 0 (550) | 0 (20) | 0.02 | 0.48 | 0.36 | 0.07 | 0.38 | 4.31 | 0.28 | 0.06 | 0.08 | 1.59 | 0.06 | 6.83 | 0.18 |
2 | −1 (0.6) | 1 (100) | 0 (550) | 0 (20) | 0.04 | 0.47 | 0.36 | 0.10 | 0.38 | 0.80 | 0.29 | 0.06 | 5.92 | 0.85 | 0.13 | 0.03 | 0.18 |
3 | 1 (1.0) | −1 (10) | 0 (550) | 0 (20) | nd * | 0.57 | 0.49 | 0.12 | 0.41 | 0.83 | 0.29 | 0.09 | 0.03 | 0.56 | 0.17 | 0.05 | 0.18 |
4 | 1 (1.0) | 1 (100) | 0 (550) | 0 (20) | 0.01 | 0.48 | 0.38 | 0.09 | 0.36 | 0.75 | 0.28 | 0.03 | 5.41 | 0.53 | 0.11 | 1.01 | 0.17 |
5 | 0 (0.8) | 0 (55) | −1 (100) | −1 (10) | 0.02 | 0.54 | 0.37 | 0.11 | 0.40 | 0.85 | 0.29 | 0.08 | 6.24 | 0.57 | 0.15 | 0.06 | 0.17 |
6 | 0 (0.8) | 0 (55) | −1 (100) | 1 (30) | 0.02 | 0.56 | 0.40 | 0.10 | 0.41 | 0.85 | 0.29 | 0.07 | 6.51 | 0.57 | 0.17 | 0.07 | 0.17 |
7 | 0 (0.8) | 0 (55) | 1 (1000) | −1 (10) | 0.02 | 0.48 | 0.37 | 0.11 | 0.37 | 0.80 | 0.29 | 0.05 | 5.70 | 0.55 | 0.13 | 0.02 | 0.17 |
8 | 0 (0.8) | 0 (55) | 1 (1000) | 1 (30) | 0.02 | 0.45 | 0.38 | 0.10 | 0.36 | 0.78 | 0.28 | 0.03 | 5.39 | 0.54 | 0.12 | nd | 0.17 |
9 | −1 (0.6) | 0 (55) | 0 (550) | −1 (10) | 0.02 | 0.47 | 0.37 | 0.11 | 0.39 | 0.81 | 0.28 | 0.04 | 5.97 | 0.55 | 0.14 | nd | 0.18 |
10 | −1 (0.6) | 0 (55) | 0 (550) | 1 (30) | 0.02 | 0.57 | 0.37 | 0.11 | 0.42 | 0.85 | 0.78 | 0.08 | 6.63 | 0.56 | 0.17 | 0.03 | 0.18 |
11 | 1 (1.0) | 0 (55) | 0 (550) | −1 (10) | 0.02 | 0.50 | 0.40 | 0.09 | 0.37 | 0.79 | 0.28 | 0.03 | 5.77 | 0.54 | 0.13 | nd | 0.18 |
12 | 1 (1.0) | 0 (55) | 0 (550) | 1 (30) | 0.02 | 0.52 | 0.37 | 0.10 | 0.39 | 0.82 | 0.29 | 0.05 | 6.09 | 0.56 | 0.14 | 0.06 | 0.18 |
13 | 0 (0.8) | −1 (10) | −1 (100) | 0 (20) | 0.01 | 0.42 | 0.36 | 0.09 | 0.37 | 0.79 | 0.28 | 0.03 | 5.63 | 0.54 | 0.12 | 0.02 | 0.17 |
14 | 0 (0.8) | −1 (10) | 1 (1000) | 0 (20) | 0.02 | 0.50 | 0.38 | 0.10 | 0.38 | 0.81 | 0.28 | 0.05 | 5.96 | 0.55 | 0.14 | 0.02 | 0.18 |
15 | 0 (0.8) | 1 (100) | −1 (100) | 0 (20) | 0.02 | 0.50 | 0.36 | 0.10 | 0.39 | 0.80 | 0.29 | 0.06 | 5.96 | 0.55 | 0.14 | 0.01 | 0.17 |
16 | 0 (0.8) | 1 (100) | 1 (1000) | 0 (20) | 0.02 | 0.61 | 0.38 | 0.11 | 0.44 | 0.89 | 0.30 | 0.10 | 7.25 | 0.57 | 0.20 | 0.07 | 0.20 |
17 | −1 (0.6) | 0 (55) | −1 (100) | 0 (20) | 0.04 | 0.48 | nd | 0.09 | 0.38 | 0.78 | 0.28 | 0.04 | 5.74 | 0.54 | 0.13 | nd | 0.17 |
18 | −1 (0.6) | 0 (55) | 1 (1000) | 0 (20) | 0.02 | 0.46 | 0.37 | 0.01 | 0.38 | 0.79 | 0.28 | 0.06 | 6.00 | 0.54 | 0.14 | 0.04 | 0.18 |
19 | 1 (1.0) | 0 (55) | −1 (100) | 0 (20) | 0.01 | 0.52 | 0.38 | 0.10 | 0.38 | 0.80 | 0.28 | 0.06 | 6.00 | 0.55 | 0.13 | nd | 0.18 |
20 | 1 (1.0) | 0 (55) | 1 (1000) | 0 (20) | 0.01 | 0.49 | 0.36 | 0.09 | 0.37 | 0.76 | 0.27 | 0.05 | 5.76 | 0.54 | 0.13 | 0.01 | 0.18 |
21 | 0 (0.8) | −1 (10) | 0 (550) | −1 (10) | 0.02 | 0.48 | 0.39 | 0.10 | 0.39 | 0.82 | 0.30 | 0.06 | 5.94 | 0.55 | 0.14 | nd | 0.18 |
22 | 0 (0.8) | −1 (10) | 0 (550) | 1 (30) | 0.04 | 0.41 | nd | 0.09 | 0.37 | 0.77 | 0.28 | 0.03 | 5.39 | 0.53 | 0.12 | 0.01 | 0.17 |
23 | 0 (0.8) | 1 (100) | 0 (550) | −1 (10) | 0.01 | 0.52 | 0.37 | 0.09 | 0.38 | 0.80 | 0.29 | 0.04 | 5.83 | 0.55 | 0.13 | 0.01 | 0.17 |
24 | 0 (0.8) | 1 (100) | 0 (550) | 1 (30) | 0.01 | 0.51 | 0.44 | 0.09 | 0.39 | 0.81 | 0.29 | 0.06 | 5.89 | 0.55 | 0.14 | 0.01 | 0.18 |
25 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 0.03 | 0.39 | nd | 0.07 | 0.34 | 0.75 | 0.28 | nd | 4.71 | 0.53 | 0.10 | 0.02 | 0.16 |
26 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 0.04 | 0.53 | 0.38 | 0.11 | 0.39 | 0.83 | 0.28 | 0.09 | 5.97 | 0.56 | 0.15 | 0.06 | 0.17 |
27 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 0.01 | 0.50 | 0.37 | 0.10 | 0.39 | 0.81 | 0.28 | 0.06 | 5.86 | 0.55 | 0.14 | 0.04 | 0.17 |
Responses | Second-Order Polynomial Equations (Models) | R2 | p-Value | Equation |
---|---|---|---|---|
TPC | Y = 18.62 + 18.8X1 + 0.22X2 + 0.01X3 + 0.13X4 − 20.58X12 − 0.0008X22 − 0.00001X32 − 0.006X42 − 0.07X1X2 + 0.009X1X3 + 0.45X1X4 − 0.0001X2X3 − 0.002X2X4 − 0.0002X3X4 | 0.9501 | <0.0001 | (1) |
FRAP | Y = 212.11 + 181.88X1 − 2.72X2 + 0.21X3 + 25.81X4 + 97.32X12 + 0.009X22 − 0.00001X32 − 0.14X42 + 2.38X1X2 − 0.25X1X3 − 20.32X1X4 + 0.001X2X3 − 0.02X2X4 − 0.004X3X4 | 0.9591 | <0.0001 | (2) |
DPPH | Y = 116.53 + 141.52X1 + 0.34X2 + 0.007X3 + 4.44X4 − 45.76X12 + 0.003X22 − 0.00001X32 − 0.02X42 − 0.87X1X2 + 0.006X1X3 − 3.94X1X4 + 0.0001X2X3 − 0.0007X2X4 − 0.0006X3X4 | 0.9561 | <0.0001 | (3) |
Responses | Optimal Conditions | ||||
---|---|---|---|---|---|
Maximum Predicted Response | E, kV/cm (X1) | tpulse, μs (X2) | T, μs (X3) | t, min (X4) | |
TPC (mg GAE/g) | 36.17 ± 0.80 | 0.6 | 75 | 415 | 15 |
FRAP (μmol AAE/g) | 579.43 ± 15.48 | 0.6 | 23 | 550 | 27 |
DPPH (μmol AAE/g) | 233.68 ± 5.09 | 0.6 | 90 | 470 | 26 |
Variables | PLS Model Values | Experimental Values (PEF) | Control (No PEF) | % Increase |
---|---|---|---|---|
TPC (mg GAE/g) | 35.06 | 35.55 ± 1.71 a | 20.08 ± 0.88 b | 77.0 |
FRAP (μmol AAE/g) | 569.29 | 520.05 ± 10.4 a | 189.71 ± 6.26 b | 174.1 |
DPPH (μmol AAE/g) | 228.8 | 258.64 ± 16.04 a | 135.54 ± 9.49 b | 90.8 |
Polyphenolic Compounds (mg/g) | Optimal Extract (PEF) | Control (No PEF) | % Increase |
---|---|---|---|
Neochlorogenic acid | 0.02 ± 0 a | 0.02 ± 0 b | 31.0 |
Vanillic acid | 0.61 ± 0.03 a | 0.28 ± 0.01 b | 116.8 |
Rutin | 0.46 ± 0.03 a | 0.38 ± 0.02 b | 21.0 |
Epicatechin | 0.12 ± 0.01 a | 0.05 ± 0 b | 118.4 |
Ferulic acid | 0.44 ± 0.03 a | 0.29 ± 0.02 b | 52.7 |
Quercetin 3-D-galactoside | 0.91 ± 0.03 a | 0.69 ± 0.03 b | 30.7 |
Luteolin 7-glucoside | 0.30 ± 0.02 a | 0.26 ± 0.02 a | 11.9 |
Narirutin | 0.12 ± 0.01 a | 0.07 ± 0 b | 70.4 |
Kaempferol 3-O-β-rutinoside | 7.40 ± 0.53 a | 3.69 ± 0.27 b | 100.3 |
Kaempferol 3-glucoside | 0.59 ± 0.01 a | 0.51 ± 0.03 b | 14.8 |
Apigenin 7-glucoside | 0.21 ± 0.01 a | 0.06 ± 0 b | 235.9 |
Isorhamnetin 3-glucoside | 0.75 ± 0.02 a | 0.19 ± 0.01 b | 288.1 |
Kaempferol | 0.19 ± 0.01 a | 0.15 ± 0 b | 25.4 |
Total identified | 12.12 ± 0.74 a | 6.67 ± 0.41 b | 81.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Kotsou, K.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Optimizing Extract Preparation from Laurel (Laurus nobilis L.) Leaves Using a Pulsed Electric Field. ChemEngineering 2024, 8, 26. https://doi.org/10.3390/chemengineering8020026
Chatzimitakos T, Athanasiadis V, Kalompatsios D, Kotsou K, Mantiniotou M, Bozinou E, Lalas SI. Optimizing Extract Preparation from Laurel (Laurus nobilis L.) Leaves Using a Pulsed Electric Field. ChemEngineering. 2024; 8(2):26. https://doi.org/10.3390/chemengineering8020026
Chicago/Turabian StyleChatzimitakos, Theodoros, Vassilis Athanasiadis, Dimitrios Kalompatsios, Konstantina Kotsou, Martha Mantiniotou, Eleni Bozinou, and Stavros I. Lalas. 2024. "Optimizing Extract Preparation from Laurel (Laurus nobilis L.) Leaves Using a Pulsed Electric Field" ChemEngineering 8, no. 2: 26. https://doi.org/10.3390/chemengineering8020026
APA StyleChatzimitakos, T., Athanasiadis, V., Kalompatsios, D., Kotsou, K., Mantiniotou, M., Bozinou, E., & Lalas, S. I. (2024). Optimizing Extract Preparation from Laurel (Laurus nobilis L.) Leaves Using a Pulsed Electric Field. ChemEngineering, 8(2), 26. https://doi.org/10.3390/chemengineering8020026