Environmental Win–Win Management: Using Aluminum-Based Solid Waste for Synozol Red-KHL Dye Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater
2.2. Fenton-Like “AS-ChMN” Catalyst
2.3. Methodology
2.4. Analytical Determination and Characterization
2.5. Factorial Design
3. Results and Discussion
3.1. The Characterization of the “AS-ChMN” Catalyst
3.1.1. SEM-EDX and TEM Morphological Analyses
3.1.2. XRD Analysis
3.1.3. FTIR Analysis
3.1.4. BET Surface Area Analysis
3.1.5. DRS Analysis
3.2. The AS-ChMN Composite in a Fenton-Like Oxidation System
3.2.1. Effect of Reaction Time through Different Systems
3.2.2. The Effect of the AS-ChMN Composite Concentration
3.2.3. The Effect of the H2O2 Concentration
3.2.4. Effect of pH
3.2.5. Effect of Temperature
3.2.6. Catalyst Stability and Recyclability
3.2.7. Kinetic and Thermodynamic Studies
3.2.8. The RSM Model Optimization of the Operating Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tony, M.A.; Lin, L.S. Performance of acid mine drainage sludge as an innovative catalytic oxidation source for treating vehicle-washing wastewater. J. Dispers. Sci. Technol. 2020, 43, 50–60. [Google Scholar] [CrossRef]
- Foroughi, M.; Chavoshi, S.; Bagheri, M.; Yetilmezsoy, K.; Samadi, M.T. Alum-based sludge (AbS) recycling for turbidity removal in drinking water treatment: An insight into statistical, technical, and health-related standpoints. J. Mater. Cycles Waste Manag. 2018, 20, 1999–2017. [Google Scholar] [CrossRef]
- Ruipérez, F.; Mujika, J.I.; Ugalde, J.M.; Exley, C.; Lopez, X. Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe (III) to Fe (II). J. Inorg. Biochem. 2012, 117, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Abdou, K.A.; Mohammed, A.N.; Moselhy, W.; Farghali, A.A. Assessment of modified rice husk and sawdust as bio-adsorbent for heavy metals removal using nano particles in fish farm. Asian J. Anim. Vet. Adv. 2018, 13, 180–188. [Google Scholar] [CrossRef]
- Repo, E.; Mäkinen, M.; Rengaraj, S.; Natarajan, G.; Bhatnagar, A.; Sillanpää, M. Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chem. Eng. J. 2012, 180, 159–169. [Google Scholar] [CrossRef]
- Hassan, E.A.; Tony, M.A.; Nabwey, H.; Awad, M.M. Ecologically engineered systems for treating agriculture runoff by integrating “wastes” into constructed wetland. Processes 2023, 11, 396. [Google Scholar] [CrossRef]
- Singh, C.; Chaudhary, R.; Gandhi, K. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: Solar parabolic trough collector. Iran. J. Environ. Health Sci. Eng. 2013, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Li, G.; Sun, H.; Kong, L.; Lu, H.; Gao, X. Preparation of magnetic core/shell structured γ-Fe2O3@ Ti-tmSiO2 and its application for the adsorption and degradation of dyes. Microporous Mesoporous Mater. 2014, 186, 7–13. [Google Scholar] [CrossRef]
- Pourali, P.; Behzad, M.; Arfaeinia, H.; Ahmadfazeli, A.; Afshin, S.; Poureshgh, Y.; Rashtbari, Y. Removal of acid blue 113 from aqueous solutions using low-cost adsorbent: Adsorption isotherms, thermodynamics, kinetics and regeneration studies. Sep. Sci. Technol. 2021, 56, 3079–3091. [Google Scholar] [CrossRef]
- Elsayed, Z.A.; El-Sayed, I.E.; Tony, M.A. Elucidation co-conditioning strategies of aluminium-based sludge using natural biopolymeric magnetite composite for leveraging dewaterability. Appl. Water Sci. 2024, 14, 108. [Google Scholar] [CrossRef]
- Wu, H.F.; Wang, J.P.; Duan, E.G.; Feng, Y.F.; Wan, Z.Y.; Wu, Y.X.; Lu, Y.Q. Study on the preparation of granular alum sludge adsorbent for phosphorus removal. Water Sci. Technol. 2019, 79, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, A.O.; Zhao, Y.Q.; Yang, Y.; Kearney, P. From “fills” to filter: Insights into the reuse of dewatered alum sludge as a filter media in a constructed wetland. J. Residuals Sci. Technol. 2007, 4, 147–152. [Google Scholar]
- Babatunde, A.O.; Zhao, Y.Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol. 2007, 37, 129–164. [Google Scholar] [CrossRef]
- Tony, M.A. Zeolite-based adsorbent from alum sludge residue for textile wastewater treatment. Int. J. Environ. Sci. Technol. 2020, 17, 2485–2498. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ahmed, I.S.; Samir, I. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 329–334. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Tan, Y.; Xu, B.; Cai, J.; Zhang, Y.; Wang, Q.; Wu, Q.; Yang, B.; Huang, J. Recent Advances in Metal-Organic Framework (MOF)-Based Photocatalysts: Design Strategies and Applications in Heavy Metal Control. Molecules 2023, 28, 6681. [Google Scholar] [CrossRef]
- Vaculikova, L.; Plevova, E. Identification of clay minerals and micas in sedimentary rocks. Acta Geodyn. Geomater. 2005, 2, 167–175. [Google Scholar]
- Bukalo, N.N.; Ekosse, G.E.; Odiyo, J.O.; Ogola, J.S. Fourier Transform Infrared Spectroscopy of Clay Size Fraction of Cretaceous-Tertiary Kaolins in the Douala Sub-Basin, Cameroon. Open Geosci. 2017, 9, 407. [Google Scholar] [CrossRef]
- Xia, C.; Joo, S.-W.; Najafabadi, A.H.; Xie, H.; Wu, Y.; Mashifana, T.; Vasseghian, Y. Latest advances in layered covalent organic frameworks for water and wastewater treatment. Chemosphere 2023, 329, 138580. [Google Scholar] [CrossRef] [PubMed]
- Hojjati-Najafabadi, A.; Esfahani, P.N.; Davar, F.; Aminabhavi, T.M.; Vasseghian, Y. Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites. Chem. Eng. J. 2023, 471, 144485. [Google Scholar] [CrossRef]
- Deng, Y.; Englehardt, J.D. Treatment of landfill leachate by the Fenton process. Water Res. 2006, 40, 3683–3694. [Google Scholar] [CrossRef]
- Liu, T.; Huang, J.; Huang, Z.; Luo, Q.; Wu, H.; Meng, Y.; He, C.; Li, H. Full-spectrum photocatalytic treatment and in situ upcycling of organophosphorus wastewater enabled by biomimetic urchin-like Bi2S3/CdS. Chem. Eng. J. 2024, 486, 150209. [Google Scholar] [CrossRef]
- Thabet, R.H.; Fouad, M.K.; El Sherbiny, S.A.; Tony, M.A. Solar assisted green photocatalysis for deducing carbamate insecticide from agriculture stream into water reclaiming opportunity. Int. J. Environ. Anal. Chem. 2022, 104, 938–960. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Liu, T.; Wen, Y.; Wu, H.; Yang, S.; Li, H. Full carbon upcycling of organophosphorus wastewater enabled by interface photolysis. Chem. Eng. J. 2024, 485, 149987. [Google Scholar] [CrossRef]
- Emran, M.Y.; Miran, W.; Gomaa, H.; Ibrahim, I.; Belessiotis, G.V.; Abdelwahab, A.A.; Othman, M.B. Biowaste Materials for Advanced Biodegradable Packaging Technology. In Handbook of Biodegradable Materials; Springer: Berlin/Heidelberg, Germany, 2022; pp. 861–897. [Google Scholar] [CrossRef]
- Lopez-Lopez, C.; Martín-Pascual, J.; Martínez-Toledo, M.V.; González-López, J.; Hontoria, E.; Poyatos, J.M. Effect of the operative variables on the treatment of wastewater polluted with Phthalo Blue by H2O2/UV process. Water Air Soil Pollut. 2013, 224, 1725. [Google Scholar] [CrossRef]
- Wang, S. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 2008, 76, 714–720. [Google Scholar] [CrossRef]
- Mondal, S.; Aikata, K.; Halder, G. Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: Equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 2016, 92, 158–172. [Google Scholar] [CrossRef]
- Mondal, S.; Aikat, K.; Halder, G. Optimizing ranitidine hydrochloride uptake of Parthenium hysterophorus derived N-biochar through response surface methodology and artificial neural network. Process Saf. Environ. Prot. 2017, 107, 388–401. [Google Scholar] [CrossRef]
- Ganesan, S.; Karthick, K.; Namasivayam, C.; Pragasan, L.; Kirankumar, V.S.; Devaraj, S.; Ponnusamy, V.K. Discarded biodiesel waste-derived lignocellulosic biomass as effective biosorbent for removal of sulfamethoxazole drug. Environ. Sci. Pollut. Res. 2020, 27, 17619–17630. [Google Scholar] [CrossRef]
- Elsayed, S.A.; El-Sayed, I.E.T.; Abdel-Bary, H.M.; Tony, M.A. Chitosan impregnated with magnetite as a versatile photocatalytic nanocomposite for Synozol Red KHL dye elimination from aqueous effluent. Int. J. Environ. Anal. Chem. 2023, 1–27. [Google Scholar] [CrossRef]
- Namasivayam, C.; Kavitha, D. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon. J. Hazard. Mater. 2003, 98, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.; Shakeri, A. Synthesis and Characterization of Water-Based Epoxy-Acrylate/Graphene Oxide Decorated with Fe3O4 Nanoparticles Coatings and Its Enhanced Anticorrosion Properties. Polym. Plast. Technol. Mater. 2020, 59, 1910–1931. [Google Scholar]
- Saleem, M.; Fang, L.; Ruan, H.B.; Wu, F.; Huang, Q.L.; Xu, C.L.; Kong, C.Y. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci. 2012, 7, 2971. [Google Scholar] [CrossRef]
- Maiti, A.; DasGupta, S.; Basu, J.K.; De, S. Adsorption of arsenite using natural laterite as adsorbent. Sep. Purif. Technol. 2007, 55, 350–359. [Google Scholar] [CrossRef]
- Fotoohi, E.; Mokhtarian, N.; Farahbod, F. Laboratory investigation of filtration indicators in a gravity filtration unit filled with nano-packing. S. Afr. J. Chem. Eng. 2024, 47, 212–219. [Google Scholar] [CrossRef]
- Carvallho, M.N.; da Silva, K.; Sales, D.C.S.; Freire, E.M.P.L.; Sobrinho, M.A.M.; Ghislandi, M.G. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: Kinetic and equilibrium studies. Water Sci. Technol. 2016, 73, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Cho, K.; Kim, S.K.; Lee, E.K.; Kim, J.-N.; Choi, M. Alumina-coated ordered mesoporous silica as an efficient and stable water adsorbent for adsorption heat pump. Microporous Mesoporous Mater. 2017, 239, 310–315. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, D.-H.; Yang, J.-S.; Baek, K. Adsorption characteristics of As (III) and As (V) on alum sludge from water purification facilities. Sep. Sci. Technol. 2012, 47, 2211–2217. [Google Scholar]
- Oliva-Teles, M.T.; Paiga, P.; Delerue-Matos, C.M.; Alvim-Ferraz, M.C.M. Determination of free formaldehyde in foundry resins as its 2,4-dinitrophenylhydrazone by liquid chromatography. Anal. Chim. Acta 2002, 467, 97–103. [Google Scholar] [CrossRef]
Kinetic Model | Parameters | T (°C) | |||
---|---|---|---|---|---|
28 | 40 | 50 | 60 | ||
Zero-order | k0 (min−1) | 0.038 | 0.045 | 0.045 | 0.045 |
t1/2 | 22.32 | 18.85 | 18.44 | 18.86 | |
R2 | 0.67 | 0.60 | 0.59 | 0.61 | |
First-order | k1 (min−1) | 0.0638 | 0.0515 | 0.0443 | 0.0451 |
t1/2 | 10.86 | 13.45 | 15.64 | 15.36 | |
R2 | 0.60 | 0.73 | 0.80 | 0.83 | |
Second-order | k2 (L/gm.min) | 0.0092 | 1.0135 | 2.1033 | 1.0334 |
t1/2 | 0.601 | 0.005 | 0.002 | 0.003 | |
R2 | 0.92 | 0.81 | 0.95 | 0.90 |
T/°C | ||||
---|---|---|---|---|
28 °C | 40 °C | 50 °C | 60 °C | |
Ea (kJ/mol) | −89.71 | |||
∆G’ (kJ/mol) | 82.04 | 76.74 | 77.32 | 81.77 |
∆H’ (kJ/mol) | −92.21 | −92.31 | −92.39 | −92.47 |
∆S’ kJ/moK) | −578.92 | −540.12 | −525.44 | −523.26 |
Experimental Variable | Symbols | Range and Levels | |||
---|---|---|---|---|---|
Natural | Coded | −1 | 0 | 1 | |
pH | ε1 | ζ1 | 2 | 3 | 4 |
H2O2 (mg/L) | ε2 | ζ2 | 300 | 400 | 500 |
As-ChMNs (mg/L) | ε3 | ζ3 | 0.5 | 1 | 1.5 |
Exp. No. | Variables | Response (Y) | |||||
---|---|---|---|---|---|---|---|
pH | H2O2 Dose | AS-ChMN Dose | %Synozol Red-KHL Oxidation | ||||
Coded | Natural | Coded | Natural | Coded | Natural | ||
1 | −1 | 2 | −1 | 300 | 0 | 1 | 92 |
2 | −1 | 2 | 1 | 500 | 0 | 1 | 86 |
3 | 1 | 4 | −1 | 300 | 0 | 1 | 98 |
4 | 1 | 4 | 1 | 500 | 0 | 1 | 99 |
5 | 0 | 3 | −1 | 300 | −1 | 0.5 | 93 |
6 | 0 | 3 | −1 | 300 | 1 | 1.5 | 99 |
7 | 0 | 3 | 1 | 500 | −1 | 0.5 | 98 |
8 | 0 | 3 | 1 | 500 | 1 | 1.5 | 99 |
9 | −1 | 2 | 0 | 400 | −1 | 0.5 | 86 |
10 | 1 | 4 | 0 | 400 | −1 | 0.5 | 98 |
11 | −1 | 2 | 0 | 400 | 1 | 1.5 | 97 |
12 | 1 | 4 | 0 | 400 | 1 | 1.5 | 99 |
13 | 0 | 3 | 0 | 400 | 0 | 1 | 98 |
14 | 0 | 3 | 0 | 400 | 0 | 1 | 97 |
15 | 0 | 3 | 0 | 400 | 0 | 1 | 98 |
Source of Variation | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 9 | ||||
Linear | 3 | 6.5 | 2.090154 | 9.329449 | 1.021026 |
Quadratic | 3 | −0.70833 | 2.418978 | 0.402297 | 1.048941 |
Cross Product | 3 | 1.04167 | 2.707569 | 2.17839 | 0.184818 |
Model | 9 | 262.9833 | 29.22037 | 7.524559 | 0.019377 |
Error | 5 | 19.41667 | 3.883333 | ||
Total | 14 | 282.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nour, M.M.; Elsayed, Z.A.; Tony, M.A. Environmental Win–Win Management: Using Aluminum-Based Solid Waste for Synozol Red-KHL Dye Oxidation. ChemEngineering 2024, 8, 59. https://doi.org/10.3390/chemengineering8030059
Nour MM, Elsayed ZA, Tony MA. Environmental Win–Win Management: Using Aluminum-Based Solid Waste for Synozol Red-KHL Dye Oxidation. ChemEngineering. 2024; 8(3):59. https://doi.org/10.3390/chemengineering8030059
Chicago/Turabian StyleNour, Manasik M., Zahraa A. Elsayed, and Maha A. Tony. 2024. "Environmental Win–Win Management: Using Aluminum-Based Solid Waste for Synozol Red-KHL Dye Oxidation" ChemEngineering 8, no. 3: 59. https://doi.org/10.3390/chemengineering8030059
APA StyleNour, M. M., Elsayed, Z. A., & Tony, M. A. (2024). Environmental Win–Win Management: Using Aluminum-Based Solid Waste for Synozol Red-KHL Dye Oxidation. ChemEngineering, 8(3), 59. https://doi.org/10.3390/chemengineering8030059