Effects of Mineral Elements and Annealing on the Physicochemical Properties of Native Potato Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Ion Exchange Procedure
2.3. Annealing Procedure
2.4. Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES)
2.5. Amylose Content
2.6. X-ray Diffraction (XRD)
2.7. Solid-State 13C CP/MAS NMR Spectroscopy (ssNMR)
2.8. Differential Scanning Calorimetry (DSC)
2.9. Rapid Visco Analyzer (RVA)
2.10. Swelling Power (SWP) and Solubility
2.11. Resistant Starch Content
3. Results and Discussion
3.1. Ion Exchange and Annealing Combined with Ion Exchange
3.2. Compositional Changes
3.3. Crystallinity
3.3.1. Long-Range Order
3.3.2. Short-Range Order
3.4. Thermal Properties
3.5. Pasting Properties
3.6. Swelling Power
3.7. Digestibility of Starch in Granular Form
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making Sense of the “Clean Label” Trends: A Review of Consumer Food Choice Behavior and Discussion of Industry Implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Dring, T.B.; Jirka, G.H. Mixing Zone Regulation for Effluent Discharges into EU Waters. Proc. Inst. Civ. Eng.-Water Manag. 2011, 164, 387–396. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.R. Clean Label Starch: Production, Physicochemical Characteristics, and Industrial Applications. Food Sci. Biotechnol. 2021, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. EEA Signals 2020: Towards Zero Pollution in Europe. Available online: https://www.eea.europa.eu/signals-archived/signals-2020/signals-2020-towards-zero-pollution (accessed on 24 January 2024).
- Semeijn, C.; Buwalda, P.L. Potato Starch. In Starch in Food: Structure, Function and Applications, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 353–372. [Google Scholar]
- Reyniers, S.; Ooms, N.; Gomand, S.V.; Delcour, J.A. What Makes Starch from Potato (Solanum tuberosum L.) Tubers Unique: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2588–2612. [Google Scholar] [CrossRef] [PubMed]
- Buléon, A.; Cotte, M.; Putaux, J.L.; D’Hulst, C.; Susini, J. Tracking Sulfur and Phosphorus within Single Starch Granules Using Synchrotron X-Ray Microfluorescence Mapping. Biochim. Biophys. Acta BBA-Gen. Subj. 2014, 1840, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Zaidul, I.S.M.; Norulaini, N.; Omar, A.K.M.; Yamauchi, H.; Noda, T. Correlations of the Composition, Minerals, and RVA Pasting Properties of Various Potato Starches. Starch/Stärke 2007, 59, 269–276. [Google Scholar] [CrossRef]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Ishiguro, K.; Nagasawa, K.; Jinno, M. Preparation of Calcium- and Magnesium-Fortified Potato Starches with Altered Pasting Properties. Molecules 2014, 19, 14556–14566. [Google Scholar] [CrossRef]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Ishiguro, K.; Nagasawa, K.; Jinno, M. Properties of Calcium-Fortified Potato Starch Prepared by Immersion in Natural Mineral Water and Its Food Application. J. Appl. Glycosci. 2015, 62, 159–164. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Shi, L.; Chang, T.; Yang, H.; Cui, M. Effects of Salts on Physicochemical, Microstructural and Thermal Properties of Potato Starch. Food Chem. 2014, 156, 137–143. [Google Scholar] [CrossRef]
- Noda, T. The Preparation and Food Applications of Divalent Cation–Substituted Potato Starch. J. Biorheol. 2021, 35, 2–9. [Google Scholar] [CrossRef]
- Haixia, Z.; Zhiguang, C.; Junrong, H.; Huayin, P. Exploration of the Process and Mechanism of Magnesium Chloride Induced Starch Gelatinization. Int. J. Biol. Macromol. 2022, 205, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. Magnesium: Are We Consuming Enough? Nutrients 2018, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.; Mazur, A.; Trousselard, M.; Bienkowski, P.; Yaltsewa, N.; Amessou, M.; Noah, L.; Pouteau, E. Magnesium Status and Stress: The Vicious Circle Concept Revisited. Nutrients 2020, 12, 3672. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.M.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Physical Modification of Starch by Heat-Moisture Treatment and Annealing and Their Applications: A Review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Sui, Z.; Janaswamy, S. Annealing. In Physical Modifications of Starch; Sui, Z., Kong, X., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2023; pp. 73–90. [Google Scholar]
- Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.; Marszałek, K. Health Benefits of Resistant Starch: A Review of the Literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Zhang, H.; He, F.; Wang, T.; Chen, G. Thermal, Pasting, and Rheological Properties of Potato Starch Dual-Treated with CaCl2 and Dry Heat. LWT 2021, 146, 111467. [Google Scholar] [CrossRef]
- Yang, S.; Dhital, S.; Zhang, M.N.; Wang, J.; Chen, Z.G. Structural, Gelatinization, and Rheological Properties of Heat-Moisture Treated Potato Starch with Added Salt and Its Application in Potato Starch Noodles. Food Hydrocoll. 2022, 131, 107802. [Google Scholar] [CrossRef]
- Bates, F.L.; French, D.; Rundle, R.E. Amylose and Amylopectin Content of Starches Determined by Their Iodine Complex Formation. J. Am. Chem. Soc. 1943, 65, 142–148. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph—Optical Spectroscopy Software. Version 1.2.16. 2022. Available online: https://www.effemm2.de/spectragryph/ (accessed on 1 February 2022).
- Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G. Heteronuclear Decoupling in Rotating Solids. J. Chem. Phys. 1995, 103, 6951–6958. [Google Scholar] [CrossRef]
- Morcombe, C.R.; Zilm, K.W. Chemical Shift Referencing in MAS Solid State NMR. J. Magn. Reson. 2003, 162, 479–486. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46, 33–59. [Google Scholar]
- Jacobs, H.; Eerlingen, R.C.; Clauwaert, W.; Delcour, J.A. Influence of Annealing on the Pasting Properties of Starches from Varying Botanical Sources. Carbohydrates 1995, 72, 480–487. [Google Scholar]
- Samarakoon, E.R.J.; Waduge, R.; Liu, Q.; Shahidi, F.; Banoub, J.H. Impact of Annealing on the Hierarchical Structure and Physicochemical Properties of Waxy Starches of Different Botanical Origins. Food Chem. 2020, 303, 125344. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Saha, R.; Bose, A.; Sahoo, R.N.; Nandi, S.; Swain, R.; Paul, M.; Biswas, S.; Mohapatra, R. Effect of Annealing Time on the Applicability of Potato Starch as an Excipient for the Fast Disintegrating Propranolol Hydrochloride Tablet. J. Drug Deliv. Sci. Technol. 2022, 67, 103002. [Google Scholar] [CrossRef]
- Ciesielski, W.; Tomasik, P. Werner-Type Metal Complexes of Potato Starch. Int. J. Food Sci. Technol. 2004, 39, 691–698. [Google Scholar] [CrossRef]
- Bergthaller, W.; Witt, W.; Goldau, H.-P. Potato Starch Technology Review. Starch/Stärke 1999, 51, 235–242. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, M.E.; Hernandez-Landaverde, M.A.; Delgado, J.M.; Ramirez-Gutierrez, C.F.; Ramirez-Cardona, M.; Millan-Malo, B.M.; Londoño-Restrepo, S.M. Crystalline Structures of the Main Components of Starch. Curr. Opin. Food Sci. 2021, 37, 107–111. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the Relationship Between Water-Satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch/Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared Spectroscopy as a Tool to Characterise Starch Ordered Structure—A Joint FTIR-ATR, NMR, XRD and DSC Study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, B.M.; Gidley, M.J.; Warren, F.J. Rapid Quantification of Starch Molecular Order through Multivariate Modelling of 13C CP/MAS NMR Spectra. Chem. Commun. 2015, 51, 14856–14858. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the Structural Order of Native Starch Granules Using Combined FTIR and XRD Analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Tan, I.; Flanagan, B.M.; Halley, P.J.; Whittaker, A.K.; Gidley, M.J. A Method for Estimating the Nature and Relative Proportions of Amorphous, Single, and Doubled-Helical Components in Starch Granules by 13C CP/MAS NMR. Biomacromolecules 2007, 8, 885–891. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Waigh, T.A.; Gidley, M.J.; Komanshek, B.U.; Donald, A.M. The Phase Transformations in Starch during Gelatinisation: A Liquid Crystalline Approach. Carbohydr. Res. 2000, 328, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.E. Review: Ionic hydration in chemistry and biophysics. J. Solut. Chem. 1982, 11, 221–222. [Google Scholar] [CrossRef]
- Shah, N.; Mewada, R.K.; Mehta, T. Crosslinking of Starch and Its Effect on Viscosity Behaviour. Rev. Chem. Eng. 2016, 32, 265–270. [Google Scholar] [CrossRef]
- Jia, R.; Cui, C.; Gao, L.; Qin, Y.; Ji, N.; Dai, L.; Wang, Y.; Xiong, L.; Shi, R.; Sun, Q. A Review of Starch Swelling Behavior: Its Mechanism, Determination Methods, Influencing Factors, and Influence on Food Quality. Carbohydr. Polym. 2023, 321, 121260. [Google Scholar] [CrossRef]
- Le Feunteun, S.; Al-Razaz, A.; Dekker, M.; George, E.; Laroche, B.; Van Aken, G. Physiologically Based Modeling of Food Digestion and Intestinal Microbiota: State of the Art and Future Challenges. An INFOGEST Review. Ann. Rev. Food Sci. Technol. 2021, 12, 149–167. [Google Scholar] [CrossRef]
Time (hh:mm:ss) | Function Type | Value |
---|---|---|
00:00:00 | Temp | 50 °C |
00:00:00 | Speed | 960 rpm |
00:00:10 | Speed | 160 rpm |
00:01:00 | Temp | 50 °C |
00:04:42 | Temp | 95 °C |
00:07:12 | Temp | 95 °C |
00:11:00 | Temp | 50 °C |
00:13:00 | End |
Sample | Ca (μmol/g) | K (μmol/g) | Mg (μmol/g) | Na (μmol/g) | P (μmol/g) |
---|---|---|---|---|---|
NPS | 4.16 ± 0.16 | 17.67 ± 0.08 | 1.84 ± 0.03 | 2.55 ± 0.17 | 24.16 ± 0.11 |
NPS Mg | 0.70 | 0.15 | 15.88 | 0.48 | 24.57 |
NPS Ca | 16.99 | 0.03 | 0.29 | 0.48 | 22.41 |
NPS Na | 0.62 | 0.20 | 0.37 | 30.71 | 24.31 |
NPS K | 0.75 | 29.16 | 0.33 | 0.65 | 23.99 |
ANN NPS | 4.74 | 14.27 | 1.93 | 3.57 | 23.37 |
ANN NPS Mg | 1.32 | 0.38 | 14.94 | 0.43 | - |
ANN NPS Ca | 14.37 | 0.36 | 0.21 | 0.35 | - |
ANN NPS Na | 0.50 | 0.46 | 0.21 | 28.71 | - |
ANN NPS K | 0.45 | 30.08 | 0.25 | 0.39 | - |
Sample | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) * |
---|---|---|---|---|
NPS | 60.39 ± 0.15 d | 65.54 ± 0.18 c | 70.92 ± 0.26 b | 17.00 ± 0.20 b |
NPS Mg | 60.55 ± 0.11 d | 65.33 ± 0.11 c | 69.90 ± 0.21 b,c | 17.75 ± 0.32 b |
NPS Ca | 60.70 ± 0.00 d | 65.29 ± 0.11 c | 71.13 ± 0.06 b | 23.45 ± 0.34 a |
NPS Na | 60.18 ± 0.08 d,e | 64.50 ± 0.23 d | 69.70 ± 0.40 c | 19.90 ± 1.30 a |
NPS K | 59.74 ± 0.24 e | 64.38 ± 0.18 d | 68.60 ± 0.08 d | 13.30 ± 1.70 c |
ANN NPS | 65.94 ± 0.14 a | 69.16 ± 0.20 a | 73.29 ± 0.25 a | 21.54 ± 0.89 a |
ANN NPS Mg | 65.71 ± 0.06 a,b | 69.18 ± 0.08 a | 73.31 ± 0.20 a | 20.45 ± 1.69 a |
ANN NPS Ca | 65.20 ± 0.22 b,c | 68.90 ± 0.34 a,b | 73.38 ± 0.30 a | 18.70 ± 0.20 b |
ANN NPS Na | 65.04 ± 0.06 c | 68.41 ± 0.01 b | 72.84 ± 0.04 a | 20.15 ± 0.86 a |
ANN NPS K | 64.97 ± 0.07 c | 68.32 ± 0.12 b | 72.72 ± 0.12 a | 19.38 ± 0.48 b |
Sample | PV (mPa·s) | TV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB (mPa·s) | PT (°C) |
---|---|---|---|---|---|---|
NPS | 4036 ± 50 | 1597 ± 24 | 2439 ± 29 | 1864 ± 28 | 267 ± 17 | 69.5 ± 0.1 |
NPS Mg | 2901 | 1610 | 1291 | 1897 | 287 | 71.2 |
NPS Ca | 2963 | 1646 | 1317 | 1941 | 295 | 71.1 |
NPS Na | 5446 | 1700 | 3746 | 1995 | 295 | 68.6 |
NPS K | 5430 | 1693 | 3737 | 1997 | 304 | 68.7 |
ANN NPS | 3361 | 2546 | 815 | 2904 | 358 | 74.4 |
ANN NPS Mg | 2480 | 2156 | 324 | 2983 | 827 | 76.0 |
ANN NPS Ca | 2392 | 2225 | 167 | 2812 | 587 | 76.0 |
ANN NPS Na | 4298 | 2853 | 1445 | 3131 | 278 | 76.0 |
ANN NPS K | 4128 | 2982 | 1146 | 3431 | 449 | 74.4 |
ANN NPS, Enriched with Mg | 2355 | 1931 | 424 | 2355 | 1931 | 74.2 |
Swelling Power (SWP) (g/g) Measured at | Solubility (SOL) (g/g %) Measured at | |||
---|---|---|---|---|
Sample | 70 °C | 90 °C | 70 °C | 90 °C |
NPS | 11.71 ± 0.34 d | 17.30 ± 0.60 c,d | 1.08 ± 0.08 c | 2.56 ± 0.32 a |
NPS Mg | 11.95 ± 0.33 d | 18.20 ± 0.70 c | 1.31 ± 0.14 b | 2.79 ± 0.11 a |
NPS Ca | 11.95 ± 0.21 d | 16.34 ± 0.24 d | 1.35 ± 0.08 b | 1.60 ± 1.60 a |
NPS Na | 14.54 ± 0.27 c | 14.00 ± 0.60 e | 1.44 ± 0.52 b | 2.08 ± 0.15 a |
NPS K | 14.53 ± 0.43 c | 15.60 ± 2.10 d | 1.54 ± 0.24 b | 2.12 ± 0.18 a |
ANN NPS | 16.10 ± 0.49 b | 18.99 ± 0.30 c | 2.02 ± 0.25 a,b | 0.85 ± 0.13 b |
ANN NPS Mg | 14.78 ± 0.35 c | 19.30 ± 0.21 b,c | 2.21 ± 0.24 a | 1.27 ± 0.24 a |
ANN NPS Ca | 14.58 ± 0.20 c | 18.20 ± 0.07 c | 2.84 ± 0.09 a | 1.94 ± 0.55 a |
ANN NPS Na | 19.13 ± 0.10 a | 23.51 ± 0.59 a | 2.65 ± 0.57 a | 0.88 ± 0.30 b |
ANN NPS K | 18.90 ± 0.07 a | 21.46 ± 0.50 a,b | 2.85 ± 0.34 a | 1.04 ± 0.16 b |
Sample | Digestible Starch Amount (g/100 g) at T0 | RDS (g/100 g) (after 20 min) | SDS (g/100 g) (after 120 min) | TDS (g/100 g) (after 240 min) | RS * (g/100 g) (after 240 min) |
---|---|---|---|---|---|
NPS | 2.91 ± 0.12 | 4.26 ± 0.16 | 2.17 ± 0.02 | 8.89 ± 0.10 | 92.03 ± 4.46 |
ANN NPS | 3.20 ± 0.14 | 4.18 ± 0.36 | 1.27 ± 0.64 | 7.86 ± 0.22 | 82.07 ± 9.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomann, J.A.; Polhuis, M.; Lasorsa, A.; Heeres, H.J.; Heeres, A. Effects of Mineral Elements and Annealing on the Physicochemical Properties of Native Potato Starch. ChemEngineering 2024, 8, 60. https://doi.org/10.3390/chemengineering8030060
Thomann JA, Polhuis M, Lasorsa A, Heeres HJ, Heeres A. Effects of Mineral Elements and Annealing on the Physicochemical Properties of Native Potato Starch. ChemEngineering. 2024; 8(3):60. https://doi.org/10.3390/chemengineering8030060
Chicago/Turabian StyleThomann, Johanna A., Michael Polhuis, Alessia Lasorsa, Hero J. Heeres, and André Heeres. 2024. "Effects of Mineral Elements and Annealing on the Physicochemical Properties of Native Potato Starch" ChemEngineering 8, no. 3: 60. https://doi.org/10.3390/chemengineering8030060
APA StyleThomann, J. A., Polhuis, M., Lasorsa, A., Heeres, H. J., & Heeres, A. (2024). Effects of Mineral Elements and Annealing on the Physicochemical Properties of Native Potato Starch. ChemEngineering, 8(3), 60. https://doi.org/10.3390/chemengineering8030060