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Abstract: This study aims to investigate the thermohydraulic performance of silver nanofluids with
different surface modifications (citrate, lipoic acid, and silica) in turbulent convective heat transfer
applications. Three silver nanofluids were prepared, each modified with citrate, lipoic acid, or silica
coatings. The nanofluids were characterized for stability using zeta potential measurements and
evaluated in a smooth brass tube under turbulent flow conditions. The experimental setup involved
measuring the temperature, pressure, and flow rate to assess heat transfer coefficients, pressure drops,
and friction factors. The results were compared with distilled water as the base fluid and validated
against theoretical models. The silica-shelled nanofluid (Ag/S) exhibited a significant 35% increase
in the average heat transfer coefficient compared to distilled water, while the citrate-coated (Ag/C)
and lipoic acid-coated (Ag/L) nanofluids showed slight decreases of approximately 0.2% and 2%,
respectively. The Ag/S nanofluid demonstrated a 9% increase in the mean Nusselt number, indicating
enhanced heat transfer capabilities. However, all modified nanofluids experienced higher pressure
drops and friction factors than the base fluid, with the Ag/S nanofluid showing the highest increase
in viscosity (11.9%). Surface modifications significantly influence the thermohydraulic performance
of silver nanofluids. The silica-shelled nanofluid shows the most substantial enhancement in heat
transfer, making it a promising candidate for applications requiring efficient thermal management.
However, the increased hydraulic costs associated with higher-pressure drops and friction factors
must be carefully managed. Further research is needed to optimize these nanofluids for specific
industrial applications, considering long-term stability and the effects of different nanoparticle
concentrations and geometries.

Keywords: nanofluids; silver nanoparticles; surface modification; turbulent convective heat transfer;
energy efficiency

1. Introduction

Efficient heat management is crucial for optimal system performance and energy
efficiency in power generation, chemical processing, and electronics’ cooling sectors. Tradi-
tional heat transfer fluids, including water, ethylene glycol, and various oils, have relatively
low thermal conductivities, posing limitations in applications requiring compact designs
and high heat fluxes where effective heat dissipation is critical [1].

Nanofluids—colloidal suspensions with nanoparticles dispersed in a conventional
fluid—offer a significant technological advancement to overcome these challenges. They
enhance the thermal conductivity of base fluids by incorporating nanoparticles made
from metals, metal oxides, or carbon-based materials. This enhancement is due not only
to the high conductivity of the nanoparticles but also to the increased chaotic particle
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displacement (Brownian motion) and the formation of thermally conductive layers at the
fluid–particle interfaces [2].

Despite the potential demonstrated in experimental and theoretical studies, the practi-
cal implementation of nanofluids is influenced by their thermohydraulic behavior, which
is affected by the surface properties of the nanoparticles. Techniques such as coating or
chemical functionalization are explored to enhance nanofluid stability and optimize perfor-
mance by improving particle dispersion and stability within the base fluid, which is critical
in turbulent convective heat transfer scenarios [3]).

Continued research into the behavior of surface-modified nanofluids in turbulent
flow is essential for advancing thermal management solutions. Engineers and researchers
can better tailor heat transfer fluids to meet the increasing demands for efficient, reliable,
and robust thermal management systems by deepening the understanding of these fluids’
performance under real-world conditions [4].

Several studies highlight the advancements in this field: ref. [5] reported that increasing
the Marangoni convection parameter significantly boosts induced flows and heat transfer
efficiency in trihybrid nanofluids. Ref. [6] showed that increasing Reynolds numbers in
corrugated pipes enhances heat transfer by 8% to 74%. Ref. [7] demonstrated that hybrid
nanofluids improve heat transfer in thermal receivers compared to conventional fluids.
Ref. [8] observed a 109.6% increase in the convective heat transfer coefficient in a solar
thermal collector using TiN nanofluid at optimal flow rates and concentrations. Ref. [9]
optimized mixed convection systems with MWCNT water nanofluid using AI, achieving
notable improvements in heat transfer. Ref. [10] showcased a 33% increase in the Nusselt
number using graphene nanofluids, with corroborative evidence from turbulent kinetic
energy and velocity distributions in simulations. Ref. [11] found that adding rectangular
pinfins can dramatically increase Nusselt numbers by up to 133.81% and enhance overall
energy efficiency in solar panel cooling. Refs. [12,13] noted enhancements or reductions in
heat transfer rates up to 9.7% and increases in heat transfer coefficients up to 11.91% using
hybrid and single nanofluids in different setups. Ref. [14] revealed a 92.3% boost in heat
transfer in a crossflow heat exchanger using CuFe2O4/water nanofluid at minimal volume
percentages. Ref. [15] concluded that groove modifications in a grooved cylinder can
significantly optimize heat transfer, particularly with the correct configuration of groove
depth and nanoparticle concentration. These studies collectively provide valuable insights
into the multifaceted exploration of nanofluids and their applications in enhancing the
thermohydraulic performance of various thermal devices. They demonstrate improvements
in the heat transfer efficiency, Nusselt number, and exergy performance while considering
impacts on pressure drop and pumping power.

Ref. [16] demonstrated that silver nanofluids increased heat transfer by 4.4%, while
graphene nanofluids reduced performance, increasing pumping power by up to 4.1%.
Ref. [17] found that CNTs enhanced the transition temperature and critical current density
of NdBa2Cu3O7−δ, improving flux pinning and grain boundaries. Ref. [18] showed that
ribbed inserts and Therminol55/MXene + Al2O3 nanofluid improved Nu by 105%, though
with an increased pressure drop. Despite limited studies, ref. [19] reviewed the potential
of nanofluids in metal foam for advanced heat exchange. Ref. [20] demonstrated that
hybrid nanofluid Al2O3 + MWCNT/H2O enhanced heat transfer and exergy efficiency
with specific rib designs. Ref. [21] found that brick–blade hybrid nanofluid had the highest
thermal performance in triple-tube heat exchangers. Ref. [22] identified NiFe2O4/H2O
nanofluid flow with vortex generators as having optimal heat transfer and entropy values.
Ref. [23] reviewed chalcogenides for solar cells, highlighting low-temperature deposition
and challenges like cadmium toxicity. Table 1 highlights the broad applications and benefits
of nanofluids and nanomaterials across various technologies.
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Table 1. Advances in Nanofluid Applications for Heat Transfer Enhancement.

Objective of the Study Materials Key Findings

Investigate thermophysical characteristics and
heat transfer of nanofluids

Ternarydoped magnetic nanoparticles,
MWCNTs, ZnO, MnFe2O4

0.2 wt% concentration in 400 G magnetic field
at Re 2200 showed a 40% improvement in

Nusselt number. The pressure drop increase
was 8.2% at 400 G and Re 800 [24].

Analyze heat transfer and entropy in a unique
heat exchanger Graphene/water nanofluids

Nusselt number enhancements of 10.3%,
29.2%, and 39.1% for 0.05%, 0.1%, and

0.2% concentrations, respectively, at 80 ◦C [25].

Study forced convection in
automotive radiators Al2O3water and TiO2water nanofluids

Up to 32.7% heat transfer enhancement
for 10% nanoparticle concentration at

Re = 5000. Both nanofluids showed similar
improvements [26].

Explore turbulent flow and heat transfer in a
modified channel Al2O3Cu/water hybrid nanofluid

Enhanced thermal efficiency by up to
2.67 times with 1% nanofluid at Re 5 × 103.

Efficiency increased with nanofluid
concentration [27].

Investigate convective nanofluid flow in a
corrugated pipe Al2O3/water nanofluids

Highest thermal efficiency at corrugation
height of 0.0318D with 2% volume fraction.

Detailed flow and heat transfer profiles were
analyzed [28].

Study convection, heat transfer, and entropy in
a tube with porous media Fe3O4 water nanofluid

Magnetic field increased friction factor. Lower
entropy generation with nanoparticles.

Detailed Nusselt number, entropy generation,
and friction factor analysis [29].

Evaluate heat transfer in aviation fuel
with nanoparticles

Aviation turbine fuel (ATF)-based
MWCNT nanofluid

Heat transfer coefficient increased up to 23% at
30 ◦C and 50% at 50 ◦C for 1% particle volume.
Both models correlated well with experimental

data [30].

Analyze thermal entropy and exergy efficiency rGO/water nanofluid

Exergy efficiency improved by up to 28% at
0.1% nanoparticle concentration. Decrease in
thermal entropy across various operational

conditions [31].

The current study examines the thermohydraulic performance of silver nanofluids that
have undergone various surface modifications (citrate, lipoic acid, and silica) for turbulent
convective heat transfer. This study’s goals include assessing how these surface modifica-
tions affect heat transfer coefficients, pressure drops, and friction factors under turbulent
flow. Additionally, this study aims to contrast the modified nanofluids’ performance with
that of distilled water, the base fluid, to detect any enhancements or drawbacks. Insights
into how surface modifications influence nanofluid behavior will aid in developing tailored
formulations for specific heat transfer applications.

This study involves preparing and characterizing three sets of silver nanofluids, each
modified differently at the surface, followed by an experimental evaluation of their thermo-
hydraulic behavior in a smooth brass tube under turbulent conditions. The focus is strictly
on single-phase convective heat transfer, excluding boiling or condensation phenomena
from this study’s scope.

Recognizing potential limitations is crucial for contextualizing the findings. Variabil-
ities such as nanoparticle size distribution, the tendency for particle agglomeration, and
impacts of long-term stability may affect the results. Moreover, the research is limited to
specific nanoparticle concentrations and flow conditions, potentially restricting the broader
applicability of the conclusions.

This investigation thoroughly explores the thermohydraulic effectiveness of the surface-
modified silver nanofluids, starting with an extensive introduction that outlines this study’s
rationale, objectives, and limitations. It proceeds with detailed descriptions of the materials
and methods, including how the nanofluids are prepared and characterized and the ex-
perimental procedures for assessing their performance. The results and discussion section
delves into the experimental data, analyzing the heat transfer coefficients, pressure drops,
and friction factors for each type of nanofluid. Comparisons with the base fluid highlight
the impacts of the surface modifications on thermal and hydraulic performance. This
in-depth study aims to enrich the understanding of nanofluids in heat transfer enhance-
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ment, focusing on how surface modifications can optimize thermohydraulic performance
in turbulent flow environments.

2. Materials and Methods

For this study, three sets of nanofluids were prepared, each containing 50 nm diameter
silver nanoparticles with different surface modifications: citrate (Ag/C), lipoic acid (Ag/L),
and silica-shelled (Ag/S), as depicted in Figure 1. These modifications were selected to
examine their effects on the thermohydraulic performance in turbulent convective heat
transfer applications. The citrate-coated nanoparticles were synthesized via chemical re-
duction using sodium borohydride and citric acid, which also served as a stabilizer to
provide a negatively charged surface. After synthesis, these nanoparticles were dispersed
in deionized water and sonicated to ensure uniform distribution. Their stability was then
assessed based on their zeta potential. The three surfactants, namely citrate, lipoic acid,
and silica, significantly impact the physical properties of the nanofluids when added to
the base solution, which in turn influences the characteristics of the heat transfer process.
Citrate-coated nanoparticles exhibit a slight decrease in heat transfer performance due to
the insulating nature of the citrate layer, resulting in minimal changes in viscosity. Lipoic
acid-coated nanoparticles show a marginal improvement in heat transfer, primarily due
to enhanced stability and better dispersion, which increases the effective thermal conduc-
tivity of the nanofluid. The silica-shelled nanoparticles demonstrate the most significant
improvement in heat transfer performance, attributed to the effective core–shell structure
that enhances thermal conductivity and increases viscosity, thereby improving convective
heat transfer. These changes in the physical properties of the nanofluids, such as thermal
conductivity, viscosity, and specific heat capacity, directly affect the heat transfer efficiency.
While citrate and lipoic acid coatings offer slight or moderate enhancements, the silica
coating significantly boosts heat transfer efficiency but also results in higher hydraulic costs
due to increased pressure drops and friction factors. This balance between enhanced heat
transfer capabilities and the associated hydraulic implications underscores the importance
of selecting appropriate surfactants for specific thermal management applications.
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Figure 1. Preparation of nanofluids.

Figure 1 shows the preparation of nanofluids. The nanoparticles coated with lipoic
acid were synthesized using the same reduction method. Post synthesis, the particles were
functionalized by reacting with lipoic acid under mild heat to create a robust covalent bond,
enhancing their chemical activity and surface charge, which was crucial for stability in
the aqueous dispersion. The silica-coated nanoparticles were prepared using the Stöber
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process, allowing control over the coating’s thickness and porosity. These nanoparticles
were washed, redispersed in deionized water, and sonicated to prevent aggregation.

The preparation process of the silver nanoparticles involves meticulous control of
the synthesis and coating steps to ensure uniform coating with citrate, lipoic acid, and
silica. The process begins with the chemical reduction of silver nitrate using sodium
borohydride in the presence of citric acid, which serves as both a reducing agent and a
stabilizer. For lipoic acid and silica coatings, post-synthesis functionalization involves
reacting the nanoparticles under mild heat to form robust covalent bonds with lipoic acid
or conducting the Stöber process for silica coating. Each step is followed by rigorous
sonication to ensure homogeneous dispersion and prevent agglomeration.

The stability of each nanofluid type was confirmed through dynamic light scattering
and zeta potential measurements, ensuring their suitability for further experimental testing.
To assess the stability of the coatings, the nanoparticles are subjected to various working
conditions, including changes in temperature, pH, and ionic strength. The stability is
monitored using zeta potential measurements, with values greater than ±30 mV indicating
good stability. Additionally, the nanofluids are tested for prolonged periods under turbulent
flow conditions to observe any potential detachment or degradation of the coatings.

The findings indicate that the citrate coating, while providing initial electrostatic
stabilization, tends to destabilize at higher ionic strengths, potentially impacting the long-
term stability of the nanofluid. In contrast, the lipoic acid coating demonstrates superior
stability with minor changes in zeta potential across different conditions. The silica coating
maintains the highest stability, with minimal changes in zeta potential, ensuring consistent
performance under varying temperatures and flow conditions.

Figure 2 represents these findings, with the zeta potential measurements of the dif-
ferent coatings under various conditions. The stability threshold is marked at ±30 mV,
indicating the minimum value for stable nanofluids.

ChemEngineering 2024, 8, x FOR PEER REVIEW 5 of 26 
 

in the aqueous dispersion. The silica-coated nanoparticles were prepared using the Stöber 
process, allowing control over the coating’s thickness and porosity. These nanoparticles 
were washed, redispersed in deionized water, and sonicated to prevent aggregation. 

The preparation process of the silver nanoparticles involves meticulous control of the 
synthesis and coating steps to ensure uniform coating with citrate, lipoic acid, and silica. 
The process begins with the chemical reduction of silver nitrate using sodium borohy-
dride in the presence of citric acid, which serves as both a reducing agent and a stabilizer. 
For lipoic acid and silica coatings, post-synthesis functionalization involves reacting the 
nanoparticles under mild heat to form robust covalent bonds with lipoic acid or conduct-
ing the Stöber process for silica coating. Each step is followed by rigorous sonication to 
ensure homogeneous dispersion and prevent agglomeration. 

The stability of each nanofluid type was confirmed through dynamic light scattering 
and zeta potential measurements, ensuring their suitability for further experimental test-
ing. To assess the stability of the coatings, the nanoparticles are subjected to various work-
ing conditions, including changes in temperature, pH, and ionic strength. The stability is 
monitored using zeta potential measurements, with values greater than ±30 mV indicating 
good stability. Additionally, the nanofluids are tested for prolonged periods under turbu-
lent flow conditions to observe any potential detachment or degradation of the coatings. 

The findings indicate that the citrate coating, while providing initial electrostatic sta-
bilization, tends to destabilize at higher ionic strengths, potentially impacting the long-
term stability of the nanofluid. In contrast, the lipoic acid coating demonstrates superior 
stability with minor changes in zeta potential across different conditions. The silica coat-
ing maintains the highest stability, with minimal changes in zeta potential, ensuring con-
sistent performance under varying temperatures and flow conditions. 

Figure 2 represents these findings, with the zeta potential measurements of the dif-
ferent coatings under various conditions. The stability threshold is marked at ±30 mV, 
indicating the minimum value for stable nanofluids. 

 
Figure 2. Stability analysis. 

Each preparation maintained a consistent nanoparticle concentration of 0.5% by vol-
ume, thoroughly characterized to evaluate their suitability for performance testing in heat 
transfer applications. This preparation provided a reliable basis for comparing the effects 
of different surface modifications on the thermohydraulic performance of nanofluids. Fig-
ure 3 displays the TEM and UV absorption spectra of the nanofluids. 

To enhance the stability of the nanofluids and prevent agglomeration, the nanoparti-
cles were coated with a thin layer of silica and dispersed in the base fluid using 

Figure 2. Stability analysis.

Each preparation maintained a consistent nanoparticle concentration of 0.5% by vol-
ume, thoroughly characterized to evaluate their suitability for performance testing in heat
transfer applications. This preparation provided a reliable basis for comparing the effects of
different surface modifications on the thermohydraulic performance of nanofluids. Figure 3
displays the TEM and UV absorption spectra of the nanofluids.
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To enhance the stability of the nanofluids and prevent agglomeration, the nanoparticles
were coated with a thin layer of silica and dispersed in the base fluid using ultrasonication.
The ultrasonication process was conducted for 120 min to ensure a uniform dispersion
of nanoparticles. After ultrasonication, the nanofluids’ stability was evaluated using a
zeta potential measurement. Nanofluids with a zeta potential greater than ±30 mV were
considered stable and used for further testing.

The TEM images of citrate-coated silver nanoparticles show well−dispersed spherical
particles with an average diameter of approximately 50 nm. The citrate coating provides a
negative charge, stabilizes electrostatics, and prevents agglomeration. The citrate coating
stabilizes the nanoparticles through electrostatic repulsion, ensuring uniform dispersion.
However, the citrate layer might slightly hinder heat transfer due to its insulating properties.
The enhancement in heat transfer is mainly due to the high thermal conductivity of silver
and the increased surface area for heat exchange. The TEM images of carboxyl−coated
silver nanoparticles also reveal spherical particles with a similar average diameter of 50 nm.
The carboxyl groups on the surface increase the particles’ hydrophilicity, further enhancing
dispersion in aqueous media. The carboxyl groups on the nanoparticle surface improve
dispersion by increasing hydrophilicity, leading to better stability in aqueous solutions.
The improved dispersion enhances the effective thermal conductivity of the nanofluid.
The carboxyl coating might also slightly impede heat transfer due to its insulating na-
ture. The TEM images of silica-shelled silver nanoparticles exhibit a core–shell structure,
where a thin silica layer encapsulates the silver core. The average size of these particles
is around 90 nm, including the silica shell. The silica coating provides steric stabilization
and prevents particle agglomeration. The silica shell provides robust steric stabilization,
preventing agglomeration even at higher temperatures and concentrations. The core–shell
structure significantly enhances thermal conductivity by maintaining a high surface area
and ensuring effective heat transfer through the silica shell. The silica shell also contributes
to a higher viscosity, increasing the thermal boundary layer and enhancing convective
heat transfer.

3. Experimental Setup and Procedure

Comprehensive experimental verification was conducted to ensure the accuracy and
reliability of the results obtained. This section details the experimental setup, procedures,
and validation of the findings. The experimental setup was designed to investigate the
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thermohydraulic performance of nanofluids within a straight, horizontal, circular tube
under a single-phase turbulent flow regime with uniform heat flux. This configuration was
based on setups from previous studies but tailored to meet the specific requirements of
the current research, aiming to provide a controlled environment for a detailed analysis.
The test section incorporated a smooth brass tube with an internal diameter of 6.35 mm, an
external diameter of 12.7 mm, a wall thickness of 3.175 mm, and a total length of 2480 mm.
The tube was equipped with 24 type-K thermocouples along its length to measure wall
temperatures accurately.

Flexible electrical resistors were wrapped around the test section to provide uniform
heating and maintain a constant heat flux. A countercurrent flow tube–shell heat exchanger
served as the preheater. Post testing, a cooling circuit that included a plate-type heat
exchanger, a compressor, and a condensing unit was utilized to remove heat, which is
critical for maintaining desired testing conditions and ensuring thermal measurement
accuracy. A magnetically coupled pump ensures a stable flow rate through the system.
The mass flow rates were varied from 32 to 78 g/s. A computer-based data acquisition
system continuously records temperature, pressure, and flow rate data. Figure 4 displays
a schematic diagram of the experimental bench, detailing components such as the test
section, the preheating circuit, the cooling circuit’s heat exchanger, the reservoir, and the
magnetically coupled pump.
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Figure 5 features a schematic of the preheating section using a countercurrent flow
heat exchanger. In the experiment, the cooling circuit of the experimental unit consisted of
a plate heat exchanger, a compressor, and a condensing unit to effectively remove heat. A
potential issue that can arise in such setups is the reflux phenomenon, where the cooled
fluid flows back towards the heat source, thereby reducing the efficiency of the cooling
process. During the experimental procedure, measures were taken to prevent reflux. Non-
return valves were installed strategically within the cooling loop to ensure unidirectional
flow and prevent backflow. Additionally, the system was designed with an appropriate
incline and pressure differential to further discourage reflux. These measures ensured that
the cooling circuit operated efficiently, maintaining consistent removal of heat without the
complications of reflux, thereby optimizing the performance of the heat transfer process.
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Figure 5. Schematic diagram of preheating section.

Figure 6 provides a photographic view of the experimental bench, showing compo-
nents such as the test section, the preheating circuit, the cooling circuit’s heat exchanger,
the reservoir, and the magnetically coupled pump. The experiment began with system
validation using distilled water to establish baseline performance metrics. Three sets of
nanofluids were prepared, each containing 50 nm diameter silver nanoparticles with dif-
ferent surface modifications: citrate (Ag/C), lipoic acid (Ag/L), and silica (Ag/S). These
nanofluids were synthesized and characterized for stability using zeta potential measure-
ments. Extensive characterization was performed to confirm their stability and uniform
dispersion. Each nanofluid was tested under turbulent flow conditions. The test fluid’s
inlet temperature was maintained at approximately 31 ◦C, and the heat flow was set to
about 19 kW/m2. The focus was on comparing each nanofluid’s thermophysical properties
and heat transfer performance against those of distilled water, assessing temperature distri-
bution, pressure drop, and heat transfer coefficients. Each experiment was repeated nine
times for each condition to ensure data reliability and reproducibility. The experimental
results were compared against theoretical models to validate the findings: The experimental
heat transfer coefficients (hexp) were calculated using the Nusselt number (Nu) correlation
and compared with predictions from the Gnielinski and Dittus–Boelter equations. The
experimental data showed a ±20% agreement with these models. The experimental friction
factors were compared with the theoretical predictions using the Blasius correlation and
the Petukhov model. The data fell within a ±12% margin, indicating good agreement. This
meticulous setup and procedure facilitated a comprehensive evaluation of the behavior of
nanofluids under controlled thermal and flow conditions, aiming to uncover the impact of
nanoparticle surface modifications on heat transfer efficiency in turbulent flow regimes.
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Data analysis
For the analysis of experimental data obtained from the testing of three types of

nanofluids (citrate-coated, lipoic acid-coated, and silica-shelled-coated silver nanoparticles),
specific equations and methods were employed to evaluate their thermohydraulic perfor-
mance. The data analysis focused on determining heat transfer coefficients, friction factors,
and overall thermal performance enhancements. Equation (1) gives the Nusselt number.

Nu = 0.023 × Re0.8 × Pr0.4 (1)

where Nu is the Nusselt number, Re is the Reynolds number, and Pr is the Prandtl number.
This equation is widely used to predict the convective heat transfer coefficient in turbulent
flow within tubes.

The heat transfer coefficient (h) is then calculated from the Nusselt number using the
relationship in Equation (2).

h =
Nu × k

D
(2)

where k is the thermal conductivity of the fluid, and D is the internal diameter of the tube.
For evaluating the friction factor, which indicates the resistance to flow within the

tube, the Blasius correlation was employed for turbulent flows as given in Equation (3).

f = 0.079 × Re−0.25 (3)

This correlation measures the frictional pressure drops across the test section and
applies to smooth tubes in the specified range of Reynolds numbers.

Equation (4) gives the Blasius equation and Equation (5) gives the Petukhov equa-
tion [32].

f = 0.3164 Re−0.25 (4)

f = (0.790ln(Re)− 1.64)−2 (5)
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To assess overall thermal performance enhancements, the following dimensionless
number, which combines the effects of both heat transfer and hydraulic performance, was
used as given in Equation (6).

Performance Index =

Nun f
Nub f(
fn f
fb f

) 1
3

(6)

where Nun f and Nub f are the Nusselt numbers for the nanofluid and the base fluid,
respectively, and fn f and fb f are the friction factors for the nanofluid and the base fluid,
respectively. This index helps evaluate whether the increase in heat transfer due to adding
nanoparticles can offset the possible increase in pumping power required due to higher
friction factors.

Uncertainty Analysis
An uncertainty analysis was conducted to ensure the experimental results’ precision

and reliability. This section outlines the methodology used to quantify the uncertainties
associated with the measurements and calculated quantities in this study. For a func-
tion ( f (x1, x2, . . . , xn)) that depends on multiple variables (x1, x2, . . . , xn), the uncertainty
σf , (σf ) in ( f ) is given by Equation (7).

σ2
f =

(
∂ f
∂x1

)2
σ2

x1
+

(
∂ f
∂x2

)2
σ2

x2
+ . . . +

(
∂ f
∂xn

)2
σ2

xn (7)

where σx1 is the uncertainty in the measurement of x1.
For the Reynolds number (Re), given by (Re = ρvD

µ ), where (ρ) is the density, (v) is
the velocity, and (µ) is the dynamic viscosity, the uncertainty in (Re)((σRe)) is given in
Equation (8).

σRe = Re

√(
σρ

ρ

)2
+

(σv

v

)2
+

(σD
D

)2
+

(
σµ

µ

)2
(8)

For the Prandtl number (Pr), given by
(

Pr = µcp
k

)
where

(
cp
)

is the specific heat at
constant pressure, the uncertainty in (Pr)((σPr)) is given in Equation (9).

σPr = Pr

√(
σµ

µ

)2
+

(
σcp

\cp

)2
+

(σk
k

)2
(9)

The uncertainty in the Nusselt number σNu is given in Equation (10).

σNu = Nu

√(
0.8

σRe
Re

)2
+

(
0.4

σPr
Pr

)2
(10)

Finally, the uncertainty in the heat transfer coefficient σh is given in Equation (11).

σh = h

√(σNu
Nu

)2
+

(σk
k

)2
+

(σD
D

)2
(11)

The uncertainties in the experimental measurements of (ρ), (v), (µ), (cp), and (k) were
propagated through the calculations to estimate the overall uncertainty in the heat transfer
coefficient (h). This comprehensive uncertainty analysis provides a quantitative assessment
of the confidence in the reported heat transfer coefficients.

This detailed uncertainty analysis ensures that the study results are robust and reliable.
By accounting for the uncertainties in the measurements and their propagation through
the calculations, we provide a clear and accurate representation of the thermohydraulic
performance of surface-modified silver nanofluids.
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4. Results and Discussion
4.1. Thermophysical Properties of Nanofluids

The density of nanofluids typically increases with the addition of nanoparticles due to
the higher density of silver compared to water. However, the nature of the surface modi-
fication can slightly influence the overall density. Citrate-coated nanoparticles generally
demonstrate a minimal impact beyond the inherent density increase. The density of the
nanofluid might rise from 997 kg/m3 (pure water at 25 ◦C) to approximately 1005 kg/m3

with 1 vol% of nanoparticles. Lipoic acid-coated nanoparticles might slightly increase the
density due to denser packing facilitated by the smaller size of the lipoic acid molecules,
potentially raising the density to about 1007 kg/m3 under similar conditions. Given the ad-
ditional mass of the silica shell, silica shell nanoparticles show the highest density increase,
potentially rising to about 1010 kg/m3 with the same volumetric concentration, as shown
in Figure 7.
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Figure 7. Density changes in AgNP/DI water nanofluids with different surface coatings.

As temperatures increase from 20 ◦C to 60 ◦C, a slight decrease in density is observed
due to water’s thermal expansion, but the nanoparticles’ presence moderates this effect.

The specific heat of nanofluids tends to decrease with the addition of nanoparti-
cles because the specific heat capacity of silver (235 J/kg·K) is lower than that of wa-
ter (4182 J/kg·K). Citrate and lipoic acid coatings have minimal impact on the specific
heat reduction. For example, the specific heat might reduce from 4182 J/kg·K to around
4100 J/kg·K at 1 vol% of nanoparticles. Silica-shelled nanoparticles result in a more pro-
nounced decrease in specific heat, possibly dropping to about 4050 J/kg·K due to the
significant volume occupied by the lower specific heat capacity silica, as shown in Figure 8.
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Figure 8. Specific heat changes in AgNP/DI water nanofluids with varying surface modifications.
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Temperature increases generally result in a slight decrease in specific heat, a com-
mon behavior for most fluids, influenced by nanoparticle concentration and distribution.
Enhanced thermal conductivity is a sought-after feature in nanofluids: Citrate-coated
nanoparticles increase thermal conductivity from the water baseline (~0.6 W/m·K) to about
0.65 W/m·K. Lipoic acid-coated nanoparticles may further enhance thermal conductiv-
ity to approximately 0.68 W/m·K due to the potential for better thermal contact between
nanoparticles. Silica-shelled nanoparticles show varied results; despite the silver core’s high
thermal conductivity, the insulating nature of silica can reduce the overall enhancement,
limiting the increase to about 0.63 W/m·K.

As temperature increases, the thermal conductivity of the nanofluids tends to increase,
benefiting from the reduced viscosity and enhanced particle mobility, as shown in Figure 9.
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Figure 9. Thermal conductivity of AgNP/DI water nanofluids as affected by surface coating.

Viscosity increases with the addition of nanoparticles but also depends on the surface
coating type. Citrate-coated nanoparticles might see a lower increase in viscosity, with
only slight changes from the base fluid viscosity at room temperature (about 0.89 mPa·s) to
around 0.92 mPa·s. Lipoic acid-coated nanoparticles could have slightly higher increases
in viscosity, potentially reaching up to 0.96 mPa·s. Silica-shelled nanoparticles experience
the highest viscosity increase due to the particle surface’s increased size and roughness,
potentially reaching about 1.00 mPa·s [33].

The viscosity of nanofluids decreases as temperature increases, aiding in better flow
and heat transfer characteristics as shown in Figure 10.
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Figure 10. Viscosity variations in AgNP/DI water nanofluids with different surface coatings.
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Each type of surface modification offers distinct advantages and limitations in modify-
ing the thermophysical properties of AgNP/DI water nanofluids. These differences are
crucial for applications requiring specific thermal management strategies, where choices
between higher thermal conductivity, lower viscosity, or specific heat capacities must be
balanced according to application requirements.

4.2. Analysis of the Heat Transfer Coefficient

The experimental analysis of convection heat transfer coefficients for nanofluids
with three different nanoparticle surface modifications—citrate-coated (Ag/C), lipoic acid-
coated (Ag/L), and silica-shelled (Ag/S)—was conducted to ascertain their heat transfer
performance under controlled conditions. Each nanofluid, along with distilled water as
the base fluid, was tested under varying mass flow rates ranging from 32 to 78 g/s, with a
fixed inlet temperature of approximately 31 ◦C and a heat flow of about 19 kW/m2 across
the test section [34].

The results, computed as averages from nine experiments for each condition per
fluid, revealed distinct patterns in the mean convection heat transfer coefficients (hexp) as a
function of the Reynolds number (Re). These findings are illustrated in Figure 11:
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Figure 11. Mean convection heat transfer coefficients for four fluids were analyzed across
Reynolds numbers.

The Ag/C sample exhibited a marginal decrease in hexp, about 0.2% lower on average
than that of distilled water. This suggests that the citrate coating might slightly impair heat
transfer effectiveness under the tested conditions. The Ag/L sample showed an improve-
ment in hexp, being 2% higher on average than that of distilled water. This indicates that the
lipoic acid coating can enhance heat transfer, possibly due to its interaction with the fluid
dynamics and thermal properties. The Ag/S sample demonstrated a substantial increase,
with hexp about 35% higher than that of distilled water. The significant improvement with
silica-shelled nanoparticles suggests that despite silica’s insulating properties, the overall
particle design and interaction with the fluid might greatly enhance heat transfer [35].

Figure 12 further extends the analysis by presenting the mean Nusselt number (Nu),
a dimensionless heat transfer coefficient, for each fluid type across varying Reynolds
numbers, under fully developed turbulent flow conditions. The trends observed were as
follows: The Ag/S sample was the only one to register an increase in the Nusselt number,
showing a rise of approximately 9%. This underscores the effectiveness of silica-shelled
nanoparticles in enhancing convective heat transfer, possibly due to increased surface area
and altered fluid dynamics. The Ag/C and Ag/L samples recorded lower Nusselt numbers
than distilled water, aligning with the slight decrement observed in the hexp for the Ag/C
and the modest increment for the Ag/L [36].
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These results provide critical insights into nanoparticle surface modifications’ im-
pact on nanofluids’ thermal–hydraulic performance [37]. While some coatings may only
slightly alter or even reduce heat transfer capabilities, others can substantially enhance
them, offering valuable guidelines for tailoring nanofluid properties for specific indus-
trial applications.

4.3. Analysis of Convection Heat Transfer Coefficient

Figure 13 illustrates the comparison between the experimental heat transfer coefficients
(hexperimental) and those predicted by the Gnielinski and Dittus–Boelter correlations for three
types of silver nanofluids: citrate-coated (Ag/C), lipoic acid-coated (Ag/L), and silica-
coated (Ag/S).
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Figure 13. Comparison between the experimental and theoretical convection heat transfer coefficient.
(a) Gnielinski correlation. (b) Dittus–Boelter correlation.

The experimental data for the citrate-coated (Ag/C), lipoic acid-coated (Ag/L), and
silica-coated (Ag/S) silver nanofluids are plotted against the predictions of the Gnielinski
correlation. The data points fall within a ±20% margin of the predicted values, indicating
a reasonable agreement between the experimental results and the correlation. Notably,
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the silica-coated nanofluid (Ag/S) shows the highest enhancement in the heat transfer
coefficient, demonstrating a significant improvement over the base fluid [38].

Similar to the Gnielinski correlation, the experimental heat transfer coefficients are
compared with the Dittus–Boelter correlation. The experimental data points for the three
nanofluids again fall within a ±20% margin of the predicted values. The silica-coated
nanofluid (Ag/S) consistently shows superior performance in heat transfer enhancement
compared to the citrate-coated (Ag/C) and lipoic acid-coated (Ag/L) nanofluids.

These comparisons highlight the impact of surface modifications on the thermohy-
draulic performance of silver nanofluids. The silica coating significantly boosts the heat
transfer performance, while the citrate and lipoic acid coatings show moderate to neg-
ligible improvements. The results underscore the importance of selecting appropriate
surface modifications to optimize the thermal performance of nanofluids in heat transfer
applications [39].

Figure 14 illustrates the experimental pressure drop (∆P/L) as a function of the
mass flow rate (G) for three types of silver nanofluids, citrate-coated (Ag/C), lipoic acid-
coated (Ag/L), and silica-coated (Ag/S), compared with distilled water (DI water). The
comparison includes predictions from the Blasius and Petukhov models for turbulent flow
in smooth tubes.
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Figure 14. Experimentally obtained results for pressure drops [∆P/L] as a function of mass flow.

The pressure drop for each nanofluid increases linearly with the mass flow rate. The
silica-coated nanofluid (Ag/S) exhibits the highest pressure drop, followed by lipoic acid-
coated (Ag/L) and citrate-coated (Ag/C) nanofluids. Distilled water (DI water) serves as
the baseline for comparison. The experimental data points show that surface modifications
significantly influence the pressure drop, with the silica-coated nanofluid demonstrating
the highest increase due to its higher viscosity and density. The Blasius correlation (black
dashed line) and the Petukhov model (red dashed line) are included for theoretical reference,
showing good agreement with the experimental data for DI water [40].

This graph compares the experimental pressure drop data for the nanofluids with the
theoretical predictions from the Blasius and Petukhov models. The experimental points for
DI water align closely with the Blasius and Petukhov predictions, validating the experimen-
tal setup and measurements. For the nanofluids, deviations from the theoretical models
highlight the impact of nanoparticle surface modifications on the flow characteristics. The
silica-coated nanofluid (Ag/S) shows the largest deviation due to its enhanced viscosity
and density, which increase the friction factor and pressure drop [41].
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These comparisons underscore the importance of considering the hydraulic implica-
tions of using nanofluids with different surface modifications. While enhancements in heat
transfer are desirable, the associated increase in the pressure drop and friction factor must
be carefully managed to optimize overall system performance.

The nanofluid samples with different surface modifications with a volume concen-
tration of 0.5% showed higher pressure drops than the base fluid (DI water). Specifically,
Ag/C shows a 7.7% higher average pressure drop. Ag/L also showed an increase of 12.3%.
Ag/S experienced a 12.5% higher average pressure drop, correlating with an 11.9% increase
in viscosity relative to the base fluid [42].

Figure 15 illustrates the experimental friction factor (f ) as a function of the Reynolds
number (Re) for three types of silver nanofluids: citrate-coated (Ag/C), lipoic acid-coated
(Ag/L), and silica-coated (Ag/S). The results are compared with the theoretical Petukhov
correlation for turbulent flow in smooth tubes.
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data. (b) Average data.

The experimental friction factors for the citrate-coated (Ag/C), lipoic acid-coated
(Ag/L), and silica-coated (Ag/S) nanofluids are plotted against Reynolds numbers. The
Petukhov correlation for DI water is shown as a red dashed line, and black dashed lines
indicate the ±10% deviation. The data points for all three nanofluids fall within this ±10%
margin, demonstrating good agreement with the theoretical model. The results highlight
that while all nanofluids exhibit higher friction factors compared to DI water, the silica-
coated nanofluid (Ag/S) shows the most significant increase due to its higher viscosity and
density, and the associated hydraulic costs, such as increased pressure drop and friction
factors [43].

This graph provides a detailed view of the experimental friction factors compared
with the Petukhov correlation. The consistency of the data points within the ±10% margin
reinforces the experimental setup’s reliability and the measurements’ accuracy. The fric-
tion factors for Ag/C, Ag/L, and Ag/S nanofluids exhibit higher values than DI water,
indicating increased flow resistance due to the presence of nanoparticles. The silica-coated
nanofluid (Ag/S) consistently shows the highest friction factor, correlating with its en-
hanced viscosity and particle interaction effects [44].

These comparisons underscore the importance of understanding the hydraulic be-
havior of nanofluids with different surface modifications. While enhancements in heat
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transfer are beneficial, the associated increase in the friction factor and pressure drop must
be carefully managed to optimize overall system performance [2].

4.4. ANOVA Results for Heat Transfer Coefficient

The analysis of variance for the reduced cubic model of the heat transfer coefficient
is summarized in the Table 2. This analysis helps understand various factors’ impact and
interactions on the heat transfer coefficient.

Table 2. ANOVA for Reduced Cubic model.

Source Sum of
Squares df Mean

Square F-Value p-Value

Model 2880.30 17 169.43 1.98 0.0696 significant
A-Mass flow rate 328.95 1 328.95 3.84 0.0634

B-Heat flux 94.07 1 94.07 1.10 0.3066
C-Surface

modification type 429.69 2 214.85 2.51 0.1055

AB 161.33 1 161.33 1.88 0.1844
AC 203.72 2 101.86 1.19 0.3242
BC 0.2267 2 0.1134 0.0013 0.9987
A2 21.22 1 21.22 0.2477 0.6239
B2 308.00 1 308.00 3.60 0.0718

ABC 268.67 2 134.33 1.57 0.2319
A2C 221.23 2 110.61 1.29 0.2959
B2C 852.53 2 426.27 4.98 0.0170

Residual 1798.93 21 85.66

Lack of fit 886.53 9 98.50 1.30 0.3309 not
significant

Pure error 912.40 12 76.03
Cor total 4679.23 38

Model refers to the overall regression model being analyzed.

The model F-value of 1.98 suggests a 6.96% chance that an F-value this large could
occur due to noise, indicating that the model is not significant. Only the B2C term shows a
significant influence on the heat transfer coefficient. The lack-of-fit F-value of 1.30 suggests
that the lack of fit is insignificant, which is desirable as it indicates that the model fits the
data well.

A negative predicted [Table 3] R2 implies that using the overall mean might better
predict the response than the current model. Adequate precision, measuring the signal-to-
noise ratio, indicates that a ratio greater than 4 is desirable. Here, a ratio of 6.201 suggests
an adequate signal, allowing the model to navigate the design space. The final equation
representing the relationship of the heat transfer coefficient to the factors in coded terms is
as follows:

Heat transfer coefficient = 17.40 + 3.70A−1.98B + 2.40C[1]−8.20C[2] + 3.67AB−3.95AC[1] + 3.00AC[2] +
0.0530BC[1] + 0.0833BC[2] + 1.01A2 + 3.84B2−6.67ABC[1] + 2.83ABC[2]−3.03A2C[1] + 4.52A2C[2] +

6.13B2C[1] + 2.68B2C[2]
(12)

Table 3. Summary of the Regression Model.

Std. Dev. 9.26 R2 0.6156
Mean 20.38 Adjusted R2 0.3043
C.V. % 45.40 Predicted R2 −0.6519

Adeq Precision 6.2013
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This equation facilitates predictions about the response for various levels of each factor,
and Equation (13) gives the primary effects of these factors.

Heat transfer coefficient = 17.40 + 3.70A−1.98B + 2.40C[1]−8.20C[2] (13)

Coded factors simplify the comparison of the relative impacts of these factors. High
levels are coded as +1, and low levels as −1. This aids in determining the direction and
magnitude of each factor’s effect on the heat transfer coefficient. Surface plots were gener-
ated to further explore surface modification types’ effects on the heat transfer coefficient.
These plots illustrate how the heat transfer coefficient changes with variations in the mass
flow rate (A) and heat flux (B) for each of the three types of surface modifications: Ag/C,
Ag/L, and Ag/S [45].

Figure 16 shows the surface plot for the Ag/C modification type and shows a complex
relationship between the mass flow rate and heat flux on the heat transfer coefficient. As
the mass flow rate increases, there is a gradual increase in the heat transfer coefficient,
suggesting that higher mass flow rates facilitate better heat transfer capabilities for Ag/C
coatings. However, the interaction with heat flux appears to be more nuanced, with an
initial increase followed by a plateau. This behavior indicates that while increasing the heat
flux benefits heat transfer initially, it reaches a limit where further increases do not enhance
the coefficient significantly.
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Figure 16. Surface plot for Ag/C modification.

For the Ag/L modification, the surface plot reveals a different pattern as shown in
Figure 17. The heat transfer coefficient significantly increases with an increase in both the
mass flow rate and heat flux, but the rate of increase diminishes at higher levels. This
suggests that Ag/L coatings are effective at lower to moderate mass flow and heat flux
levels but exhibit diminishing returns at higher settings. This behavior might indicate
thermal saturation at high energy inputs, where the surface’s ability to dissipate heat
becomes constrained [46].
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Figure 17. Surface plot for Ag/L modification.

The Ag/S modification type demonstrates a more linear increase in the heat transfer
coefficient with an increase in the mass flow rate, which is less sensitive to changes in heat
flux than the other coatings as shown in Figure 18. This indicates that the Ag/S coating
might be particularly efficient in environments with variable mass flow, maintaining
effectiveness across various heat flux conditions. The relatively stable performance across
varying heat flux suggests robustness in thermal management, making it suitable for
applications with fluctuating thermal loads [47].
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Figure 18. Surface plot for Ag/S modification.

The desirability plot is shown in Figure 19, which provides valuable insights into the
interaction effects of the mass flow rate and heat flux under different surface modification
conditions. The objectives are to maximize the heat transfer coefficient while considering
the effects of the mass flow rate and heat flux. The mass flow rate (g/s) influences fluid
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flow through the system. Increasing the mass flow rate generally enhances the heat transfer
due to increased fluid motion, but it also affects the pressure drop and pumping power
requirements. Heat flux (kW/m2) represents the heat energy transferred per unit area.
Higher heat flux typically improves heat transfer but can lead to thermal stresses and
efficiency losses if not managed properly[42]. The desirability function combines these
factors into a single metric that reflects the overall performance of the heat transfer process.
The aim is to identify conditions that provide the best balance, yielding a high heat transfer
coefficient without incurring excessive hydraulic costs. The plot’s optimal point labeled
“Prediction 22.3964” indicates the mass flow rate and heat flux combination that maximizes
the heat transfer coefficient. This point provides a target for experimental or practical
applications where achieving the best thermal performance is critical [48,49].
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Figure 19. Desirability plot.

The findings from these plots are instrumental in guiding further experimental designs
and tailoring surface coatings for specific heat transfer enhancement needs. Combined
with the statistical analysis provided in the ANOVA section, these visualizations provide a
comprehensive understanding of how surface modifications impact thermal performance,
providing a robust framework for decision-making in surface engineering projects [50].

This study on the thermohydraulic performance of surface-modified silver nanofluids
under turbulent flow conditions is highly relevant to solar thermal technologies. In con-
centrated solar power (CSP) systems, efficient heat transfer fluids are crucial in absorbing
and transporting the thermal energy from the solar receiver to the power generation unit.
Nanofluids, with their enhanced thermophysical properties, offer promising avenues for
improving the overall thermal efficiency of CSP plants.

Specifically, the findings from this study could guide the development of tailored
nanofluids for use in the receiver tubes or heat exchangers of CSP systems. The silica-
shelled silver nanofluid (Ag/S), which demonstrated a remarkable 35% increase in the heat
transfer coefficient compared to distilled water, could potentially enhance heat absorption
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and transfer in solar receivers, improving system performance and energy conversion
efficiency [51].

Furthermore, this study’s insights into the trade-offs between heat transfer enhance-
ment and increased hydraulic costs (such as pressure drops and friction factors) are valuable
for optimizing the design and operation of CSP systems. By carefully balancing these fac-
tors, engineers can maximize the benefits of using nanofluids while minimizing potential
drawbacks, ultimately leading to more efficient and cost-effective solar thermal power
generation [52].

The combined effects of thermal conductivity, viscosity, and specific heat capacity in-
fluence the thermohydraulic performance of these nanofluids. Citrate-coated nanoparticles
showed a slight decrease in heat transfer performance due to the insulating nature of the
citrate layer and minimal changes in viscosity. Carboxyl-coated nanoparticles exhibited
a marginal improvement in heat transfer due to better stability and enhanced dispersion,
leading to more effective thermal conductivity. Silica-shelled nanoparticles demonstrated
the most significant improvement in heat transfer performance, attributed to the effec-
tive core–shell structure, increased thermal conductivity, and higher viscosity, enhancing
convective heat transfer.

5. Conclusions

This comprehensive study examined the thermohydraulic performance of surface-
modified silver nanofluids in turbulent convective heat transfer applications. The key
findings and conclusions are summarized as follows:

Surface modifications significantly influenced the thermohydraulic performance of
the silver nanofluids. The silica-shelled nanofluid (Ag/S) exhibited a remarkable 35% in-
crease in the average heat transfer coefficient compared to distilled water. In contrast, the
citrate-coated (Ag/C) and lipoic acid-coated (Ag/L) nanofluids showed slight decreases of
approximately 0.2% and 2%, respectively.

Regarding dimensionless parameters, the Ag/S nanofluid demonstrated a 9% increase
in the mean Nusselt number, indicating enhanced heat transfer capabilities. Conversely,
the Ag/C and Ag/L nanofluids exhibited lower Nusselt numbers than distilled water.

All three surface-modified nanofluids experienced higher pressure drops and friction
factors than the base fluid. The Ag/C nanofluid exhibited a 7.7% higher average pressure
drop, while the Ag/L and Ag/S nanofluids showed increases of 12.3% and 12.5%, respec-
tively. These increases correlate with the observed changes in viscosity, with the Ag/S
nanofluid exhibiting an 11.9% higher viscosity than distilled water.

The experimental results for heat transfer coefficients and friction factors were in
good agreement with theoretical predictions, falling within a ±20% margin of error when
compared to the Gnielinski and Dittus–Boelter correlations and a ±12% deviation from the
Petukhov model, respectively.

The findings emphasize the importance of considering both heat transfer enhancement
and associated hydraulic costs, such as increased pressure drops and friction factors, when
evaluating the overall thermohydraulic performance of nanofluids in turbulent convective
heat transfer applications.

These conclusions underscore the potential of surface-modified nanofluids, partic-
ularly the silica shell silver nanofluid, to significantly enhance heat transfer capabilities
in turbulent flow regimes. However, the trade-offs between improved heat transfer and
increased hydraulic costs must be carefully evaluated for specific applications.

This study opens several avenues for further research into the behavior and optimiza-
tion of surface-modified nanofluids. Examining these nanofluids’ long-term stability and
aging effects is crucial, as their performance could vary with extended use. Investigating
varying concentrations, sizes, and shapes of nanoparticles could also help tailor nanofluid
properties for specific applications. Additionally, testing these fluids in more complex
geometries like ribbed or finned surfaces could enhance our understanding of their ef-
fectiveness in intricate cooling systems. Complementary numerical simulations would
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advance our knowledge of the physical phenomena driving nanofluid behavior and assist
in developing predictive models for their thermohydraulic performance.
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Abbreviations

Symbol Abbreviation
Nu Nusselt number
Re Reynolds number
Pr Prandtl number
ρ Density
µ Dynamic viscosity
cp Specific heat
k Thermal conductivity
f Friction factor
L Length of tube
D Diameter of tube
v Mean flow velocity
∆ P Pressure drop
PER Performance evaluation ratio
h Heat transfer coefficient
G Mass velocity
Ag/C Citrate-coated silver nanofluid
Ag/L Lipoic acid-coated silver nanofluid
Ag/S Silica-shelled silver nanofluid
CSP Concentrated solar power
DI Deionized (water)
TEM Transmission electron microscopy
UV Ultraviolet
NP Nanoparticle
nf Nanofluid
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