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Abstract: Arsenic, the 20th most common element in Earth’s crust and historically regarded as
the King of Poisons, occurs naturally in two oxidation states, Arsenate (V) and Arsenite (III), and
is prevalent worldwide through natural and anthropogenic means. The cations of the metalloid
exhibit unique chemical behaviour in water and are found to be components of approximately
245 natural minerals, making its occurrence in drinking water a compelling challenge, especially in
groundwater. This comprehensive review collates information regarding the prevalence of arsenic
contamination in water worldwide and its impact on human health, its chemical behaviour, methods
for detection and quantification, and treatment strategies. A comprehensive search was conducted,
and the selection of eligible studies was carried out using the PRISMA (the preferred reporting items
for systematic reviews and meta-analyses) guidelines. Essential characteristics of eligible research
studies were extracted based on geographical areas, origins, concentration levels and the magnitude
of populations vulnerable to arsenic contamination in groundwater sources. Arsenic contamination
of water affects over 100 countries including Canada, the United States, Pakistan, China, India,
Brazil and Bangladesh, where hydrogeological conditions favour prevalence and groundwater is the
primary water source for food preparation, irrigation of food crops and drinking water. This leads to
human exposure through absorption, ingestion and inhalation, causing numerous health disorders
affecting nearly all systems within the human body, with acute and chronic toxicity including cancers.
The presence of arsenic in water poses a considerable challenge to humanity, prompting scientists
to devise diverse mitigation approaches categorized as (a) oxidation processes, (b) precipitation
methods, (c) membrane technologies, (d) adsorption and ion exchange methods, and (e) social
interventions. This comprehensive review is expected to be a valuable source for professionals in the
water industry, public management, and policymaking, aiding their ongoing and future research and
development efforts.

Keywords: arsenic; drinking water; epidemiology; public health; detection; quantification; mitigation

1. Introduction

Arsenic (As) occurs naturally, ranking as the 20th most abundant non-essential trace
element in the Earth’s crust, where it is a component of 245 minerals. It is the 12th most
abundant element in the human body and the 14th most prevalent in seawater [1]. With an
atomic number of 33 and an atomic mass of 74.9216 g/mol, arsenic exhibits physical and
chemical properties that lie between those of metals and non-metals, categorizing it as a
metalloid [2]. Arsenic exists in three allotropic forms: metallic grey, which has a density
of 5.73 g/ cm? and is the most commonly occurring; yellow, with a density of 2.03 g/ cm3;
and black, with a density of 5.72 g/cm3 [1]. Since its discovery by Albertus Magnus
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in 1250 A.D., arsenic has been a significant and often controversial element in human
history. It holds potential applications in a wide range of fields, including agriculture,
chemical engineering, metallurgy, pharmaceuticals, livestock management, and electronics.
In the environment, arsenic is found in both organic and inorganic forms [3]. It exists in
four oxidation states: arsine (As(-1II)), arsenite (As(+III)), elemental arsenic (As(0)), and
arsenate (As(+V)). Among these, the more dominant forms of inorganic arsenic (iAs) in
the environment are arsenate and arsenite. Organic arsenic (0As) compounds, such as
dimethylarsinous acid (DMA) and monomethylarsonic acid (MMA), can dissolve in water,
which increases their relative abundance [4].

Arsenic is classified in group 15/ VA of the periodic table, also known as the nitrogen
group, which includes essential elements like nitrogen and phosphorus. While it is not
an essential nutrient, living organisms tend to accumulate arsenic. This element has
profoundly impacted human lives, particularly due to its presence in drinking water,
which poses a significant health challenge [3]. The impact of arsenic contamination on
public health is severe and multifaceted. Chronic exposure to arsenic, primarily through
drinking contaminated water, can lead to a plethora of adverse health effects. These include
skin lesions, cardiovascular diseases, neurotoxicity, diabetes and various forms of cancer,
particularly skin, lung and bladder cancers. Arsenic’s ability to interfere with cellular and
genetic mechanisms underlies its toxicity. It can induce oxidative stress, disrupt enzyme
function and alter DNA repair processes, leading to carcinogenesis and other serious health
conditions [5].

In many parts of the world, particularly in regions such as South Asia, arsenic contam-
ination of groundwater is a critical issue. Millions of people are at risk, and the problem is
compounded by the lack of alternative safe water sources and inadequate public health
infrastructure. The ingestion of arsenic-contaminated water and food crops irrigated with
such water leads to bioaccumulation, posing long-term health risks to entire communi-
ties [6,7]. The current review aims to collate comprehensive information and evidence
regarding the global prevalence of arsenic contamination. It will examine the chemical
behaviour of arsenic in water, its health implications, methods for its detection and quan-
tification, and various mitigation strategies. A comprehensive search was conducted from
inception to February 2022. The selection of eligible studies was carried out using the
PRISMA (the preferred reporting items for systematic reviews and meta-analyses) guide-
lines. This review seeks to provide a detailed understanding of arsenic’s environmental
impact and offer insights into effective solutions for managing its presence in drinking
water and other critical contexts. By addressing the multifaceted challenges posed by
arsenic contamination, this review aims to contribute to global efforts to mitigate its impact
on public health and ensure safe water access for affected populations.

2. Prevalence of Arsenic Contamination

In 2011, As exposure was estimated to affect 150 million people worldwide [8]. A
report from 2007 indicated that approximately 137 million individuals were exposed to
arsenic through contaminated drinking water in 70 countries [9]. However, as of 2021,
global information revealed that arsenic contamination in groundwater had impacted
107 countries, affecting a total population of 230 million [10]. The presence of arsenic
beyond its safe limit (0.01 mg per liter stated by the World Health Organization (WHO)),
especially in groundwater, is the focus of global attention, particularly in countries like
China, Pakistan, Bangladesh, the United States, Canada, Brazil, India, Nepal and Thailand
(totalling 49.84% of the world’s population), where groundwater is the primary source of
drinking water and is used for irrigation of food crops and food preparation [11,12]. As con-
tamination in groundwater is commonly attributable to natural sources, whereas arsenic’s
environmental existence (in air, water and soil) comes from both anthropogenic and natural
sources. Anthropogenic sources of arsenic include smelting, waste incineration, pesticide
application, nonferrous metals mining, wood combustion and coal combustion. Many
natural phenomena also contribute to environmental concentrations of arsenic, including
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hydrothermal/geothermal activity, dust storms, forest fires, pedogenesis and volcanic
eruptions [13]. Various biological and physicochemical reactions govern the dissolution of
As in groundwater. Pathways responsible for As contamination in groundwater are the
deposition of organic deposits in river basins and floodplains, erosion of mineral rocks in
mountain ranges containing As and anoxic conditions in aquifers. The anoxic conditions
develop in aquifers due to flat geology, a humid environment and long residence times of
water in the aquifer, which cause adsorbed As to be released into the water and dissolved.
Scientists have observed another pathway of mobilization of As in arid areas of the world,
such as in central Asia, North America and Australia, where high pH conditions cause the
reaction and dissolution of As in oxygen-rich groundwater. The risk assessment under dif-
ferent hydrogeological conditions of As contamination in groundwater has been illustrated
at a global level (Figure 1) [14].
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Figure 1. Chemical mapped risk assessment of arsenic in drinking water/global probability map
of arsenic contamination under different hydrogeological conditions in groundwater, (a) reducing
groundwater conditions, and (b) high pH/oxidizing conditions, adapted with permission from [14],
publisher ACS Publications.

High concentrations of arsenic (As) in groundwater, higher than the permissible limits
set by WHO (0.01 mg/L) [11,12], have been reported worldwide, rendering populations in
these areas vulnerable to exposure to arsenic and its harmful effects. Most of the arsenic-
contaminated zones are situated in sedimentary basins near deltaic areas and mountain
belts [15]. Regions with a tropical climate are more susceptible to arsenic pollution, as this
environment fosters the release of arsenic from mineral sources [16]. Table 1 summarizes
the range of arsenic concentrations (nug/L) in groundwater across different parts of the
world, the sources of contamination and the affected populations, providing an overview
of the global prevalence of this issue. To construct this, a comprehensive search was
conducted across multiple databases, including PubMed, Scopus and Google Scholar, from

VZa7i

inception to February 2022, using keywords such as “arsenic contamination”, “arsenic in
ground water”, “arsenic prevalence”, “arsenic in drinking water”. The preferred reporting items
for systematic reviews and meta-analyses (PRISMA) guidelines [17] were followed for

the search and selection of eligible studies. Essential characteristics of eligible research
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studies were extracted using a previously published method [18-23], based on geographical
areas, origins, concentration levels, and the magnitude of populations vulnerable to arsenic
contamination in groundwater sources.

Table 1. Description of the geographical areas, origins, levels of concentration, and the magnitude of
the population vulnerable to arsenic (As) contamination in global groundwater sources.

. A . o Concentration [As] Population at
Country/Region Districts/Provinces Contamination Source ug/L Risk (Million) References
Bangladesh 61* Flood plain, deltaic sediments, 2-4730 85 [24-28]
alluvial aquifers and organic matter
[As] sulfide from industrial activities,
holocene coastal sands, volcanic
* 4 _ *k%
Japan 3 activity and quaternary alluvium 1-25,700 [29,30]
aquifer
. Fine-grained fluvial deposits, aquifers
. . B 2y
Taiwan 4 and aquitards and black shales 2.5-1820 0.1-02 [31-34]
Dissolution of sedimentary deposits
Pakistan 27 * and minerals, especially iron 3.0-2580 13 [33,35-38]
oxyhydroxides
Cambodia 1** Ferrous sediments 1-1610 24 [39]
Australia 4% Gold mining, iron oxyhydroxides and 5-300,000 0.001976 [10,40]
iron hydro-oxides
Eastern Croatia 1* Sediments 27 0.12 [41]
India 20+ Alluvial, delt.alc and igneous 1-3880 50 [10,42]
sediments
Canada 5 ** Thermal springs, volcanic rocks, 1.5-100,000 minimal [11,43,44]
uranium mines and sediments
Ghana 5% Gold mining <1-4500 <0.1 [45]
Thailand 1* Mining and dredged alluvium 1-5000 0.0015 [46-49]
Argentina 4% Volcanic ash and thermal springs 10-2000 2 [42,46]
Slovakia 2% Aquifer sediments 37-39 1.1 Ha [50,51]
Mexico 3% Volcanic sediments and mining 8-620 0.4 [11,46]
New Zealand 4* Volcanic activities 21-8500 minimal [10]
Romania and 2% Sediments 0.5-240 0.4 [11,46,52]
Hungary
Germany 1* Sandstone and alluvium sediments 10-150 minimal [53,54]
Afghanistan 1* Sediments 10-500 0.5 [29,55]
Vietnam 2% Pleistocene and Holocene sediments 1-3050 0.5-10 [55,56]
Italy 3% Volcanic aquifers 0.1-6940 il [57]
Mining, limestone, sandstone,
UK 4%+ estuarine alluvium, alluvial or glacial <1-355 0.56 [58,59]
aquifers
Greece 1* Mine tailings 10,000 i [55,60]
Brazil 1* Gold mining 0.4-350 woeE [29,55,61]
Spain 1* Alluvial sediments <1-100 >0.05 [11,62,63]
Chile 1# Volcanogenic sediments, thermal 100-1000 05 [64]

springs and mining

* Number of districts. ** Number of provinces. *** No data available. **** During 30 years. ***** District of
Sicily only.

3. Behaviour of Arsenic in Water

A potential reason for the global prevalence of arsenic (As) in water is its sensitivity to
mobilization under conditions (oxidizing, reducing, and pH range of 6.5-8.5) most typically
found in groundwater aquifers [65,66]. This is distinct from other heavy semi-metals
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and oxo-anion generation elements (such as Selenium (Se), Antimony (Sb), Molybdenum
(Mo), Vanadium (V), Chromium (Cr), Uranium (U) and Rhenium (Re)). Groundwater,
about half of all drinking water worldwide, is particularly vulnerable in comparison
with surface water due to contact with arsenical minerals in groundwater aquifers [67].
Estimates suggest that 99% of the As on earth is associated with mineral ores [68]. There
are 245 minerals rich in arsenic compounds, out of which 20% are arsenides, 20% are
sulfosalts and sulfides, and 60% are elemental As, arsenides, oxides, arsenites and silicates.
Manganese nodules, iron deposits and sedimentary rocks are minerals considered rich in
arsenic [1]. Table 2 details the concentration of arsenic in As-rich minerals, and the chemical
formulation of the minerals along with the type of mineral ore is presented [69].

Table 2. Arsenic concentration ranges in various ores, mineral types and chemical formulas. Repro-

duced with permission from [69], publisher Natural Environment Research Council (NERC), UK.

Ores Mineral Type Chemical Formula [As] Concentration Range (g/kg)
Marcasite Sulfide minerals FeS, 0.02-276
Pyrite Sulfide minerals FeS, 0.1-120
Maghemite Oxide Minerals v-Fe, O3 Up to 186
Iron (IIT) oxyhydroxide Oxide Minerals FeO(OH) Up to 76
Haematite Oxide Minerals Fe, O3 Up to 29
Sphalerite Sulfide minerals (Zn,Fe)S 0.005-17
Galena Sulfide minerals PbS 0.005-10
Chalcopyrite Sulfide minerals CuFeS, 0.010-5
Jarosite Sulphate minerals KFe3(SO4)2(OH)g 0.034-1
Apatite Phosphate minerals Ca9(PO4)6(OH,ECl), <0.001-1
Pyrrhotite Sulfide minerals FeS 0.005-0.1
Halite Halide Minerals NaCl <0.003-0.03
Fluorite Halide Minerals CaF, <0.02
Magnetite Oxide Minerals Fe304 0.027-0.041
Barite Sulphate minerals BaSOy4 <0.001-0.012
Dolomite Carbonate minerals CaMg(CO3), <0.003
Siderite Carbonate minerals FeCO3 <0.003
Amphibole Silicate minerals X7SigOr, (OH), 0.0011-0.0023
Feldspar Silicate minerals KAISizOg—NaAlSiz;Og—CaAl,Si, Og <0.00001-0.0021
Biotite Silicate minerals K3AlSizOqq 2 0.0014
Quartz Silicate minerals SiO, 0.0004-0.0013
Calcite Carbonate minerals CaCOj3 0.001-0.008
Gypsum/anhydrite Sulphate minerals CaCOqy <0.001-0.006
Pyroxene Silicate minerals XYZrOu 0.00005-0.0008

Oxidation of sulfide minerals is considered the primary source of release of As into

water with NO;~, Fe>* and O, acting as oxidizing agents [70]. The reaction rate of ar-
senopyrite with Fe3* as an oxidizing agent is nearly ten times that of pyrite oxidation. For
instance, the overall reaction of arsenopyrite oxidation with O, as the oxidizing agent can
be expressed as follows: [71]

FeAsS + 3.50; + 4H,0 = Fe(OH)3 + H3AsO4 + HySO4



ChemEngineering 2024, 8, 78

6 of 48

All the constituents of such reactions are naturally occurring except NO3;~, which is
human induced using pesticides.

Arsenic may occur in the environment in different oxidation states, whereas in natural
waters, inorganic pentavalent arsenate (As(V)) and inorganic oxyanions of trivalent arsenite
(As(I1I)) are more commonly found [72]. Biological activities in surface waters may produce
organic arsenic but are not quantitatively significant; however, their significance becomes
evident in cases where waters are substantially influenced by anthropogenic activities [48].
Organic arsenicals such as lipids containing arsenic, arsenobetaine, trimethylarsine oxide,
arsenosugars, tetramethylarsonium and arsenocholine are mainly found in marine life and
can also become part of other non-marine organisms [73].

The distribution of arsenic (organic and inorganic) in drinking water is a function of
the water’s pH. Many of the toxic trace elements (Zn2+, Ni2*, Cu?*, Pb?*, Cd?+ and C02+)
exist as cations, and their solubility in water increases with the increase in pH; however, the
point of minimum solubility occurs at a different pH value for every metal [35]. Typically,
in water, coprecipitation or precipitation (with phosphate mineral, oxide, carbonate or
hydroxide) or adsorption (to metal oxide (hydrous), organic matter or clay) limits the solu-
bility of mostly all the cationic trace elements [74]. However, the solubility of oxo-anions,
including As(V), decreases with increasing pH [75]. Therefore, ions with a negative charge
(oxyanion/anion) may remain chemically dissolved in solution with typical values in the
tens of mg/L (high concentration) at a pH value of nearly 7 (neutral), and subsequently, ar-
senic and other elements with the same properties are abundant trace pollutants, especially
in groundwaters, due to more favourable hydrogeological conditions [76,77].

In comparison with other anion-producing metals (such as Cr, U, and Se), arsenic is the
most complex and problematic in an aqueous environment due to its wide mobility range in
reduction—-oxidation conditions [78]. In sulphatic waters and reducing aqueous conditions,
most trace elements form insoluble sulfides, which reduce the risk of contamination by re-
ducing the mobility of toxic elements to negligible amounts. However, arsenic distinguishes
itself by remaining mobile even under reducing environments. Therefore, arsenic is typi-
cally found in concentration value ranges in mg/L where other anion-forming elements are
one thousand times less in comparison (in waters under reducing conditions). Abundantly
found forms of inorganic arsenic (As(III) and As(V)) in drinking waters exist as AsO33~
(arsenite) and AsO,3~ (arsenate). As(OH)3, As(OH),", As(OH),~ and AsO3>~ are trivalent
forms (arsenite) of [As], whereas HyAsOy~, AsO43~ and HAsO42~ are pentavalent forms
(arsenate) of arsenic, found in natural waters. Names of arsenicals, chemical formulae and
structure (two-dimensional and three-dimensional) of environmentally problematic arsenic
compounds (organic and inorganic) are summarized in Table 3 [79,80].

Table 3. List of important arsenicals, their type, synonyms and structural (2D and 3D) and chemical
formulas [79,80].

Chemical

Name Family Synonyms Structural Formula Solid State Structure Comments
Formula
HO, OH
Arsenilic acid Organic Arsonic acid, AS\\O CeHgAsNO a,b,¢c,dandn
& (4-aminophenyl)- 6578 3 are applicable.
NH,
----/'AS \As//AS ~A4s
Arsenic Inorganic Metallic arsenic NN AS\AS/ AS— [As] cis applicable.
St




ChemEngineering 2024, 8,78 7 of 48
Table 3. Cont.
Name Family Synonyms Structural Formula ?:g:x:lc]aal Solid State Structure Comments
Arsenic(V) Op™ Sagt ; d
rsenic . L aand care
pentoxide Inorganic Arsenic oxide [As;Os] " " AsyOs applicable.
(e} (@)
S—As =R i B
Arsenic(IIT) / P \ O cand e are
. Inorganic Arsenic sulfide [As;S3] As-S8-As S AsyS3 -
sulfide % / Q applicable.
\ s ol N
S—As Soy -
Cl
Arsenic(III) Inoreganic Arsenic chloride | AsCl cand f are
trichloride & [AsCls] ,AS R 3 applicable.
Cl Cl
. As -0
Arsenic(IIT) . . . o~ “as” aand b are
trioxide Inorganic Arsenic oxide [As, O3] CI) i As,O3 applicable.
Arsonium,
(carboxymethyl) H3(13® i d, b, cand a are
Arsenobetaine Organic trimethyl-, H3C""'A5\)k <) CsH11AsO; e
1 . / 0 applicable.
hydroxide, inner salt; 2- H,C
(trimethylarsonio)acetate
) ) ) ) As.., ; ' '
Arsine Inorganic Arsenic hydride yd H AsHj3 ¢ g is applicable.
i H
ﬁ
Calcium . Arsenic acid [H3 AsOy] 3ca?t ] a, cand h are
arsenate Inorganic calcium salt (2:3) : " As{”o_ (AsO4)2.3Ca applicable.
()
-2
Qo
D1methylarsm1c Organic Cacodylic acid As C,H;AsO, bac a.nd dare
acid AN applicable.
H,C CH,
9 9
Metal
(ME)/Lead OH
arsen- | .‘
ate/Me = Na, . Arsenic acid [H3AsOy], T - y joa,candb are
Ca, K, Mg, Al Inorganic Me/Pb (2+) salt (1:1) 0 A}S 0 HAsO,.Pb/ME - > applicable.
Mn, Cu, Co, Cd, 24 -
Fe, Ni, Pb, S, Pb“'O -
Zn
Methanearsonic - O, CHs
acid, disodium Organic Arsc()ir}lc g.Cld’ meltthyl—, e ,\ é o CHj3As03.Nay ° ° Lk d, al.anglc
salt isodium sal Nat 'O O Na are applicable.
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Table 3. Cont.

Name Family Synonyms Structural Formula Chemical Solid State Structure Comments
Formula
Methanearsonic O CH
; ic aci 3 ]
ac1d,A Organic Arsonic ac1§l, methyl-, A é CH,AsO5.Na ° Ik d, a.and c
monosodium monosodium salt Nat O OH are applicable.
salt \
K +
Potassium Arsenic acid [H3AsOy] o H 1, aand c are
Inorganic . s 4l v ,O H;AsO4.K 4 .
arsenate dipotassium salt As applicable.
HO™
o)
Potassium . Arsenous acid, O O- K ° 1, aand c are
arsenite Inorganic potassium salt §A5/ AsO2K NS applicable.
Na—O
. Arsenic acid, N OH
Sodium Inorganic [H3AsOy], /As/ H;AsO4.Na m, a, an d care
arsenate . Z\ applicable.
monosodium salt o oM
Sodium . Arsenous acid, sodium [e) 0- + a, cand k are
arsenite Inorganic salt SAs” Na AsOs.Na applicable.
Sodi Arsenic acid O\\ /O & o b,c,dand k
odium . rsenic acid, a,b, ¢, dan
cacodylate Organic dimethyl-, sodium salt /AS\ C2HsAsO2Na are applicable.
H,C~ “CH,
9 9

(a) Red = oxygen, (b) white = hydrogen, (c) purple = arsenic, (d) black = carbon, (e) yellow = sulphur,
(f) green = chlorine, (g) grey and light gey are arsenic and hydrogen, respectively, (h) white = calcium, (I) white = hy-
drogen, (]) grey = metals, (k) dark purple = sodium, (I) dark purple = potassium, (m) hydrogen and sodium are
dark purple and white, respectively, and (n) blue = nitrogen.

pH and redox potential (Eh) are considered the most important factors controlling
arsenic speciation in water [81]. The reduced, trivalent form, As(IIl), is normally found in
groundwater (anaerobic conditions) and the oxidized, pentavalent form, As(V), is found in
surface water (aerobic conditions). The primary forms of arsenic typically discovered in
environmental samples include As(IIl), As(V), various arsenious acids (H3AsO3, HyAsO3~
and HAsO327) and arsenic acids (H3AsOy, HyAsO,;~ and HAsO,%"), with arsenic demon-
strating anionic behavior in aqueous systems. Arsenate tends to prevail under oxidizing
conditions, manifesting as the HyAsO,4~ type at lower pH levels (below roughly 6.9) or
as the HAsO4%" form at higher pH levels. Under reducing conditions with a pH less than
about 9.2, the uncharged arsenite species H3AsO3 becomes predominant. At moderate or
high redox potentials, arsenic can be present as pentavalent oxyanions (arsenate): Hz3AsOy,
H;AsO,~, HAsO4%2~ and AsO; 3 [82]. However, under more reducing conditions (acidic
and mildly alkaline) and lower redox potential, the trivalent arsenic species (H3AsOj3) are
prevalent. Atlow pH levels in the presence of sulfide, HAsS; can form; in extreme reducing
conditions, arsine, arsine derivatives and arsenic metal can occur. The distributions of these
species in relation to pH and redox conditions (Eh) are illustrated in Figure 2 [9,83,84].
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Figure 2. Eh—pH diagram of [As]-H;O at 1 ATM pressure and 25 °C temperature, adapted with
permission from [9], published by WHO.

The speciation of arsenic (arsenate and arsenite) in water under reducing conditions
(as an example) as a function of pH is presented in Figure 3 [10]. Saxena et al., 2004 [85],
reported the relationship of Eh and pH under other hydrogeological conditions with arsenic
speciation in India, USA, South Korea and Bangladesh. The scientific analysis of the arsenic
levels in the groundwater and pH shows a linear correlation. Overall, it is observed that
[As] remained mobile in pH ranges of waters starting from >3.5 up to <9.0, and in the case
of redox potential, [As] is found mobilizing in both oxidizing and reducing conditions. The
behaviour of arsenic in water with high concentrations of sulphur is important. It has been
shown that high concentrations of sulfides negatively impact dissolution of As. Dissolved
arsenic-sulphur compounds are more regularly found in the presence of reduced sulphur
in waters. The reducing condition causes the precipitation of sulphur compounds bearing
arsenic, which reduces the levels of dissolved arsenic in the water [83,85].
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Figure 3. Cont.
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Figure 3. Distribution of speciation of arsenite, arsenate and organic arsenical in NaCl as a function
of pH under experimental conditions (temperature: 25 °C, pressure: 1 ATM). Reproduced with

permission from [10], publisher Elsevier B.V.

4. Arsenic Implications on Human Health
Arsenic has been termed the “Poison of Kings” having a significant role in the murder of
several monarchs [86]. Furthermore, based on epidemiological evidence, the International
Agency for Research in Cancer (IARC) has classified As and its compounds as carcino-
genic [87]. Consumption of As contaminated water and food and occupational exposure
through the air are the sources of arsenic poisoning by iAs. The primary exposure route for
humans of 0As is by consumption of seafood (mussels, fish, prawns, oysters, etc.) which
leads to severe impacts on human health [88]. The term “Arsenicosis” refers to medical
complications resulting from low-dose long-term exposure to As [89]. As presents in the
environment because of both natural and anthropogenic sources, resulting in As exposure.
Recognised routes of As entering the human body are absorption through the skin, in-
gestion through the mouth and inhalation through the nose. The gastrointestinal tract of
the human body absorbs both valences of As found in the environment, i.e., As(III) and
As(V) [90]. However, the absorption capacity through the gastrointestinal tract changes for
the various arsenicals; for example, AsHO4Pb and As,S3 have the lowest rates of absorp-
tion through the mouth among As compounds, whereas, AsHO;Na has higher absorption
rates in comparison. The inhalation of As depends upon the molecular size of the As
compound; hence, in this case, AsSHO4Na, NaAsO; and As,S; have faster absorption rates
than AsHO4Pb and AsS [91]. The As(V) type of arsenics is less toxic in comparison with
As(IIl) because trivalent arsenic compounds are more soluble in water. Both trivalent and
pentavalent forms of As are reported to accumulate in human body fluids and are absorbed
into human tissues [92]. The As in the human body distributes among the organs such
as kidneys, skin, liver and lungs. The human liver subjects the As to non-enzymatic and
enzymatic methylation. During methylation, iAs is reduced from pentavalent to trivalent
forms of As, which are more toxic and mobile [92]. Urine, (renal system), transports about
70% of iAs and 0As. As the excretion process of iAs is longer, the retention time of iAs
in the human body is greater than that of 0As [93]. Absorbed As can be found in human
urine, hair and nail samples. The total As quantities in nails and hair are used as past As
exposure indicators as As stockpiles in keratin-high tissues of the human body. Conversely,
As quantities in human blood and urine are taken as indicators of recent exposure to arsenic
due to its rapid metabolism [94]. A survey involving the collection of skin scales, urine,
and hair samples from 10,000 residents of arsenic-affected villages in Bangladesh (one
of the most severely affected countries) indicated that 95.1% and 93.8% of urine and nail
samples, respectively, accumulated higher than normal levels of arsenic [95]. Another test
(conducted in Pakistan) reported accumulation of As to levels higher than normal (Table 4)
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in urine, hair and nails in the human body (sample size of 395 villagers) [96-98]. Low
to moderate water levels (10-300 ug/L) can have adverse implications on human health,
causing lung disease, effects on the neurological system, dermatological disorders, diabetes,
cardiac diseases, chronic liver diseases and kidney diseases. The human body systems
affected by As are illustrated in Figure 4 [99].

Table 4. Presentation of acceptable values/ranges of [As] in humans’ nails, hair and urine.

Sample Type Acceptable Range [As] Units Reference
Urine 0.005-0.04 mg/day [90]
Nails 0.43-1.08 mg/kg [88]
Hair 1 mg/kg [91]

Organ Specific
Endocrine System Neoplasms < Epigenetics
w \
Reproductive \
System & . Hematopoietic
development System
¥ v
|
\{, / Cardiovascular
Renal System B, System
< —»
[ \
Integumentary I\
System & aNervous system

Respiratory System i ‘ Immune System
Figure 4. The figure depicts the human body systems affected by health implications from As
absorption and accumulation.

Acute (short-term exposure) and prolonged (chronic) exposure of As poisoning have
a diverse range of symptoms and can lead to multisystemic diseases (Figure 5) [100,101].
The development of health implications of acute exposure to As appears in less time in
comparison with chronic exposure to As, which develops over a long period.

A recently published comprehensive review reports the critical health issues associated
with As poisoning [102]. Carcinogenetic effects of As poisoning are the most common
and prevalent. The results of epidemiological and animal studies have shown that iAs
can be categorized as group 1 (IRAC) carcinogens. In contrast, DMA and MMA 0As can
be classified as potential group 2b (IRAC) carcinogens. Arsenobetaine and other organic
arsenicals have not been declared carcinogens and are placed in group 3 (IARC) [103]. It is
observed that chronic exposure to As causing kidney, lung and bladder cancers has led to
the death of the patients even after forty years of reduction in exposure to As [104]. Key
epidemiological corroboration relating the carcinogenicity to As has been gained from
case studies in Argentina [105], Bangladesh [106], Taiwan [107], and Chile [108], where
residents consume drinking water containing high (e.g., 150 nug/L) concentrations of As.
Other associated health effects from exposure to As include neurobehavioral disorders and
neuritis. As toxicity is also linked to effects on the sensory system of nerves in the brain [109].
It has been observed during a study on Mexican children that the effects of toxicity of As
in the form of neurobehavioral disorder, neuritis and disorder of the sensory system of
the brain varies with the (factor of) time of exposure of As, nutritional factors and dose of
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Nausea

Abdominal pain Arsenic  Toxicity

Heartburn Toxicity

Vomiting

Diarrhoea

Cyanosis

Hypotension
Hypoxic encephalopathy
Pulmonary oedema

As [110]. Another health implication of As exposure is diabetes, a relationship between
type 2 diabetes, obesity and arsenic exposure has been reported, with a higher incidence
of diabetes where As concentration in drinking water is two to five times higher than the
permissible limit of WHO [111]. As also has the potential to cause cardiovascular disease
as it can affect thrombocytes (i.e., agglutination). Exposure to inorganic trivalent arsenicals
may be the leading cause of this disease [112]. Skin diseases are also widely associated
with exposure to As. According to a survey conducted in Bangladesh, melanosis and
keratosis are found in 13.9% of the total 167 people who were exposed to As contamination
in drinking water within the permissible value. In addition, Mee’s lines, vesiculation and
dermatitis (skin diseases) are also associated with the intake of water contaminated with
As [113]. Complications may also arise during pregnancy [114], with foetus mortality and
premature birth cases increasing with an increase in exposure to As [115].

Alopecia
Vasomotor disorder
Diabetes mellitus
Hyperkeratosis
Skin lesions and pigmentation
Pulmonarytuberculosis
Bronchiectasis
Abnormal pregnancy outcomes
Ulcerative processes
Nervous system disorders

Neuropathies, Psychosis, Impaired cognitive skills

Musculoskeletaldisorders

Chronic
Acute Arsenic

Acute tubular necrosis Weakness, muscle wasting, paralysis

Convulsions Cardiovasculardisorders
organ failure Heart attack, hypertension, cardiopathies

Heart, liver and kidney failure Cancers

Skin, liver, lung, kidney, bladder, prostate

Figure 5. Chronic and acute [As]-poisoning-implicated diseases, adapted with permission from [101],
publisher Springer-Verlag GmbH Germany.

5. Techniques Used for Arsenic Quantification in Water

The detection and quantification of As and its species in water is vital to under-
stand the complex biological and environmental chemistry of each single arsenical, as
each As compound poses a different toxicity level [116]. Therefore studies (environmen-
tal and health) of As require the detection and quantification of As species of diverse
properties and toxicities. Hence, quantification of total As is not adequate and must be
accompanied by arsenic speciation, defined as the analytical techniques (classical and
contemporary) of recognising and/or quantifying the amount of one or more individ-
ual arsenical in a sample [117]. Recent comprehensive scientific publications have re-
ported the determination of total As and speciation in water samples [118-124]. Many
analytical techniques are used to quantify As levels in natural waters, such as atomic
fluorescence spectroscopy (AFS) [125], inductively coupled plasma mass spectroscopy
(ICP-MS) [126], Raman spectroscopy (RS) [127], graphite furnace atomic absorption spec-
troscopy (GF-AAS) [128], total reflection X-ray fluorescence (TXRF) spectrometry [129],
the frontal chromatography—-ICP-MS method (FC-ICP-MS) [130], electrothermal atomic
absorption spectrometry (ETAAS) [131], high-performance liquid chromatography cou-
pled with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) [132], hydride
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generation—atomic absorption spectrometry (HG-AAS) [133], surface-enhanced Raman
spectroscopy (SERS) [134] and laser-induced breakdown spectroscopy (LIBS) [135].

The total As concentration in water samples, usually in units of pg/L, is only detectable
by refined analytical techniques such as GF-AAS, ICP-MS and HG-AAS [126,128,133].
Coupling techniques are adopted alongside for the speciation of As, which involves the
combination of a sensitive detector such as ICP-MS with HPLC [136]. The selection of
the analytical technique depends upon factors such as the detection limit (LOD), the
limit of quantification (LOQ), the cost of the method /apparatus, the time required for the
technique, the pre-treatment requirement of the sample, the availability of the device and
predetermined information as to whether the method is suitable for total [As] determination
only or in addition, to quantify As species in the water sample [137-139]. Historically,
spectrometric or colorimetric methods of total As determination were used. In the process,
species of As in the test sample are reduced to As (mirror) or AsHj, which then passes
through a filter (can be modified but is usually a HgBr?>~ impregnated filter), which turns
the contaminant into a yellow to brown colour. These methods are popular in forensic
toxicology as they present visible proof of As determination. Such plans are cheap, easy to
perform and applicable for the determination of high values of As in natural waters [124].

Electrochemical methods, particularly volumetric methods, are cheap, accurate and
come with easy-to-use apparatus, and these methods are widely used for As determination.
Much work has been conducted regarding modifying the method for better results. Ag and
Pt electrodes are used in anodic stripping voltammetry (ASV) methods, and glassy-carbon
electrodes are used in cathodic stripping voltammetry (CSV) methods with a low LOD
(around 0.02 pug L™1) for arsenic detection. In the procedure, As(V) is reduced to As(III)
with the use of various chemicals, and a low limit of detections is achieved to calculate
total As [140]. For the determination of total As, more sensitive detections such as AFS,
AAS, MS and AES are used. The speciation analysis follows the determination of total
As when required. To perform speciation analysis, the best methodology is coupling two
analytical systems.

All the chemical forms of As in water are separated with one technique, and the second
method is used to detect the separated species. In addition to coupling two analytical
techniques and their deployment, there are other important steps for completing arsenic
speciation analysis. The first step involves extraction of As, following this is the separation
of different arsenicals, and the final stage is the quantification of each As compound [7].
The commonly used method for As speciation is HPLC coupled with ICP-MS. HPLC
has produced effective results by separating arsenic species and can be quantified with a
detector. A detector with high ionization efficiency, like ICP-MS, is commonly used. Other
essential qualities of a sensor for As speciation are required, and characteristics of ICP-MS
high selectivity include a wide range for sensitive detection and low matrix interference.
However, HPLC-ICP-MS is only able to determine the identities of compounds with the
use of reference standards. Therefore, in recent years, ESI-MS has been used along with
ICP-MS to detect new species of As [141]. A review of contemporary analytical techniques
for quantifying As species is presented in Table 5.

Table 5. A review of contemporary analytical techniques for quantification of arsenic species.

. . . Detection
[As] Species Methodology Technique Description Limit (ug/L) Reference
NaBH4 was used as a reductant in a
DMA’AAS?\(gI) and HG-ASS separate reduction media. River water 600, 1100 and 500 [142]
samples were analysed using HG-ASS.
A sample preconcentration method for
Total As and As(III) GF-AAS As(IIT) by APDC and ion exchange resin 0.001 [143]

followed with detection by GF-AAS.
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Table 5. Cont.

[As] Species

Methodology

Technique Description

Detection

Limit (ug/L) Reference

As(IIT)

SERS

Fe304@Ag was used as a magnetic
substrate. EXAFS T spectroscopy was
used to characterise the molecular
structure of As on Fe3;0,@Ag followed
by SERS.

10 [144]

As(V)

SERS S

SERS quantification analysis technique
deployed for [As(V)] using multi-layer
silver nanofilms deposited on glass
slides as SERS-active substrates by an
electroless deposition process.

~5 [145]

As(V)

UV /vis
Spectrometry

S-layer protein functionalized AuNPs
reacted with As species, which changed
the colour of AuNPs, detected by

UV /vis spectrometry.

240 [146]

As(IIT)

UV /vis
Spectrometry

Spectrometry method deployed with
receptor as glucose in AuNPs platform.

0.53 [147]

Total As

SPRS B

Sensor probes of thiol-containing
organic compounds using a SPRS
method to detect As.

10 [148]

As(IIT), As(V),
DMAA, MMAA
and AsBet

HPLC-ICP-MS

The method involved Ion
Chromatography hyphenated to an
inductively coupled plasma mass
spectrometer.

0.02 [132]

Total As

FP-XRF €

X-ray tube-based FP-XRF methodology
was used to determine low
concentrations of As.

<0.02 [149]

Total As

ICP-AES

Electrolytic reduction was used as an
alternate hydride generation method in
atomic spectrometry for sample
introduction. As detected by Flame
atomic absorption spectrometry.

0.7 [150]

Total As

HPLC-ICP-MS

Species of As separated using an
isocratic elute and identified by
ESI-MS Y.

[122,151]

Total As

ICP-SF-MS

SPE F cartridges packed with anion
exchange resin (modified conventional
sorbent) before detection by ICP-SF-MS.

0.06 [152,153]

Total As, As(III)
and As(V)

HG-AAS

SPE protocol with dual sorbent
followed. SBAE G resin and hydrate
iron (III) oxide particle-integrated HY
resin cartridges were used before
detection by HG-AAS.

0.241 [154]

As(IIT)

ETAAS/

Based on IL V dispersive
microextraction technique implemented
in a flow analysis system followed by
ETAAS detection.

0.05 [155]

As(V)

ICP-OES K

After pre-treatment of the sample with
mesoporous silica, total iAs is quantified
by oxidation (by KMnOy) of As(III) to
As(V) and followed by ICP-OES and the
As(III) measurement is found by the
subtraction of As(V) from total As.

0.05 [156]
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Table 5. Cont.

[As] Species

Detection

Methodology Technique Description Reference

Limit (ug/L)

As(IIT) and As(V)

ICP-MS

Pre-treatment of water sample by SPE
procedure with CNFs I modified with
APDC M and then analysed with
ICP-MS.

0.0045 and 0.24 [157]

Total As

HG-AAS

HG-AAS was adopted after
pre-treatment of the sample with
cellulose fibre coated with Y(OH);
precipitate layer as adsorbent.

0.012 [158]

As(V)

MWCNTs N modified with BPEI © used
as a sorbent for pre-treatment of water
sample followed by sequential injection
technique and then analysed by AFS.

AFS?T 0.014 [159]

As (Ultra Trace)

Nano-TiO; colloid was used to pre-treat
the sample. A slurry sampling
technique was adopted, followed by
AFS detection.

AFS 0.01 [160]

As(II)

HG-AFS

Pre-treatment of the sample using Fe3O4
nanoparticles and SPE procedure was
achieved, followed by HG-AFS method
for detection.

0.0135 [161]

Total As and As(V)

HG-AFS

Methyl esterified egg-shell membrane
was used to pre-treat the sample,
followed by detection using a HG-AFS
method.

0.015 [162]

Colorimetric
Chemo-sensor

Mn;3;04 nanoparticles were used as

absorbents. Adsorption of [As] changed

the surface morphology of MnzO4 and

the colour to yellow. This property led 1.32 [163]
to the development of a novel

colourimetric chemosensor method for

[As] detection.

Total As

ASV involving the reduction of As3* to
AsQ, followed by stripping or oxidation

ASVW to As3* or Asd* species using electrodes 0.05 [119]

modified by nanoparticles
(carbonaceous nanomaterials).

As(III), As(V),
MMA and DMA

HPLC-GHG-AAS

As species analysis by interfacing solid
Al phase preconcentration-LC *
separation-GHG Y-QFAAS Z.

0.019, 0.33, 0.39,

0.62 [164]

A = AuNPs = gold nanoparticles; B = SPRS = surface plasmon resonance sensor; C = FP-XRF = field portable energy
dispersive X-ray fluorescence; D = ICP-AES = inductively coupled plasma optical emission spectrometry; E = in-
ductively coupled plasma sector field mass spectrometric; F = SPE = solid phase extraction; G = SBAE = strong basic
anion exchange; I = total [As]; ] = ETAAS = electrothermal atomic absorption spectrometry; K = ICP-OES = in-
ductively coupled plasma-optical emission spectrometry; L = CNFs = carbon nanofibers; M = APDC = am-
monium pyrroine-dithio carbarnate; N = MWCNTs = multi-wall carbon nanotubes; O = BPEI = cationic
polyethyleneimine; P = AFS = atomic fluorescence spectrometer; Q = MESM = methyl esterified egg-shell mem-
brane; R = NaBH4 = sodium tetra hydroborate (III); S = SERS = surface-enhanced Raman scattering; T = EXAFS = ex-
tended X-ray absorption fine structure; U = ESI-MS = electrospray ionization-mass spectrometry; V = IL = ionic
liquid; W = ASV = anodic stripping voltammetry; X = LC = liquid chromatography; Y = GHG = gradient hydride
generation; Z = QFAAS = quartz flame atomic absorption spectrometry; A1 = HPLC-GHG-AAS = HPLC-gradient
hydride generation atomic absorption spectrometry.

As field detection kits are used to quantify As levels in water sources in areas of
the world where water supply is decentralised and infrastructure of water testing is lim-
ited. From a public health standpoint, the utmost importance lies in the capability of a
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measurement method to differentiate samples that exceed and fall below pertinent and
actionable benchmarks for drinking water quality. Eight field test kits, currently accessible
in Bangladesh, were evaluated by contrasting the estimates provided by these kits with
analyses utilising hydride generation (HG-AAS) techniques. The outcomes of examinations
designed to mitigate colour-matching errors influenced by user interpretation indicated
that among the kits evaluated, the LaMotte and Quick II kits yielded accurate and precise ar-
senic estimations. Regarding four kits (Econo-Quick, Quick, Wagtech and Merck), accuracy
or precision was achieved, but not both [165]. Conversely, the Hach and Econo-Quick IT
kits displayed neither accuracy nor precision. Considering these findings, the investigators
proposed that stakeholders exercise caution when utilising field test kits with suboptimal
performance. It is advised that such kits be reevaluated once enhanced quality control
measures are introduced for their constituent components. Furthermore, the researchers
advocate for field test kit manufacturers to include appropriate internal standards within
each kit package, enabling users to validate the accuracy of the manufacturer’s colour
charts. A comparison of the test results and credentials of various test kits available in the
market are presented in Table 6 [165].

Table 6. Presentation of the test results and other characteristics of [As] field detection kits, modified

from [165].
No. of Test Reaction Concentration Intervals
Test Kit Manufacturer . Time per Methodology Results
in Box on Colour Chart (u/L)
Test (Hr)
Merck, Either accurate
Merck Darmstadt, 100 0.35 Colorimetric 5, 10, 25, 50, 100, 250, 500 or precise, but
Germany not both.
Industrial Test <1,2,3,4,5,6,7,8,10,13, Accizacgz:“d
Quick IT Systems, 200 0.25 Colorimetric 20, 25, 30, 40, >50, os t}i)ma tes of
Rock Hill, USA >80, >120, >160 [As]
Industrial Test <2, 4,10, 15, 20, 25, 30, 40, aci‘;tt};e;or
Econo-Quick II Systems, 50 0.25 Colorimetric 50, 60, 70, 80, 100, recise estimate
Rock Hill, USA >150, >300 P
of [As].
LaMotte, <4,4,8,10,12, 14, 16, 20, Accurate and
LaMotte Chestertown, 50 0.25 Colorimetric 25, 30, 50, 85, 100, 150, precise
USA 175, 200, 300, 400 estimates of As.
Palintest <10, 20-40, 50, 60-80, 100, Either accurate
Wagtech Cateshead ,UK 200 0.35 Colorimetric 100-200, 200-300, or precise, but
’ 300-400, 400-500 not both.
Industrial Test 0,5, 10, 20, 30, 40, 50, 60, Either accurate
Quick Systems, 100 0.25 Colorimetric 80, 100, 150, 200, 250, or precise, but
Rock Hill, USA 300, 400, 500, >500 not both.
Industrial Test Either accurate
Econo-Quick Systems, 300 0.25 Colorimetric 0,10, 25’528’ i(())((J),OZOO, 300, or precise, but
Rock Hill, USA ! not both.
Neither
Hach, . . accurate nor
Hach EZ Loveland, USA 100 0.35 Colorimetric 0, 10, 25, 50, 250, 500 precise estimate

of [As].

6. Techniques Used for Arsenic Mitigation from Water

The underlying chemistry of arsenic-contaminated water stands as the primary in-
fluencers in As removal. Removal methods are generally more proficient in eliminating
arsenate, as arsenite remains mostly uncharged at pH levels below 9.2. Consequently,
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the trivalent form of arsenic, being less charged, becomes less amenable to precipitation,
adsorption or ion exchange. As a result, treatment strategies are deemed more effective
when employing a two-step process: initially oxidizing arsenite into arsenate, followed
by employing a technique to eliminate the arsenate [78,166-170]. Figure 6 provides an
overview of existing technologies currently applicable for purging arsenic from water
sources (Figure 6).

/Social mitigati

f - Change in source of water ||
\ |
| - Community filtration plays‘

- Policy interventions

” Precipitation y; Oxidation
A 5 J - Chemical oxidation
- Coeioy - Photochemical oxidation
- Reverse osmosis

- Advanced hybrid method

- In-situ oxidation

- Bio-oxidation
- Catalytic oxidation

Arsenic removal
strategies

Adsorption and
ion-exchange

- Polymer-based sorbents

Membrane
technologies

- Micro/nano/ultra filtration - Iron/magnetic sorbents
- Reverse osmosis / - Activated alumina based
- Advanced hybrid methods/ sorbents

Figure 6. Overview of As removal strategies from water.

6.1. Oxidation Method

Oxidation, which transforms soluble arsenite into arsenate, does not inherently elimi-
nate arsenic from the solution. Therefore, a subsequent removal method like adsorption,
coagulation or ion exchange becomes necessary to extract arsenic from the solution [171].
The oxidation process plays a key role in improving the efficiency of removal of As; there-
fore, in most situations of such contamination removal, pre-oxidation of As(IIl) to As(V) is
deemed necessary and a sample redox reaction of conversion is given as follows: [172]

H3ASO4 +2H+2e™ — H3A803 + Hzo E0O=+056V

Selection of the oxidant depends upon factors such as the characterization of other
water-soluble containments or interfering substances (such as S*~ and TOC, as these greatly
affect the performance (increase in time) of ozone as an oxidant) [173]. The by-products are
a concern, e.g., TiO; as an oxidant when used for oxidation of As-bearing water, produces a
by-product which is costly and difficult to dispose of [174]. In addition, if the water used for
As removal contains highly dissolved organic carbon (DOC) and is oxidized using chlorine as
an oxidizing agent, the by-product generated may contain toxic dibutyl phthalate (DBP) [175].
Other factors to consider are the pH value on which the oxidant reacts, the reaction rate and
the concentration of the oxidizing agent required. Oxidation by ClO~, O, and manganate (VII)
is commonly adopted in developing countries due to cost concerns. However, it is observed
that using atmospheric oxygen is a lengthier process, and manganate (VII), CIO— and ozone
readily oxidize the arsenite to arsenate [176,177]. A review of contemporary oxidization



ChemEngineering 2024, 8, 78

18 of 48

agents (chemical formula, pH value, initial concentration of system and the brief result of
the method) for the oxidation of As(III) to As(V) is presented in Table 7.

Table 7. Various chemical oxidants are in use for the oxidation of As(IIl) to As(V) along with the
result of the method, pH value, initial concentration of system and chemical formulas.

Oxidizing Agent

Initial

Chemical Formula pH Results Reference

Conc. (ug/L)

Ozone and
Oxygen

03 and Oz 7.6-8.5 46-62

Oxidation of As(III) to As(V) was
fast (4 min) with O3 and slow
(2-5 days and 4-9 days,
respectively) with pure O, and air.

[178]

Chlorine dioxide

ClO, 5.7-6-7 and 8 300

The 90% oxidation (maximum) of
As(III) to As(V) yield was achieved
with CIO, to As(II) concentration
ratio of 3 at a contact time of 6 days.

[179]

Hydrogen
peroxide

Oxidation efficiency was found to

H,O, 7.5-10.3 50 increase with an increase in pH [180]

from 7.5 to 10.3.

Monochloramine

NH,Cl 5.7-6-7 and 8 50

A 100% oxidation yield was
achieved using an
oxidant-to-concentration ratio of 3
and with contact times of 2 days.

[179]

Hypochlorite

ClO- 5.7-6-7 and 8 50 and 300

An oxidant to As(III) ratio of 3
resulted in 100% oxidation of As(III)
to As(V) after 5 min of contact time

for all the pH conditions.

[179]

Chlorine

Cl,

As(IIT) was oxidized to As(V) with
8.3 300 a stoichiometric ratio of 0.99 at the [181]
fastest rate.

Potassium
permanganate

KMnOq4 5.7-6-7 and 8 50

An oxidant to As(IIl) ratio of 1-2
resulted in 100% oxidation of As(III)
to As(V) after 1 min for all the pH
conditions studied.

[179]

Recently, in situ oxidation of arsenic (As) has been adopted in groundwater aquifers
to control the mobilization of As in the subsurface. Aerated water is periodically pumped
into the groundwater anoxic aquifer through a well or multiple wells. When dissolved
Fe(II) reacts with aerated water, it oxidizes and results in the formation of precipitate on
the surface of the aquifer, which is soil; this creates a surface capable of adsorption of As
and restricts its mobility. The process is pH sensitive and affected by interfering ions [182].
Photochemical oxidation is another method of oxidizing As in water, evolving into a
different and new range of oxidation methods. In these methods, ultraviolet (UV) radiation
is used to catalyse the oxidation of As(IIl) to As(V) in the presence of iron ions [183].
Some other compounds, such as H,O;, can also be combined with UV radiation for the
process [184]. Deriving a sustainable source of UV radiation from solar energy has also
been reported, and a portable device for household As mitigation from water has been
developed [185]. Microorganisms such as chemoautotrophic bacteria and heterotrophic
bacteria are used to facilitate the oxidation of As(III) to As(V), which is called biological
oxidation. These bacteria reduce nitrate or oxygen by acting as electron donors. The
biological oxidation of manganese and iron, which are established absorbents of As, is
an indirect method of determining As mitigation in water [186]. Other bacteria, such as
Thermus thermophilus and Thermos aquaticus, can also oxidize arsenite to arsenate [187].
The efficiency of oxidation of As(IIl) to As(V) has been continuously improved with the
advancement of materials and methods used. Table 8 presents a review of some of the
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latest developments in the field where oxidation processes have been employed for arsenic
mitigation from water.

Table 8. Case studies using the oxidation process for arsenic mitigation from water.

Water Type Materials Method Study Characteristics Reference
FCMOx adsorbent was used to separate
Synergistic As from aqueous solutions. FCMOx
Fe-Cu-Mn oxidation and showed efficient results for photocatalytic
Deionized water composite oxide ultrasonic oxidation with the use of UV irradiation. [188]
(FCMOy) coprecipitation The combination of adsorption and
method synergistic oxidation improved the
removal efficiency of As(III).
Fe-biochar fibres integrated with H,O,
Fe-biochar fibres, and Hydroxylamine (HA) were useq to
H.O» and Oxidation and prepare a heterogenous material which
Deionized water Hvd foxz lamine adsorption showed efficient and rapid result for the [189]
4 (HX) P chemical oxidation of As(III) to As(V)
' followed by absorption of As(V) by
Fe-biochar.
Santa Barbara Photocatalytic Ir.npregnatlon was performef:l to produce
. L o Ti-SBA-15. This novel material was an
Distilled water Amorphous-15 oxidation and . [190]
. . excellent photocatalyst at all pHs with
(SBA-15) and TiOs. adsorption o e
98% efficiency.
Ancylobacter sp. TS-1 (biomaterial) was
Ancylobacter sp. used to make films on all materials
. TS-1, zeolite, . . 4 mentioned excluding polypropylene. Film
Distilled water polypropylene, Biological oxidation of Ancylobacter sp. TS-1 on graphite [191]
graphite and sand. material was the most rapid oxidant of
As(III) to As(V).
Fe-Mn-
incorporated . ETFMS-10 was prepared by hydrothermal
Milli-Q water titanosilicate Adsc))(lirgtalgnr?nd method. The material was used to oxidize [192]
material © © and adsorb As with efficiency of 70%.
(ETFMS-10).
Microorganisms (PMS5) showed an ability
. Alishewanella agri A to reduce As(V) and oxidize As(IIl) with
Gold mine effluent. strain (PMS5). Bio-Oxidation efficiency of 75.5-94.7% and 8%, [193]
respectively.
Manganese-doped MnL catalysed H,O, oxidation of As(III)
Ultrapure water Lanthanum Oxidation and to As(V) studied. Efficient oxidation and [194]
P ' oxycarbonate (MnL) adsorption adsorption results were seen over a wide
and H,0O;. range of pHs.
CuFe;Oy activating C 1 A novel material was introduced for the
s Oxidation and - . .
Milli-Q water peroxymonosul- adsorption efficient oxidation and adsorption of [195]
fate. P As/As(III).
. RIs improved the oxidation rate of As(III)
Reactive to As(V) by 1.8-4.1-fold in paddy water
Paddy rice water intermediates (RIs) Oxidation o . [196]
compared to surface water with oxygen
from paddy water. duri .
uring a dark reaction.
With the use of FeBC, the efficiency of
) i Sy [As] removal increased from 99.2% and
Deionized water Fe-modified Oxidation and 86.4%, respectively, for As(V) and As(III) [197]

biochar (FeBC)

adsorption.

in the absence of 0;, to >99.9% in the
presence of Oj.
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Table 8. Cont.
Water Type Materials Method Study Characteristics Reference
With the application of O, nanobubbles to
sediment water sample with
Bio oxidation and algal-induced hypoxia, the concentration
Sediment water O, nanobubbles air oxidation of [As] in the sample rose to <10 pug/L [198]
from 23.2 ug/L as nanobubbles catalysed
the oxidation of As(IIl) to As(V) (65-75%)
and methylated [As] (10-15%).
molybdenum- MoS2/FeOx@BC oxidize the As(III) to
Deionized water disulfide/iron- Oxidation and As(V) and then adsorb with greater [198]
oxide adsorption efficiency as compared to MoS2/BC and
(MoS2/FeOx@BC) FeOx@BC.
WTRs-chitosan o Results suggest that 0x1da't10n al'a%llty
Oxidation and improved; hence, adsorption ability of
Ultrapure water beads (WCB) and . . . [199]
adsorption WCB improved with MnO, added
Mn-WCB
to WCB.
A novel sulfite activation method using
ultrasound for achieving an improved
Ultrapure water Sulfite Oxidation oxidation rate of As(LI) compared to [200]

oxidation supported by ultrasound (US)
showed a 2.9% rise in As(III) oxidation
rate at 7 pH.

Distilled water

Bentonite/chitosan/titania
(BT/CS-TiOy).

Photooxidation and BT /CS-TiO, was prepared and then
adsorption tested under UV, which produced 97% [201]
oxidation of As(III) to As(V).

6.2. Precipitation Method

The process of transmuting a dissolved material from a supersaturated solution into
an insoluble solid is called precipitation. Under this category, co-precipitation of As with
metal hydro-oxides occurs with conventional methods such as lime softening, coagula-
tion/flocculation and iron/manganese and As mitigation by O?~ filtration [202].

Removal of As from water by softening with caustic soda or lime is one of the more
conventional methods [203]. It is vital to control the pH of water between 8.5 and 9.5 to
perform softening of normally occurring hard water; however, this pH range is not suit-
able for softening of water containing As, as a pH value above 10.5 is required to attain
magnesium-dependent precipitation, which is desired as magnesium has a high tendency
to adsorb [As] and is a cheaper option—the pH of the water medium must be normalized,
which can be costly. Oxidation of As(Il) (if present) to As(V) and the addition of a coagulant
can increase the As removal efficiency [204].

Coagulation and flocculation are the most employed and documented techniques
of As mitigation from water [205]. Positively charged coagulants (such as ferric chloride
(FeCls) or aluminium sulfate (Aly(5O4)3)) are introduced to As-containing water. The
precipitation method of iron/manganese removal by aeration for the mitigation of [As]
in water is similar to the addition of iron-based coagulants, with the difference being that
precipitation of naturally present ferrous iron Fe(II) occurs. The coagulant reacts and forms
larger particles with reduced As in water. When ionic flocculants are added to the system,
they transform the already formed particles of effluents into larger sizes by chemically
binding the smaller particles and resulting in flocs. This is followed by a process of filtration
or sedimentation [206] (Figure 7).
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Figure 7. Illustration describing the coagulation, flocculation and sedimentation of As in water,
adapted with permission from [206], publisher ACS Publications.

As removal from water with coagulation/flocculation is impacted by pH. Ata pH < 7.6,
widely used coagulants (iron-based and aluminium-based) have the same efficiency; how-
ever, ata pH > 7.6, Al,(SO4)s is reported to have less operational efficiency as compared to
FeCl;. However, both coagulants decrease the concentration of As in saturated solution to
a safe level that is less than 10 ppm (WHO) [207-209]. The by-product of these methods is
challenging to handle, is mainly in the form of sludge and is costly to treat to avoid any
secondary pollution [201]. Table 9 reviews conventional and contemporary coagulants, the
operating pH noted by scientists, formulas, initial concentration of As and brief results.

Table 9. Various chemical coagulants used for [As] removal along with brief method result, pH value
and initial concentration.

Chemical Initial Conc. of
Coagulant Formula pH As (ug/L) Results Reference
The technology was deployed at a large scale
Ferric chloride FeCl 8.0-8.4 400-600 in northern Chile for provision of drinking [207]
3 o water. The result shows reduction in As
concentration from 400 pg/L to 10 pg/L.
X The results showed that at 125 mg/L and

Alum

Al(SOy),-12H,0

7 2000 100 mg/L doses of alum at pH 7, the removal [210]
efficiency of As was between 82 and 86%.

Zirconium (iv)
Chloride

ZI‘C14

A total of 55% removal of [As(V)] was
observed with 2 mg/L does of coagulant.
7.5 50 The efficiency is found directly proportional [211]
at pH range 6.5-8.5, whereas removal of
As(III) only found as 8% irrelevant to pH.

Titanium (iii)
chloride

TiCl,

With 2 mg/L dose of coagulant, 32% of
[As(TIT)] and 75% of [As(V)] removal
achieved. The process remained pH
dependant.

75 50 [211]

Titanium (iv)
chloride

TiCly

A total of 55% removal of As(V) was
observed on distilled water sample with
2 mg/L dose of coagulant. The efficiency is
directly proportional at the pH range 6.5-8.5,
7.5 50 whereas removal of As(IIl) was only found [211,212]
as 26% irrelevant to pH. When tested on
wastewater, the results showed that
coagulant performs excellently in waters
with high DOC and low alkalinity.
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Table 9. Cont.
Chemical Initial Conc. of
Coagulant Formula pH As (ug/L) Results Reference
With 2 mg/L of coagulant dose, 37% and
Titanium(IV) . 20% removal efficiency were achieved for
oxychloride CLOTi 75 50 [As(V)] and As(III). The methods remained [211]
pH dependent.
Jirconium With a 2 mg/L dosage of coagulant, 59% and
oxvehloride Cl,H,OZr 7.5 50 8% removal efficiency was achieved for [211]
Y As(V) and As(III).
Dosages of 32 mg/L (1000 pg/L initial
Ferric Sulphate  Fey(SO4)3 7 500and 1000 ~ concentration) and 28 mg/L (500 pg/L initial )} 5)
concentration) of coagulant give
100% results.
Titanium (IV) . Removal of 90% of As(Il) was achieved with
Sulphate TiOSO, 7 1000 25 mg/L dosage of coagulant. [214]
Some latest developments on coagulation and flocculation for As removal in water are
presented in Table 10. The precipitation method for mitigating As from water is used with
multiple modifications. The methods of coagulation and flocculation are combined with
adsorption to attain better results. The process of electro-coagulation has been improved
with the introduction of novel materials electorates. The efficiency of precipitation of
dissolved As in water has also been enhanced using pre-oxidation of [As] and biological
materials. Combining coagulation-flocculation with sand filtration has also produced
improved results with the potential of low cost. Developing small-scale and household
devices for mitigating As in water and incorporating the technology of precipitation shows
that the technology is cost-effective and in reach of the public.
Table 10. Case studies using coagulation and flocculation process for arsenic mitigation from water.
Water Type Materials Method Study Characteristics Reference
Hydrated silica and
aluminium react in an EC
system to form
. - . aluminosilicates, and As
Aluminium sacrificial ~ Electrocoagulation (EC)
Groundwater . becomes adsorbed on newly [215]
anodes and flocculation
formed compound. The result
showed achievement of As
concentration in water less
than 10 ppm.
In the comparative study,
initial concentration of 2 mg/L
Cellulose and . remo(\)zed Wlth efficiency of
. Coagulation, 69.25% using FeCl3 as
chitosan-based natural .
Tap water biopolvmer and ferric flocculation and coagulant, whereas the use of [216]
POLy adsorption cellulose and chitosan-based

chloride (FeCls)

ferric chloride FeClj has
enhanced the removal
efficiency to 84.62%.
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Table 10. Cont.

Water Type

Materials

Method

Study Characteristics

Reference

Deionized water

Hydrophilic ligands
and FeCl3

Coagulation and
flocculation

Hydrophilic ligands were
introduced for the separation
of As from water. It is noted
that smaller doses of coagulant
(Fecls) are required to achieve
the higher As(IIl, V) removal,
comparatively.

[217]

Groundwater

Mining drainage
effluent and exchange
resin with iron oxides.

Coagulation,
flocculation, and
adsorption

To achieve high removal rate
and low cost, coagulation,
flocculation, and adsorption
were combined to test in
comparison with other
conventional systems, and the
new system has produced
better results.

[218]

Milli-Q purified water

Fe(1l), HyO, and
[Fe(IID)]

Coagulation

Introduction of H,O, and
Fe(Il) to conventional
iron-based Fe(IlI) coagulation
was studied, and it was found
that addition of H,O,
significantly enhanced the
performance efficiency of
removal of As from water.

[219]

Deionized water

Cactus mucilage and
Ferric [Fe(IIT)] Salt.

Coagulation and
flocculation

The addition of mucilage
treatment (flocs) to the
conventional system of
coagulation enhanced As
removal efficiency and
removed 75-96% of As in
30 min of contact time.

[220]

Mine water

Ferric sulphate
[(Fe2(SO4)3]

Coagulation, lime
precipitation, ballasted
flocculation, and
sedimentation

Fey(SO4)3 used for single-stage
and two-stage coagulation,
lime precipitation, ballasted
flocculation, and
sedimentation was compared,
and found the two-stage
system is more efficient.

[221]

Groundwaters

Coagulants: FeCl3,
Fe,(S0y4)3, FeSOy4, and
oxidants:

H202 and
KMnO4

Oxidation, coagulation
and flocculation

Different oxidants and
coagulants were used to treat
[As] bearing groundwater, and
97% removal efficiency is
achieved with the initial
concentration of 204 ug/L.

[222]

Groundwater

Ferric(Ill) sulfate (FS)
and Polyferric sulfate
(PFS)

Coagulation and
flocculation and sand
filtration

FS and PFS coagulants were
compared using microscopic
techniques to analyse the
surface complexes of Fe flocs
and two-bucket systems,
combining coagulation and
sand filtration. PFS is

found superior.

[223]

Lake water

Ferric chloride

Facile remediation
strategy by coagulation
process

The coagulant was directly
sprayed on the lake affected
with As without any
pre-treatment, and a removal
efficiency of 95.1-96.7%

was achieved.

[224]
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Table 10. Cont.

Water Type

Materials Method Study Characteristics Reference

Millipore water

Aluminium anode

EC method used with iron

cathode and aluminium anode

to check removal efficiency. At

Iron Cathode and Electrocoagulation (EC) pH 5—8,. 3 Vqlts ar.ld. 1.2 min

processing time, initial
concentration of 2-5 mgL !
conc. of As(V) was brought
down to <10 ppm.

[225]

Deionized water

Alum coagulants (AICl3 and
PACI) were investigated for

Aluminium chloride removal efficiencies of As(III)

(AICl3) and and As(V). Both were found
polyaluminium not impressive for the removal
chloride (PACI) of As(Ill), whereas they

showed 100% removal
efficiency for As(V).

Coagulation [226]

Deionized water

A review of small-scale and

household technologies using
coagulation/flocculation and

adsorption methods were [227]
deployable in

rural/underdeveloped areas

with the least cost.

Coagulation/flocculation

Multiple-Review and adsorption

Raw water

Sodium hypochlorite
(NaClO) and FeClj

Enhanced coagulation in an
integrated efficient-whirling
clarifier was performed with
FeCl; to achieve the result of
10 pg/L from the initial

100 pg/L concentration.

Oxidation and
coagulation-
flocculation

[181]

6.3. Membrane Technologies

Different membrane-based technologies, microfiltration (MF), ultrafiltration (UF),
nanofiltration (NF) and reverse osmosis (RO), require a pressure difference between the
feed side and outlet to ensure the system functions optimally. Under a broader classification,
the membrane systems which require operating pressure ranging from 3 to 120 bars (RO
and NF) are called high-pressure membranes, and UF and MF are termed low-pressure
(0.1-5 bars) membranes [228,229]. Pressure-driven membranes are products of natural
and synthetic materials (polyuria polyamide, polysulfone, straw, etc.) with pores through
which fluid passes under pressure, leaving behind dissolved and suspended non-essential
materials such as tiny ions, molecules, bacteria and larger particles up to 200 pm in di-
ameter [230-232]. The As mitigation with membrane processes depends on membrane
technologies’ pore size range. Pore sizes are typically measured in nanometers (nm) and
diameters range between 100 and 10,000 for ME, 2 and 100 for UF, 0.5 and 2 for NF and <0.5
in the case of RO, Figure 8 [233].

NF and RO are conventionally adopted for direct As remediation in water. However,
the process of MF and UF also opted but with in-line coagulation to increase the size of
the particles of compounds bearing As and the effect of pH cannot be neglected [232]. A
more sophisticated method of UF, called micellar enhanced UF, may be used to remove As
from water [231]. NF and RO have nearly similar characteristics deemed technically fit for
As remediation from water; however, there is a distinction between both methods. Mono-
and multivalent ions are completely removed by RO with very high retention, whereas
NF has lower retention of monovalent ions with higher water fluxes [233]. Determining
and understanding the physical and chemical properties of As speciation in water is vital
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for optimising the separation of [As] through membrane technologies and operational
efficiency. Due to the impact of pH on chemical properties such as hydration, charge and
size of the As species, this can affect the retention mechanism. Change in pH may also affect
membrane properties such as pore size and surface charge. Therefore, pH significantly
controls the retention of As in NF/RO systems [234]. Other properties such as temperature,
operational conditions, the concentration of total dissolved solids and other contaminants in
water are also important [232,233,235]. Studies suggest that retention of As(Ill) is typically
lower than retention of As(V) [235]; therefore, pre-oxidation may be required to control the
suspended particulate and gain maximum operational efficiency.

)
Salts
| —
2 I's
f' fite Macromolecules and organic compounds ]
I
[ Colloids
v
I
q
Reverse [ Cells and bacteria
Osmosis g
(RO) [ Debrits and large
Nanofiltration aggregates /
(NF) Ultrafiltration
(UF) Microfiltration
(MF) Conventional
| filtration
0.0001 0.001 0.01 0.1 1 10 100

Pore size, pym

Figure 8. Pore size classification of different membrane technologies with characteristic dimensions
of various foulants, adapted with permission from [233], publisher MDPI Publications.

Further improvements related to membrane-based As mitigation methods have been
introduced with various processes and new technologies. Table 11 is a review of some
latest developments in membrane-based technologies for As removal in water. New
technological processes with various methods have been deployed to improve As removal
by membrane technology science. Membrane filtration processes embedded with novel
materials/cheap adsorbents/nanomaterials have been proven effective for separating As
from water. Novel materials have been developed which produce better removal efficiency
when used in the fabrication of membranes and avoid fouling of membranes to some extent.
Membrane distillation in which hydrophobic membranes with micro-pores were found to
be operationally more effective as non-condensable gases and vapours are only present in
the membrane’s pores, thus avoiding contact with water. Liquid membranes, especially
HFSLM and emulsion liquid membranes, were also demonstrated to be efficient for these
purposes [235,236].

Table 11. Case studies using membrane technologies for arsenic mitigation from water.

Water Type

Materials Method Study Characteristics Reference

Deionized Water

Silk nanofibrils-based, multi-layered,
novel material membranes were
prepared. The system produced a flux of

Silk nanofibrils Membrane filtration >890 L/m?/h (high) and >89% of [236]

rejection of pollutants, including As.
The membrane was also found to
avoid fouling.
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Table 11. Cont.
Water Type Materials Method Study Characteristics Reference
Membranes were prepared with
Nano zerovalent nZVI-Kaol clay in different
- . . . . compositions and tested for As(III)
Deionized Water iron-kaolin clay Membrane filtration removal from water. Greater than 50% [237]
(nZVI-Kaol) removal efficiency for As;O3
was achieved.
MD deployed with an efficiency of
disi\'ﬁlear’:ilg;ag\e/}[D) 98.8% from an initial contraction of
hotocatalvtic ! 0.059-5 mg/L. In addition, MD retentate
Freshwater Chelating polymer I; “idation ;]n d was applied with the photocatalytic [238]
olvmer-enhanced process for the oxidation of As(III) to
uﬁra}f]ﬂtra tion (PEUF) As(V), which was subsequently
removed by PEUF with 98.2% efficiency.
Nano-aluminium Ultra-membrane containing
oxide and nano-aluminium oxide with PPSU
Deionized Water olvphenvlsulfone Membrane filtration ~ prepared. A membrane fabricated with [239]
polyp (PP%,U) 1.5% w/w e nano-aluminium oxide in
PPSU removed 98.41% of As(V).
Hydrous manganese A membrane was fabricated with ET by
. .. impregnating HMO into PAN formin
oxide (HMO) nano Electrospinning narI:O ﬁ%)er m(:.gmbrane The novel &
Deionized Water clay and technique (ET) and absorbent showed hi;gh efficiency for [240]
polyacrylonitrile membrane filtration As(V) uptake and was found reusable
(PAN) nanofibers after cycles
A hollow fibre-supported liquid
membrane (HFSLM) was used to
Microporous mitigate As ions from water. The results
Synthetic wastewater olvpro Il)ene fibres Membrane filtration =~ demonstrated that mitigation can be [241]
POlypropy ' conducted up to the discharge limit of
wastewater standards of Thailand
(250 ppb).
uIMF and uGFH, by-products of
. manufacturing granular absorbents,
Ml(;;(;;et;i;l:éent were tested with hybrid submerged
feroxvh gte (LTMF) Adsorption and microfiltration membrane adsorption
Deionized Water yhyte pro; . and adsorption kinetic method. u'TMF is [242]
and micro granular membrane filtration found better in mitigating As(V) from
ferrl(c }é};?lc))XIde modelled water with shorter residence
W ’ time (~3 h) and greater efficiency
(1.4-fold) compared to pGFH.
Cathode penitential using hydrophilic
nickel-carbon nanotubes deployed to
. enhance the performance of UF
Hydrophﬂm . . membranes to mitigate As(III), which
Tap water nickel-carbon Membrane filtration has lower removal efficiency when [243]
nanotubes. mitigated in water by NF and RO. A
significant increase in As(III) rejection in
water is monitored.
Membrane fouling is a significant
challenge in the wastewater industry.
The RO membrane is recycled by
Surface water NaOCl Membrane filtration oxidation and converted into a UF [244]

membrane. Application of pe-oxidation
to feed was also made, and As was later
removed by UF. Economic and

environmental benefits are highlighted.
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Table 11. Cont.

Water Type Materials Method Study Characteristics Reference

In the batch scale study, a membrane
fabricated with polycaprolactone matrix
Polycaprolactone and Membrane filtration and iron-intercalated montmorillonite
Waste-water iron- intercalated . filler was studied for As removal and [245]
e and adsorption . . .
montmorillonite filler. found that the membrane is a promising

alternative for As removal from

wastewater.
. Dead-end UF incorporated with
Oxidation, .
Zeeweed UF . conventional water treatment systems
membrane by Suez coagulation, comprising oxidation, coagulation
Surface water y flocculation, p & s €088 ’ [246]

Water Technologies . . flocculation and sedimentation systems.
sedimentation and

and Solutions. . . The threshold value for As in water
membrane filtration .
was achieved.

MF membrane was modified by
depositing iron oxide adsorptive
materials on the membrane. The
membrane was tested by application

Deionized water uTMF and pnGFH Adsorpt10.r1 an;l study and mathematical modelling on [247]
membrane filtration . .
water, and this procedure may increase
the life of the membrane filtration cycle
for As(V) removal with other
advantages.
The various membranes of NF and RO
were tested for the removal of As from
Commercial geothermal water on a mini-pilot scale
membranes: CK- NE (membranes; BW30, TR-BE-BW and
XLE B\/\’/RO, ! TR-NE90-NF) e}nd crqss—ﬂow flat—'sheet
Osmonics and NF90 membrane testing unit (commercial

Geothermal water . Membrane filtration =~ membranes; CK-NF, XLE BWRO, [248]

and spiral wound . .
Osmonics and NF90). Maximum As

membranes; BW30, .. .
removal efficiency of 99% with XLE

TR-BE-BW and :
TR-NE90-NF BWRO commercial membrane was

achieved. Removal efficiency of 90%
was performed on all membranes tested
on the mini-pilot scale.

Hollow membranes with
polyphenylsulfone/cellulose acetate
derivatives and zinc-magnesium oxide

Membrane filtration ~ combinations were fabricated and [249]
tested. Membrane prepared with novel
binary effect showed increase As
retention efficiency.

Zinc-magnesium

Deionized water R
oxides and cellulose

A total of 75% removal efficiency was
Chitosan achieved when tested for removal of
Deionized water Membrane filtration ~ As(V) after the fabrication of membrane [250]
and Polypropylene . .
from newly synthesised material
(modified polypropylene with chitosan).

6.4. Adsorption

Adsorption methods are a popular process for As mitigation. In a simplified approach,
water is passed from a bed packed with sorbent filled in a container [251-253]. Adsorption
involves van der Waals forces and electrostatics. The method involves the separation of As
in phase one and then the accumulation of [As] on the sorbent material surface in phase
two, Figure 9 [246].
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Figure 9. Schematic describing the adsorption process, adapted with permission from [253], publisher
MDPI Publications.

One benefit of adsorption is the selective mitigation of As in water without disturbing
other quantitative parameters. In addition, there is no sludge generation, and it is simple
and easy to implement; moreover, it is suitable for point-of-use scale applications. As
speciation, temperature, pH, and ionic strength are the properties of the solution that
impact the process, whereas properties of adsorbents such as surface area, particle size,
pore size/shape, zeta potential, etc., are important. The process of mitigating As by
adsorption depends on these absorbent characteristics [169,232].

For the definition of adsorbent replacement frequency, column size for adsorbent con-
tainment and loading/dose rate, the main design parameter is termed ‘empty bed contact
time (EBCT)’, which is 5-6 min in range for As mitigation in water by adsorption [232,254].
Adsorption of As(V, III) from water is mainly a function of pH and the concentration of
the chemical system. Generally, when pH ranges between 1 and 4, As(V) is adsorbed
by sorbent, whereas in the range of pH between 4 and 9, As(Ill) is adsorbed [168,255].
Phosphate and silicate, when in ionic form, compete with arsenate and arsenite for the
adsorption material. The performance of the adsorption materials is mainly limited by
factors such as difficulties in the regeneration of sorbent material, non-regularity in the
pore structure of sorbent, chemical reactions of other metal ions with sorbents and small
surface area [256-258].

There are various materials which are used as sorbents for [As] from water, such as
aluminium-based sorbents, iron-based sorbents, nanomaterial sorbents, magnetic sorbents,
bio-based sorbents, polymer-based sorbents, ash-based sorbents, hybrid sorbents and
miscellaneous sorbents, and specific examples are montmorillonite [259], red mud [260],
activated carbon [261], Fe (OH), [262], TiO; [263], Al,O3 (activated) [264], ion-exchange
polymers [265], chitosan [266], Al;SipOs5(OH)4 [267] and many more [268,269]. A recent
review classified the sorbents in detail in a contemporary style, as shown in Figure 10.
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Figure 10. Classification of sorbents adapted with permission from [269], publisher MDPI. ZVI = zero
valent ion; LDH = layered double hydroxides and GFH = granular ferric hydroxide.

Iron-based sorbents are popular due to their low cost and comparatively large surface
area to attract inorganic species of As to form bonds with iron. In addition, iron can
remove As from water by reducing As(III) to As(V) as an oxidizing agent, by containing
and immobilizing the [As] species and by co-precipitation along with adsorption [270].

Various nanomaterials have been developed as novel adsorbents for contaminants,
especially heavy metalloids, including [As]. They have attracted significant attention
from the environmental community due to their large surface areas, high reactivity, and
high specificity. The most widely used and researched nanoparticles for the treatment of
arsenic-contaminated water are carbon nanotubes and nanocomposites, titanium and iron
nanoparticles, and iron-based nanoparticles [168,271]. Nanocrystalline TiO, has a higher
adsorption capacity, possibly due to a larger surface area than nonporous TiO; [168,272].
Nanomaterials based on iron, including zero-valent iron nanoparticles (nZVI) and iron ox-
ide nanoparticles (FesO,4 and Fe;O3), are highly relevant for treating arsenic-contaminated
water. Iron-based nanoparticles” ability to remove contaminants is heavily influenced by
the oxidation state of iron; however, they are cheap and effective in use [273,274]. Ceria
nanoparticle adsorption is pH-dependent when mitigating As from water [275]. Zirconium
oxide nanoparticles are chemically stable, non-toxic, and insoluble, making this variant
an excellent option in the nanomaterial family for drinking water purification and As
removal from water [276]. Biosorbents are proven promising media for adsorption with
high adsorption capacity. They are prepared from natural material extracted from animals,
plants, or waste biomass and are relatively low cost. The sorbents found to be effective for
the uptake of heavy metals/metalloids are generally from the groups of biomasses such as
biopolymers from aquatic, biomass from plants, biomass from microorganisms, biochar and
biomass from agricultural waste and can be used as sorbents without modification or with
pre-treatment [269,277-279]. One of the most popular is chitosan (CS) which originates
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from arthropods’ exoskeletons as a natural aminopolysaccharide. A free amino group that
binds with heavy metal/metalloid ions makes it applicable for the uptake of [As] and other
metals. Other advantages of CS sorbents are renewability, biodegradability, low cost and
natural non-toxicity [280,281]. Another important biosorbent is alginate, a biopolymer that
can be extracted from sea tangle and seaweed cell walls. The biopolymer is made up of
-D-mannuronate and «-L-guluronate. Divalent cations react with acids of alginate to form
hydrophobic gels and are thermally irreversible [269,282]. Another material from nature
carrying carbon as an adsorption tool is biochar, a black-coloured product developed from
various biomasses. The characteristics of the material, such as its low cost, non-toxicity and
large surface area, amorphous structure and functionalized surface with chemical groups to
offer affinity to heavy metals/metalloids ions, make biochar an attractive option for further
research and development. Biochar has been used in composites with other supporting
elements [283,284]. Waste from agricultural activity mainly comprises hydrocarbons, water,
hemicellulose, lignin, lipids, etc., which has also been evaluated as a potential source of
sorbents for the uptake of (primarily) heavy metals/metalloids including As [285]. Other
biosorbents such as codfish scale, rice polish, cotton-based adsorbent, fungal biomass and
plant biomass have also been tested under various conditions for effectiveness and reason-
able results are achieved and have paved the path for further improvement and research in
the areas [286-290]. In Table 12, a review of some latest improvements claimed and tested
regarding the adsorption of As from water is presented. The adsorption technique seems
to be the method of choice, outperforming other methods such as membrane filtration and
precipitation. Conventional adsorption processes can be enhanced by principally modi-
fying the sorbents achieving removal efficacies of up to 100%. The modified sorbents can
be regenerated, contributing to a circular economy and have shown tremendous potential
with increased reuse cycles. Furthermore, the method of adsorption is sludge free, reducing
the chances of secondary pollution from the treatment process. There is a drive to identify
materials that are locally sourced and cost-effective for the preparation of sorbents and
methods; therefore, the potential of point-of-use scale usage of the technique increases,
which will be preferable in developing countries keeping in view the decentralised water
supply and treatment systems.

Table 12. Case studies using adsorption process for arsenic mitigation from water.

Water Type

Materials Method Study Characteristics Reference

Chitosan and titanium
oxysulfate (TiOSOy)

Groundwater

Using the sol-gel method, a novel granular adsorbent is

fabricated with titanium and chitosan, which is reasonably
amorphous for adsorption As(V). Small-scale column tests

results reveal that at pH range 8.0-8.5, 165.6 ug/L of initial

Adsorption concentration was brought down to <10 ug/L at 126-bed [291]

volume with adsorption capacity of novel adsorbent around

1.22 mg/g at effluent equilibrium (1370 BV). The adsorbent

is found to have good prospects compared to other

adsorbents, with a capacity of 70% after four cycles.

Ultrapure water

Chitosan, graphene oxide
and polyethyleneimine

Combining chitosan, graphene oxide and

polyethyleneimine, a new magnetic novel absorbent formed

abbreviated as MCS/GO-PEI A Langmuir isotherm model
Adsorption showed that the new material was a single-layer absorbent. [292]

Adsorption equilibrium was achieved in 8 min for As at

pH 7. The adsorbent has shown reasonable characteristics

for reusability.
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Table 12. Cont.

Water Type Materials Method Study Characteristics Reference

Iron-manganese treatment by-product (backwashing
sludge) in powered form converted to granular with the
combination of chitosan. Langmuir model gave an
adsorption capacity of 14.95 mg/g for As(V), followed by a
filtration test in the plexiglass column. With a bed depth of
15 cm, total sorption (10.755 mg) and unit sorption capacity

Adsorption (0.779 mg/g) were calculated. Compared with when bed [293]
depth was 60 cm, the total and unit adsorption was
calculated as 20.405 mg and 0.370 mg/g, respectively. At a
bed height of 30 cm, EBCT is given 9 min and a
breakthrough time of 13 h. After regeneration of the
material for adsorption, a removal efficiency of 96% for
As(V) also showed potential for reuse.

Iron-manganese treatment

Deionized water. sludge and chitosan

A new novel material for adsorption of As from
groundwater (pH range 7-8.3) formed with a grating of
hydrogel on chitosan. Evaluation by isotherms and kinetics

Chitosan and
N-vinylcaprolactam /N-N-

Groundwater dlme(tﬁgftl_accg_la_mlde Adsorption sorption tests was conducted. An adsorption capacity of [294]
5 0.0022 mg/g was measured on the new sorbent after 50 h.
NVCL/DMAAm - o 1 0 (Lo e
hydrogels Removal efficiency of 40% (isotherms) and 46% (kinetics

sorption test) for As was achieved.

With the reaction of C¢gH1405SSi and chitosan, a new

chitosan-based material was formed. Removal efficiency for

As(III) of 99% was achieved from the initial concentration of
Adsorption 10 mg/L at an extensive pH range (3-10). A maximum [295]

adsorption capacity of 21.01 mg/g is monitored at pH 7.

With oxalic acid, the material can be regenerated with 80%

[As] removal efficiency in 2 cycles.

Zeolite W (ZW) (fly ash-based) was modified using
microwaves, with the resultant material having iron and
zirconium at 6.9 and 5.04% w/w, respectively. The modified
material tested for adsorption of As(V) and achieved 99.87%
removal efficiency at pH from 2 to 10. Maximum adsorption
of 42.31 mg/g was attained at pH 2.

Chitosan and
3-mercaptopropyl
trimethoxysilane

(CsH160355i)

Ultra-pure water

Coal fly ash, ZrOCl, and

FeCly-6H,0 [296]

Deionized water. Adsorption

Reacting calcium alginate with magnetic iron oxide
nanoparticles functionalized with methionine formed a new

Calcium alginate, Iron bead absorbent. Laboratory-based tests confirmed that

Double distilled Oxide Magnehc Adsorption novel material can remove As(III) up to 99.56% at an [297]
water Nanoparticles and s . .
L equilibrium time of 1.83 h and pH 7.0-7.5. Langmuir
methionine ) . . : .
isotherm calculation provided an adsorption capacity (qm)
of 6.6533 mg/g.
Nanooxides of CeO,-ZrO, (mixed) formed. As stabilizing
agent to control the size of nano mixed oxides, Sapindus
Seeds skin extract of plant seeds’ skin was extracted. These nano oxide particles
Deionized water. ~ Sapindus, CeO,-ZrO, and Adsorption are embedded in iron alginate to prepare beads. After the [298]
Iron alginate test of adsorption, the results gave an adsorption capacity of
140.5 mg/g and 153.25 mg/g for As(V) and As(III),
respectively.

Beads of novel material formed by doping red mud with
calcium alginate. The material beads are tested to remove
Waste red mud and As(III) ions from wastewater and achieved results by
Wastewater calcium-aleinate Adsorption reducing the concentration in effluent from 0.101 mg/L to [299]
& 0.008 mg/L. A total of 1.807 mg/g is found to be peak
adsorption capacity. The material has shown the potential to
be used for the removal of As from water and wastewater.

A new novel hydrogel was prepared by reacting graphene
Yttrium (III) chloride oxide, yttrium (III) chloride and alginate hydrogel and was
Livestock farm hexahydrate, graphene tested by an adsorption experiment under room
wastewater oxide and alginate temperature. Maximum adsorption of As(V) was calculated
hydrogel as 273.39 mg/g, which is reported to be far higher than
other absorbents available.

Adsorption [300]
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. The pectin-based hydrogel was prepared, loaded with Fe(II)
Pectll\r; ’]\E gz?;all(;el};yde, and tested to remove As(V) from water. Hydrogel was
bi ; lami dy NNN designed by crosslinking pectin in the presence of
Distilled water SaZC\]-}jreiramz,th ’1 o Adsorption crosslinkers and 2-acrylamido-2-methylpropanesulphonic [301]
ethvlenedi minZ and acid. Maximum uptake of As(V) was achieved at 35 °C
y EGDaM A temperature and 7.0-9.2 pH with 5% glutaraldehyde
crosslinked hydrogels.
Solid particulate waste Collagenic fibres from tannery waste are incorporated into
C}Z\lla on and apple pomace pectin to form pectin-grafted penta-polymers
- - 5 . created by one-pot facile polymerization of APPN and
Distilled water. APPN-g-pentapolymer Adsorption heti h ) df [302]
(apple-based pectin) synthetic monomers. These polymers were tested for
hvdrogel adsorption of As(V) and achieved 180.47 mg/g of As
yerogess adsorption at three pH with a 25 mg dose of polymer.
Pectin, cellulose and hemicellulose from waste orange juice
were converted into acidic polysaccharides (pectic
Distilled water. Waste orange juice residue Adsorption acid)/hydrogels by saponification and phosphorylation. [303]
Gels produced showed a strong affinity for iron ions and
absorbed other metal ions (oxo-anions) such as As.
Ce%*-based biochar-loaded nanoparticles formed as a novel
adsorbent for the adsorption of As. The material was tested
} using spectroscopy detection technologies and batch
Deionized water Steam explcoglceld straw and Adsorption experiments. The Langmuir model showed a sorption [304]
3 capacity of 219.8 mg/g for As(V) at room temperature with
5 pH. Therefore, a promising new material from As(V)
absorption was invented.
Calculation based upon density functional theory was
performed to evaluate the nanoflakes” phosphorene oxide
(PO) ability to mitigate methylarsenicals from polluted
. water sources by using solid phase adsorption. The study
Phos.phorene basgd . was conducted to understand PO’s adsorption
Water materials—Theoretical Adsorption .. . . .1 [305]
tud characteristics for peril methylarsenicals, providing a
study valued framework for future development. The study
suggests PO is suitable for the function as it has a large
surface area, no pre-oxidation required for the process, high
adsorption capacity and easy recovery.
Sewage sludge and nano-zero-valent iron passed through
the co-pyrolysis process to prepare biochar. Biochar was
tested for As(V) adsorption with batch experiments with
- Dry sewage sludge and . initial pH and concentration as 2 and 20 mg/L, respectively.
Deionized water. nano-zero-valent iron Adsorption The biochar dose was 10 g/L, at a temperature of 298 K and [306]
contact time of 24 h, As(V) removal efficiency was given as
99%. With the Freundlich model, the adsorption capacity
(max) is calculated as 60.61 mg/g for As(V).
Two nanomaterials, aggregated dendritic anatase-titanium
dioxide and aggregated dendritic anatase-titanium dioxide,
SiO, and titanium reacted to the surface of SiO, and were evaluated. As
Deionized water h% ride (TiCls) Adsorption removal performance by both materials was tested under [307]
chionde s different conditions by laboratory batch experiments. The
maximum removal efficiency of 95% was given by
aggregated nanomaterial.
Nanoscale zero-valent iron supported by attapulgite and
modified by sulfide to prepare a new nanomaterial for
Attapuleite. sodium As(IIl) remediation in water. With support and
thi plf% (1’\] $,04) muodification, the specific surface area of nanomaterial
A osiTrate Va3 . increased to 46.04 m? /g from 19.61 m?/g. As a comparative
Deionized water and Ferrous sulfate Adsorption It th 1 offici £ As(IID) i d o [308]
heptahydrate result, the removal efficiency of As(IIl) increased to 65.1%

(FeSO,7H,0)

from 51.4% at 20 min and 51.4% to 65.1% at 20 min. The
increase in performance of nanomaterial is seen at a pH
range of 3.0-6.0. A total of 193.8 mg/g is given as
adsorption capacity (max).
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Table 12. Cont.

Water Type

Materials

Method

Study Characteristics

Reference

Deionized water

Milli-Q water

Adsorption and
photo-
oxidation.

Composite oxide of nanostructure properties of iron,
titanium, and manganese was prepared to treat the
para-arsanilic acid. A total of 424.7 m?/g is calculated as the
specific area of the new material. Adsorption capacity
(maximum) is given as 45.6 mg/g. In addition to adsorption,
the photo-oxidation of the pollutant from As(III) to As(V) is
also performed in the system to achieve better results.

[309]

Ultrapure water

Ferric chloride, Ferrous
chloride and Copper
chloride

Adsorption and
photo
oxidation.

Magnetised CuO-Fe3O4 material deployed for
photo-oxidation of p-arsanilic acid with visible light
irradiation and subsequent removal by adsorption. The As
is seen completely oxidized from As(IIl) to As(V) in 36 min,
and adsorption by nano-CuO-Fe;0; is also observed with
efficiency of 95% at a pH range of 4 to 7.

[310]

Ultrapure water

Iron sludge

Adsorption

A novel nanomaterial prepared by Fe3O0,@C magnetic
nanoparticles of amorphous iron oxides from iron sludge
for the removal of As(V) from water. BET analysis
calculated the surface area as 122.7 m?/g. At a pH range of
3-9, the adsorption of As(V) is noted as high. The
adsorption capacity (maximum) at room temperature is
given as 13.47 mg/g, which was 3.29-fold higher than
non-modified material (Fe30,@C).

[311]

Deionized water

Fe (NO3)3 .9H20,
MnSO4eH,0 and
CoSO4e7H,O

Adsorption

CoFe;04 and MnFe, 04 nanoparticles are prepared with
magnetic properties and tested to remove As. Freundlich
model equation obeyed to show multilayer adsorption with
adsorption capacity (maximum) as 230 mg/g for MnFe,O4
and 250 mg/g for CoFe;Oy,

[312]

Milli-Q ultrapure
water

Magnesium chloride
hexahydrate, Aluminum
chloride hexahydrate and

Ferric chloride

Adsorption

Facile pyrolysis method was adopted to prepare four types
of magnetic biochar, out of which one is prepared as
magnetic biochar only, while the other three are anchored
with Aluminium, manganese and both (Al and Mn) in
addition. Upon testing, the optimal pH range was given as
4-6. Aluminium-based magnetic biochar outperformed all
other comparisons for the co-up-take of As(V) and fluoride.
From adsorption isotherm information, the adsorption
capacity (maximum) is given as 34.45 mg/g for As(V) ata
temperature of 10 °C and pH of 5.

[313]

Ultrapure water

Cerium oxide and
polyhedrons

Adsorption

With the combination and application of calcination and
impregnation, cerium oxide anchored on polyhedrons (from
MIL-100(Fe)) to fabricate magnetic mesoporous
nanocomposite was denoted as Fe;03/CeO,-t with a
unique octahedral nanostructure. Fe;O3, a conventional
absorbent, when modified on a surface with CeO, and
tested as an absorbent of As(III), reduced the concentration
to 10 ug/L from 180 pg/L in 20 min, which is 9-fold faster
than the conventional comparison. By an isotherm method,
the adsorption capacity (maximum) is 68.25 mg/g, which
was higher than many similar absorbents.

[314]

Deionized water

Fly ash and ferrous sulfate
heptahydrate

Adsorption

Zeolite 5A loaded on nanozero valent iron to form a new
material. New material denoted as NZVI-5A and reported
with a specific area of 238 m? /g with a removal capacity of
72.09 mg/g from the isotherm model. pH range was
reported as 4-12, and the method was not reported as pH
sensitive. Removal efficiencies remain unaffected by the
co-existence of other pollutants. NZVI-5A zeolite worked
with 84% removal efficiency after 5 cycles.

Deionized water

Sodium alginate, Chitosan
and banana peels

Adsorption

Two adsorbents were prepared by combining alginate and
chitosan separately with banana peel ash and biopolymeric
matrix ash. Both sorbents were characterised and tested for
the removal of heavy metals. The material formed with
alginate was proven to be an excellent absorbent for heavy
metals with 100% efficiency.

[316]
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Rice husk ash (TRHA) and oyster shell (OS) powder are
used to prepare pallets for use as adsorbent for As(III)
removal from water samples. A ratio of 0.3:0.7 = TRHA: OS
Ovster shell powder and has been reported as the best ratio for removal with
Deionized water y rice hug K ash Adsorption 26.2 mg/g as adsorption capacity with breaking. Further [317]
analysis concluded that CaO reacted with As(III), which
was 25% by weight of the pellet while the remaining 75% is
CaSiO3, which helps the pellet to keep in a stable position
(avoiding cracking).
Soluble starch and cellulose, used as carbon sources, and
Soluble starch. cellulose iron chloride, used as the source of iron, were deployed to
Bi-distilled water di l;l id Adsorption make a few composite materials to test as sorbent for As(V) [318]
and tron chioride in water samples. The maximum adsorption capacity was
measured as 280 ug As(V)/g of novel material.
Magnetization and functionalization of biopolymer to
prepare cobalt oxide doped magnetic-chitosan graphene
Cobalt acetate, Aniline, oxide grafted with polyaniline. Take up of As(V) by new
Deionized water Ferric chloride and Adsorption material tested by batch experiments and theoretical [319]
Chitosan from shrimp investigation. An adsorption capacity of 90.91 mg/g was
given at 7 pH—the highest removal efficacy of 89% given at
50 min of interaction.
1-(2-Hydroxyethyl) With l-(2.-hydroxyethyl) piperazine,‘ the sporopoller'l'm from
piperazine, 3 Lycopodlum clavatum was magnetized/ funct1onahzec}.
Deionized water cyanopropyltriet};oxysilan Adsorption The novel bio-polymer-based sorbent was used to test in [320]
Sporopollenin and Ferric ! batch experiments for the adsorption of As(IIl) and Pb(II).
porop hlorid Maximum adsorption of 69.85 mg/g was calculated
chionde for As(III).
A combination of 3-cyclodextrin polymer and mesoporous
Cetyltrimethylammonium silica was performed to prepare a hybrid structure for the
bromide surfactant mitigation of As(V) and Hg (II). Maximum adsorption
Distilled water tetraethvlorthosilicate ;m d Adsorption capacity calculated as 265.6 mg/g. As per data, Langmuir [321]
B-c Cl(}: dextrin polymer equilibrium is followed to attain a monolayered
Y poly homogenous absorbent. Column test (fixed bed) achieved a
removal efficiency of 72.8% for As (V).
As-imprinted polymer prepared by polymerization and
precipitation using 2-hydroxyethyl methacrylate and
Arsenic, 2-hydroxyethyl 4-vinyl pyridine. The absorbent is tested for the adsorption
Canal water methacrylate and 4-vinyl Adsorption of As(III) in aqueous environments. Adsorption capacity [322]

pyridine

(maximum) calculated as 106.3 mg/g. A total of 99%

removal efficiency achieved for removal of As(III) by the
polymer as adsorbent.

6.5. Social Mitigation

Secondary preventions from As in water are paramount in preventing As exposure
in water. Studies have suggested that technological measures taken to mitigate the vul-
nerability of As to human health from As-polluted water alone is not enough and does
not reduce the risk to safe levels [323,324]. There are scientifically based suggestions that
even after cessation of exposure to As, the risk of exposure may not be reduced for decades.
Studies on the health impact (cancer) over long-term periods (50 years and 20 years) are
presented [325-327]. Hence, based on evidence, it is critical to suggest that it may be
important to consider other potential strategies in combination with technical mitigation of
As exposure. Various methods that involve different fields and sectors will be required for
long-lasting, cost-effective solutions. This might include changing water sources, adjusting
how we cook and irrigate, setting up community water filtration plants, and making new
policies to reduce the danger [324,328].

Information, testing and awareness are critical and paramount steps in mitigating As
through secondary prevention measures. People may take water from polluted wells if the
information is not provided, a test has not been conducted, or awareness of harmful effects
is not clearly understood. Free testing services for any water source should be available
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with field kits to gain the information required for choosing the right water source. A
simple test costs around 2.30 USD, with the cost of supplies at 0.30 USD per test [325].
Awareness and information campaign designs are essential as studies have reported that
with information and awareness, % to % of the exposed population will stop using the
affected well/source of water [329]. Introducing a policy to subsidise testing kits may help
people understand the value of testing and may increase the demand for the kits [330].
Switching of water sources from contaminated to cleaner sources may only happen if the
people know the harmful health consequences of As first. Policy intervention that joins the
awareness and test campaigns has been noted with increased popularity [331].

Combined with testing, sourcing alternative sources of water such as surface wa-
ter/rain harvesting, dug wells, tube wells (very shallow shrouded), infiltration galleries,
tube wells (baritone) and tube wells (shallow shrouded) are an effective strategy [328]. The
health risk substitution may properly be analysed before switching. Health risks are associ-
ated with all types of water supplies—substituting danger while reducing one may come
up in greater magnitude. Pathogens and cyanobacteria-derived toxins in surface water
and pollution from chemical containments are major health risk substitutes which may be
faced and need to be comparatively assessed before the substitution of a water source [324].
Rice is the primary and cheap source of food/carbohydrate for the majority of the world’s
population and resultantly becomes the staple reason of contribution of As in comparison
with other food sources. Growing rice requires irrigation by water more than many other
crops. Irrigation by As-polluted groundwater poses a significant threat to the food chain. It
is suggested that bioaccumulation of As in rice may be reduced by changing the agronomic
techniques. A study suggests that changing the irrigation system of paddy fields from
flood irrigation to sprinkler irrigation systems reduced the accumulation of As in rice. In
addition, some changes in cooking practices may also reduce the risk of As exposure, as
it is observed that washing the grains before cooking and then cooking in excess water
can contribute to a decrease in exposure of As [328]. Centralised and community-based
treatment systems are more attractive alternatives to household-small-scale mitigation of
As strategies. Such systems may supply water free from As to homes ranging from 100
to 200 families. Currently, available systems may produce a water supply of 1 million
liters before replacement of media/membrane/equipment. Monitoring water quality in
community-based plants is easier compared to small-scale plants. Such systems also have
the advantage of disposing of the by-products from the filtration plants, reducing the risk
of secondary pollution. However, concerns may arise concerning social behaviours, cost
and maintenance requirements which could impact sustainability and long-term viability.
Hence, the policy intervention and government system mechanism may step in for sustain-
able utility service delivery [325]. As the scale of the policy implementation increases, such
as from a town to the national level, the complexities also increase. For example, spillover
effects of the policy interventions on communities may change the prices of equipment and
services in the market, which may impact the policy intervention’s effectiveness. Therefore,
research on the effects in specific areas/countries may make the information available
for policymakers on unseen costs and benefits, which cannot be noted when policy is
implemented on a small scale [325-328].

7. Conclusions

In conclusion, this review has provided evidence that the pervasive issue of arsenic
contamination in water is a significant global health challenge, with detrimental impacts
ranging from organ failure to various cancers. Recognising the global scale of arsenic
enrichment, numerous countries have taken stringent measures to lower permissible con-
centrations in drinking water. The complexity of arsenic’s chemical behaviour, influenced
by factors such as pH and Eh, necessitates ongoing research to understand its mobility and
reactivity in natural settings. Current detection and quantification methods for arsenic,
while advanced, underscore the need for accurate speciation to address the varied toxic-
ity of different arsenic compounds. Innovations in analytical techniques have enhanced
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our ability to monitor arsenic more precisely, contributing to more effective water qual-
ity management. Traditional treatment methods, including oxidation and coagulation,
have evolved with advancements in material science, improving efficiency and efficacy.
Membrane filtration technologies and novel materials have shown promise in achieving
better arsenic removal while minimising environmental impact. Adsorption, as a pre-
ferred mitigation method, continues to be refined with the development of new sorbents
that offer high removal efficiencies, cost-effectiveness, and low environmental footprints.
The exploration of biosorbents and other innovative materials holds potential for further
advancements in arsenic remediation technologies. To address the complex challenges
of arsenic contamination, a multifaceted approach that includes trans-disciplinary and
multi-sectoral strategies is essential. Emphasis on sustainable, zero-carbon emission tech-
nologies and materials will be critical in developing effective solutions. The goal is to
achieve maximum removal efficiency while ensuring that methods are environmentally
benign, energy-efficient, and economically viable. Future efforts are needed, especially in
the direction of development of sustainable green material-based technologies, and due
focus should be given to integrating these advanced technologies into practical applica-
tions, supported by robust policy frameworks and community engagement. By prioritising
sustainable innovation and comprehensive arsenic management strategies, we can make
significant strides towards safeguarding public health and ensuring access to safe drinking
water globally.
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