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Abstract: Aging is a natural process that is also influenced by some factors like the food someone
eats, lifestyle decisions, and impacts on general health. Despite the recognized role of nutrition in
modulating the molecular and cellular mechanisms underlying aging, there is a lack of compre-
hensive exploration into potential interventions that can effectively mitigate these effects. In this
study, we investigated the potential anti-aging properties of vitamin D by examining its interactions
with key molecular targets involved in aging-related pathways. By using molecular docking and
dynamics techniques, we evaluate the interactions and stability of vitamins D2 and D3 with key
proteins involved in aging pathways, such as SIRT1, mTOR, AMPK, Klotho, AhR, and MAPK. Our
results reveal promising binding affinities between vitamin D and SIRT1 forms, with energy values
of −48.33 kJ/mol and −45.94 kJ/mol for vitamins D2 and D3, respectively, in aqueous environments.
Moreover, molecular dynamics simulations revealed that the vitamin D3–SIRT1 complex exhibited
greater stability compared with the vitamin D2–SIRT1 complex. The study calculated the solvation
free energy to compare the solubility of vitamins D2 and D3 in water and various organic solvents.
Despite their strong interactions with water, both vitamins exhibited low solubility, primarily due to
the high energy cost associated with cavity formation in the aqueous environment. Compared with
other solvents, water demonstrated particularly low solubility for both vitamins. This suggested that
vitamins D2 and D3 preferred binding to aging receptors over dissolving in bulk aqueous environ-
ments, supporting their strong therapeutic interactions with these receptors. These findings shed
light on the molecular mechanisms underlying vitamin D’s potential anti-aging effects and lay the
groundwork for developing nutraceuticals targeting aging and associated diseases. Understanding
these mechanisms holds promise for future interventions aimed at promoting healthy aging and
enhancing overall well-being.
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1. Introduction

Aging is a multifactorial process marked by a progressive loss of physiological in-
tegrity, leading to a decline in tissues’ and organs’ homeostatic and regenerative capacities.
This deterioration results in impaired function and increased vulnerability to disease and
death [1,2]. Aging is the primary risk factor for major human pathologies, including neu-
rodegenerative and cerebrovascular disorders, cancer, diabetes, and other diseases, which
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are among the leading causes of mortality in the African region [3,4]. The contributing
mechanisms include genomic instability, telomere attrition, epigenetic alterations, loss
of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senes-
cence, stem cell exhaustion, and altered intercellular communication [5,6]. These markers
are typically associated with increased production of reactive oxidant species and free
radicals, which result from a wide range of physiological processes [7–9]. That is why
the isolation and characterization of compounds that may delay the onset of aging are of
utmost importance.

The evidence strongly suggests that interventions targeting aging can delay and pre-
vent the onset of numerous chronic diseases, potentially extending the healthy lifespan in
both adults and older individuals [10,11]. Recent advancements in modern medicine have
led to interventions that address the underlying mechanisms of aging, thereby promoting
longevity [2,12]. These interventions can be broadly categorized into lifestyle changes and
pharmaceutical/genetic regulation. Lifestyle changes encompass practices such as caloric
restriction and regular physical exercise. In contrast, pharmaceutical/genetic regulation
includes a diverse range of chemically unrelated molecules, from natural products and
endogenous substances to approved drugs and synthetic compounds. Notable examples
include metformin, rapamycin, resveratrol, astaxanthin, curcumin, nordihydroguaiaretic
acid, tambulin, and vitamin D, all of which have garnered significant attention for their
potential to enhance longevity [7,10,13].

Among numerous factors, vitamin D (Figure 1) emerges as a significant player in
slowing the aging process at the cellular and molecular levels, exhibiting a wide range of
actions [14]. As a fat-soluble essential nutrient, vitamin D is crucial for cellular processes
such as differentiation, proliferation, and apoptosis [15,16]. The elevation of calcitriol
[1,25(OH)2D], the active form of vitamin D, stimulates vitamin D nuclear receptors (VDR)
throughout the body, triggering the activation of gene transcription [17,18]. The interaction
between [1,25(OH)2D] and VDR in various sites produces a multitude of biological actions
that impact the potential development of various diseases [18,19]. These biological actions
encompass calcium and phosphorus in the intestines and bones (osteoporosis), insulin
sensitivity and secretion (diabetes), cellular growth and angiogenesis (immune regulation
and cancer), expression of renin, inhibition of vascular smooth muscle proliferation (hyper-
tension and cardiovascular disease), and modulation of inflammation and amyloid plaque
formation in the brain (cognitive decline and Alzheimer’s disease) [20–22].
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Figure 1. The 2D structure of vitamin D: (A) vitamin D2 and (B) vitamin D3.

The six proteins selected for this study were chosen for their roles in vitamin D
metabolism and involvement in key aging-related signaling pathways. Aging is influenced
by a network of energy-sensing molecular pathways, and modulating certain components
of this network can slow down the aging process and mitigate related disorders [23].
Vitamin D metabolism involves vitamin D receptor (VDR) [24]; vitamin D binding protein
(DBP) [25]; and enzymes such as CYP2R1, CYP27B1, and CYP24A1 [26]. VDR regulates
gene expression related to calcium and phosphate balance and is present in the nuclei of
cells in various tissues including the intestines, kidneys, and bones [27]. DBP, abundant in
the serum, transports vitamin D metabolites to target tissues. Enzymes like CYP2R1 and
CYP27B1, located in the liver and kidneys, respectively, activate vitamin D, while CYP24A1,
found in various tissues, catabolizes it to maintain and regulate its levels [26–28].



ChemEngineering 2024, 8, 104 3 of 16

The examined proteins included Sirtuin1 (PDB: 4ZZI), Mammalian target of rapamycin
(PDB: 3FAP), Activated mammalian protein kinase (PDB: 5EZV), Klotho (PDB: 5W21),
Mitogen-activated protein kinase (PDB: 1KV2), and Aryl hydrocarbon receptor (PDB: 5NJ8).
These proteins’ cellular localization (mainly in the nucleus and cytoplasm) influences their
interactions with vitamin D, which affect their role in aging pathways. Understanding these
interactions is crucial for elucidating how these proteins contribute to vitamin D home-
ostasis and its biological effects across key pathways related to cellular repair, metabolism,
and stress responses. The in silico approach aimed to provide precise atomistic details of
vitamin D’s interaction with aging proteins. Molecular dynamics and electronic structure
calculations complemented this by predicting the solvation free energy of vitamin D in wa-
ter and a range of polar protic, polar aprotic, and non-polar organic solvents to characterize
the interactions of vitamin D in bulk aqueous solution compared with an inbound state.

2. Computational Methodologies
2.1. Molecular Docking Calculations
2.1.1. Ligand Preparation

The structures of vitamin D2 (Ergocalciferol, CAS: 50-14-6) and D3 (Cholecalciferol,
CAS: 67-97-0) were obtained from the PubChem database [29] with CIDs 5280793 and
5280795, respectively. Ligands were energy minimized using an MMFF94 force field [30] in
Open Babel [31], and hydrogen atoms (at a pH of 7.4) with Gasteiger atomic charges were
added using AutoDock tools [32]. Finally, structures were converted to pdbqt format, as
required by AutoDock Vina v1.1.2 [32] for docking simulations.

2.1.2. Protein Preparation

The crystallographic structures of anti-aging proteins were obtained from the re-
search collaborative for structural biology (RCSB) Protein Data Bank (PDB) [33]. The
proteins included in the study were Sirtuin 1 (PDB: 4ZZI), Mammalian target of rapamycin
(PDB: 3FAP), Activated mammalian protein kinase (PDB: 5EZV), Klotho (PDB: 5W21),
Mitogen-activated protein kinase (PDB: 1KV2), and Aryl hydrocarbon receptor (PDB: 5NJ8).

Proteins were prepared by removing crystallographic water, ions, and co-crystallized
ligands. Missing side chain residues, Gasteiger charges [34], and polar hydrogen were
added using the AutoDock tool to reflect a physiological pH of 7.4 [32]. Both blind and grid
docking simulations were performed, where in the former, proteins were set as the whole
receptor, allowing ligands to self-recognize binding pockets. For grid-based molecular
docking, binding pockets were identified using a co-crystallized ligand, and the grid
box for each protein was specified. The two grid docking simulations were performed,
with and without water molecules at the binding site, which followed a well-established
protocol by [35]. After molecular docking, the complex with the highest binding affinity
was subjected to a relaxed complex scheme (RCS) to accommodate protein flexibility. A
molecular dynamics simulation was conducted, and a total of 20 snapshots were extracted
at every 5 ns. These structures were prepared and subjected to molecular docking. The
results were recorded and compared with single-protein structures.

2.2. Molecular Dynamic (MD) Simulation

To investigate the structural dynamics and stability of protein–ligand complexes,
molecular dynamics (MD) simulation was conducted using Gromacs version 2018 (https:
//manual.gromacs.org/2018/download.html, accessed on 1 July 2024) [30]. The simulation
was performed to compare SIRT1 with the vitamin D complex (holo) and the non-bonded
Sirt1 (apo). Sirtuin 1 protein was selected based on its overall high binding affinity obtained
in the molecular docking simulation. The protein topology was generated using the OPLS-
AA force field [36], and ligand topologies were generated using the LigPerGen tool [37,38].
The systems were immersed in a cubic simulation box of 10.0 nm, 10.0 nm, and 10.0 nm
dimensions with a distance of 1 nm from the edge of the box on both sides, solvated
with the TIP4P water model [39], followed by the addition of 5 sodium counter ions at a
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concentration of 0.15 M for neutralization [40]. The systems were energy minimized using
the steepest descent algorithm to avoid artifacts with a convergence criterion of maximum
force not greater than 1000 kJ/mol (fmax ≤ 1000 kJ/mol). Subsequently, the systems were
equilibrated in a constant number of particles, volume, and temperature (NVT), followed
by a constant number of particles, pressure, and temperature (NPT) both for 0.5 ns and a
production run for 100 ns. During equilibration and production, a v-rescale thermostat [41]
was used for temperature coupling at 300 K and a Parrinello–Rahman barostat [42] for
pressure coupling at 1 bar. The particle mesh Ewald (PME) [43,44] was used to treat
long-range electrostatic interactions, with a cutoff distance of 12 Å for electrostatic and
van der Waals interactions. Covalent bonds were constrained by LINCS [45]. During the
simulation, periodic boundary conditions (PBC) [46] were applied in all directions, and
an integration time step of 2 fs was used throughout the production using the Leap-frog
integration algorithm [47]. The stability of the complex was assessed using metrics such as
root mean square deviation (RMSD), radius of gyration (Rg), pose RMSD, and center of
mass distance.

After production, the MD trajectory of the apoprotein was utilized to generate 20 snapshots,
extracted at 5 ns intervals. These snapshots were then used in the relaxed complex scheme
(RCS) docking calculations.

2.3. Binding Free Energy Calculated by Molecular Mechanics–Poisson–Boltzmann and Surface
Area (MM-PBSA)

Free energy governs all cellular biochemical processes [48]. Although molecular
mechanics-based scoring functions used in ligand docking are computationally efficient
and cost-effective, they are less accurate [49]. End-point methods like MM-PBSA offer a
favorable balance between the higher computational demands of alchemical methods and
the simplicity of molecular docking scoring functions [50].

The study utilized the endpoint free energy method based on MM-PBSA to evalu-
ate the binding affinity of vitamin D. The binding free energy calculation (∆Gbind) was
performed on the complexes of vitamins D2 and D3, obtained from the MD run. The
g_mmpbsa tool integrated within Gromacs [51] was used to estimate the solvation free
energy (∆Gsolv) by combining polar and non-polar components. A total of 200 frames were
evenly sampled at a predetermined time of 500 ps and subjected to MM-PBSA calculations.
In MM-PBSA, the standard MM energy terms from bonded (bond, angle, and dihedral),
electrostatic, and van der Waals ∆EMM were calculated in the gas phase. The polar compo-
nent (∆GPB) was evaluated by solving the Poisson–Boltzmann equation linearly, employing
a grid spacing of 0.5 Å. The solvent dielectric constant (ε) was set to 80, while the solute’s
dielectric constant was set to 2. The non-polar component (∆GSASA) was calculated based
on the solvent-accessible surface area (SASA), utilizing the constants for the non-polar
solvation energy gamma (γ) value of 0.0226 kJ/(mol Å−2) and b = 3.84928 kJ/mol [51]. In
the g_mmpbsa tool, all energy terms were calculated individually and then combined to
assess the contribution of each residue to the overall binding energy.

2.4. Solvation Free Energy Calculations

The solvation free energy of vitamins D2 and D3 was predicted in bulk solvents
using molecular dynamics and electronic structure calculations with the uESE (universal
Easy Solvation Estimation) continuum solvation model [52–54]. The molecular dynamics
solvation free energy calculations followed exactly our previous work [55], except here
we used geometric mixing rules for Lennard–Jones cross interactions consistent with the
OPLS-AA force field. Molecular simulations were performed for vitamins D2 and D3 in the
organic solvents’ ethanol, butanone, and cyclohexane. The organic solvents were modeled
using OPLS-AA with force fields generated using the LigPerGen tool. Water was modeled
using TIP4P. In summary, we first equilibrated simulation boxes containing a single solute
molecule (vitamin D2 or D3) in solution. The number of solvent molecules was chosen
to obtain a cubic box with an edge length of approximately 4.6 nm. The initial structures
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were generated using Packmol [56], and then we subsequently performed 3000 steps of
steepest descent minimization to remove any bad contacts. We then performed a total of
14 ns of equilibration in the NPT ensemble. The minimization and all molecular dynamics
calculations were performed using GROMACS version 2020.2 (https://manual.gromacs.
org/2020.2/download.html, accessed on 1 July 2024).

The equilibrated structures were then used as the initial structures for the free energy
calculations. The solvation free energy was computed using the multi-state Bennett’s
acceptance ratio method (MBAR) [57]. The solute–solvent intermolecular interactions were
coupled/decoupled using 15 total stages, where an independent 22 ns NPT simulation
was performed for each stage. In the first stage (m = 0), the solute–solvent interactions
were turned off, corresponding to the solute in a non-interacting ideal gas state. From
stages m = 1 to 10, the solute–solvent electrostatic interactions remained off, while the
solute–solvent intermolecular Lennard–Jones interactions were gradually turned on using
a “soft-core” potential [57]. Then from states m = 10 to 14, the Lennard–Jones interactions
were at full strength, while the solute–solvent electrostatic interactions were gradually
turned on. The change in free energy in going from m = 0 (non-interacting) to m = 14
(fully interacting) corresponded to the solvation free energy. We termed the Lennard–Jones
contribution the change in going from m = 0 to m = 10 (full Lennard–Jones interactions and
no electrostatic interactions). And the change in going from m = 10 to m = 14 we termed the
electrostatic contribution.

Compared with the molecular dynamics simulation, using electronic structure calcu-
lations with uESE was computationally less expensive and allowed for the solvation free
energy to readily be computed in a range of 91 organic solvents and water. For these calcu-
lations, the first 3D structures of vitamins D2 and D3 were generated from SMILES using
open Babel 3.0.0 [31,58,59]. The structures were generated by performing a conformational
search with geometry optimization (--gen3d --best) using the General Amber Force Field
(GAFF) with Electronegativity Equalization Method (EEM) atomic partial charges (--ff gaff
–partial charge eem2015ba). Subsequently, a single-point energy calculation was performed
with the B3LYP/def2-TZVP theory/basis set to obtain CM5 atomic charges using Gaussian
16 Revision C.01 [60,61]. The structure and CM5 atomic charges were then used to predict
the solvation free energy with uESE, using freely available software provided by the uESE
developers [62]. Free energy calculations were made in all 92 solvents (including water) for
which uESE was parameterized.

3. Results and Discussion
3.1. Molecular Interactions of Vitamin D with Key Aging-Related Proteins

Our investigation into vitamin D’s anti-aging potential started with evaluating its
binding affinity with several key aging proteins. To elucidate how vitamin D modulated
aging effects, we selected six aging receptors known as molecular targets in aging research.
Three distinct docking simulations were conducted: docking with a grid, blind docking
(without a grid), and hydrated docking. Both vitamin D2 and vitamin D3 were docked to
each protein, with ten independent docking calculations performed for each.

When assessing the docking results of vitamins D2 and D3 with grid settings, only
SIRT1 (4ZZI) exhibited a favorable binding affinity compared with the other receptors.
Notably, when moving from grid to blind docking, we observed a decreased binding
affinity, indicating reduced self-recognition and binding ability of vitamin D to the six
aging receptors investigated in this work. Interestingly, upon hydrating the receptors, an
improvement in affinity was observed (Figure 2). It is crucial to highlight that among
all aging receptors, SIRT1 (4ZZI) and Mitogen-activated protein kinase, MAPK, (1KV2)
consistently demonstrated superior docking affinity across all simulations. This finding
suggests that vitamin D’s anti-aging potential may stem from its ability to target these two
proteins, effectively activating their functions. The binding distribution for all proteins is
illustrated in Figures S2–S4 with SIRT1 consistently exhibiting higher rankings.
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Further investigation into the origin of the difference in binding affinity led us to focus
on SIRT1 (4ZZI), which displayed favorable binding affinities of −37.99 and −34.85 kJ/mol
for vitamins D2 and D3, respectively. As depicted in Figure 3, a double bond in the alkyl
group of D2 contributed to its increased activity and stronger binding affinity compared
with its saturated counterpart, D3. The documented effect of double bonds in the alkyl
group enhancing molecule reactivity and binding affinity further supports this observa-
tion [25]. Figure 3A highlights that the double bonds in D2 facilitated interactions with
residues Try280, Ile347, and Phe273. Although D3 also exhibited similar interactions with
these residues, the absence of interaction with Try280 (Figure 3B) may explain its lower
binding affinity compared with D2. Both grid and blind docking resulted in vitamins D2
and D3 binding to the active site in a similar manner (Figure 3C,D). However, the reduced
activity observed in blind docking simulations may stem from the inherent conformations
of vitamin D when attempting to accommodate it into the active site.

Water molecules played a crucial role in protein–ligand interactions by stabilizing
protein structures, shaping protein conformations, enhancing binding free energy, and
mediating intermolecular interactions [63–65]. Hydrating the proteins led to an increase
in binding affinity, particularly evident in SIRT1 (4ZZI), where vitamin D2 exhibited the
strongest affinity of −48.33 kJ/mol compared with vitamin D3 with a binding affinity of
−45.94 kJ/mol. These findings suggest that water molecules could significantly influence
the design of anti-aging molecules, with the interaction of SIRT1 with vitamin D2 favored
by water molecules in the active site.
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Accommodating Receptor Flexibility: The Relaxed Complex Scheme (RCS)

To account for receptor flexibility, we employed a relaxed complex scheme (RCS) to
enhance the sensitivity of ligand docking to the receptor. Our results, as depicted in Figure 4,
revealed the docking scores of both crystal structures and an ensemble structure of SIRT1.
Notably, the average binding affinities of the ensemble structure with vitamins D2 and D3
were −32.79 kJ/mol and −31.12 kJ/mol, respectively. In contrast, the crystal structure from
blind docking exhibited higher average binding affinities of −37.99 kJ/mol for D2 and
−34.85 kJ/mol for D3. Similarly, grid-based docking demonstrated even greater average
binding affinities of −41.38 kJ/mol for D2 and −40.08 kJ/mol for D3. Our findings suggest
that both blind and grid docking outperformed the ensemble docking approach, likely due
to the rigidity of the receptor in blind and grid docking, resulting in minimal variations
in binding affinity compared with ensemble docking. This indicated a higher likelihood
of a specific receptor conformation extracted from snapshots matching those used in grid
and blind docking. Overall, our study underscores the importance of considering receptor
flexibility in molecular docking studies and highlights the utility of the relaxed complex
scheme in elucidating the influence of receptor dynamics on ligand binding affinity.
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3.2. Molecular Dynamics Simulation
3.2.1. Structural Stability and Compactness

The reliability of the docking results can be compromised due to inherent limitations
of the docking algorithm, particularly in fully incorporating protein hydration and global
flexibility. To further elucidate the observed binding affinity of vitamin D with aging
receptors, we conducted molecular dynamics (MD) simulations. Sirtuin 1, consistently
ranking high in all docking simulations, was chosen as a model to study complex stability
over time. Two reaction coordinates, root mean square deviation (RMSD) and radius of
gyration (Rg), were employed to assess the complex stability. While RMSD measured
structural deviation over time relative to the initial configuration, the Rg provided insights
into SIRT1–vitamin D complex compactness.

The time-dependent values for RMSD and Rg (Figures S5–S7) revealed an increased
RMSD and Rg for the vitamin D2 complex compared with the apo structure. In Figure 5A,
the 2D free energy surface illustrated two energy minima with RMSD values of 0.3 and
0.5 nm and Rg values of 2.10 and 2.14 nm. An RMSD value of 0.5 nm coupled with an
increased Rg value of 2.14 nm suggested reduced stability and compatibility of the complex.
Conversely, the complex formed by vitamin D3 exhibited a single free energy minimum
at an RMSD value of 0.35 nm and an Rg value of 2.06 nm as shown in Figure 5B. The free
energy surface indicated a strong complex formation between vitamin D3 and the SIRT1
receptor. These observations contrasted with the docking results, which suggested a good
affinity for vitamin D2.

Overall, the structural stability analysis suggests that vitamin D3 forms a more stable
complex and does not induce conformational fluctuations in the SIRT1 receptor. These
findings highlight the importance of employing MD simulations to complement docking
studies and provide a more comprehensive understanding of ligand–receptor interactions.
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3.2.2. Vitamin D Fluctuation within Sirtuin 1 Receptor

In computational drug design, the efficacy of a drug can be assessed by its residence
time or by exploring its fluctuations within its binding pocket. In the latter case, higher
fluctuations of a drug molecule may indicate increased entropy, resulting in weaker affinity
and potentially rendering it ineffective. To investigate this phenomenon, we analyzed two
reaction coordinates that provided insights into ligand fluctuations: pose RMSD, which
measured changes in the drug’s orientation over time, and the center of mass distance
(dCOM) between selected residues in the pocket and the drug molecule.

The time-dependent pose RMSD (Figure S7) revealed that both D2 and D3 exhib-
ited minimal changes in the active site. Notably, D3 displayed a slight increase in pose
RMSD, possibly due to internal rearrangements in the active site, while D2 showed min-
imal changes, suggesting good efficacy. Pose RMSD values ≤ 0.4 nm indicated minimal
alterations in the binding mode, implying strong activity.

The 1D free energy for dCOM demonstrated a flat, deep energy minimum for D3 at
distances ranging from 0.15 to 0.2 nm (Figure 6C). However, D2 exhibited a deep energy
minimum at a distance of 0.35 nm. The observed increase in distance from 0.2 to 0.35 nm
suggested some weak interaction for D2 in a complex. In Figure 6A,B, we present the
2D FES as a function of the two reaction coordinates. D2 displayed a stable minimum
with distance fluctuations ranging from 0.2 to 0.45 nm, accompanied by minor changes
in its binding pose (Figure 6A). Conversely, D3 exhibited a smaller distance with a slight
increase in pose RMSD to 0.35 nm (Figure 6B). Visual analysis suggests that both D2
and D3 interacted within the SIRT1 pocket, albeit with fluctuations. Internal fluctuations
indicated that although both D2 and D3 interacted similarly, D3 was somehow favored,
demonstrating good efficacy. To confirm this observation, we conducted end-point free
energy calculations based on MM-PBSA, as described in the next subsection.

3.3. MM-PBSA Binding Free Energy Calculation

The MM-PBSA calculations offered quantitative insights into protein–ligand binding
energetics, complementing docking, and MD simulation results. Table 1 presents binding
free energy values, with the vitamin D3–SIRT1 complex exhibiting a higher binding free en-
ergy compared with the vitamin D2–SIRT1 complex. The MD results showed vitamin D3’s
stability and burial in the SIRT1 pocket aligned with the high contribution of electrostatic
interactions to complex stabilization. Non-polar interactions also stabilized the vitamin
D3–SIRT1 complex when compared with the vitamin D2–SIRT1 complex. However, the
higher polar interaction in vitamin D3–SIRT1 led to a decrease in other forms of interaction.
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Importantly, MM-PBSA binding free energy values suggested that vitamin D3 was more
stable than vitamin D2 as shown by their binding energies.

ChemEngineering 2024, 8, x FOR PEER REVIEW 10 of 17 
 

 
Figure 6. The 2D free energy surface (FES) as a function of pose RMSD and distance for (A) vitamin 
D2 at (0.35, 0.24) nm and (B) vitamin D3 at (0.15, 0.38) nm. (C) The 1D free energy for the center of 
mass distance, D3 ranging from 0.15 nm to 0.2 nm and D2 at 0.35 nm. 

3.3. MM-PBSA Binding Free Energy Calculation 
The MM-PBSA calculations offered quantitative insights into protein–ligand binding 

energetics, complementing docking, and MD simulation results. Table 1 presents binding 
free energy values, with the vitamin D3–SIRT1 complex exhibiting a higher binding free 
energy compared with the vitamin D2–SIRT1 complex. The MD results showed vitamin 
D3’s stability and burial in the SIRT1 pocket aligned with the high contribution of electro-
static interactions to complex stabilization. Non-polar interactions also stabilized the vit-
amin D3–SIRT1 complex when compared with the vitamin D2–SIRT1 complex. However, 
the higher polar interaction in vitamin D3–SIRT1 led to a decrease in other forms of inter-
action. Importantly, MM-PBSA binding free energy values suggested that vitamin D3 was 
more stable than vitamin D2 as shown by their binding energies. 

Table 1. The binding free energy (kJ/mol) of vitamin D–SIRT1 complexes calculated using the MM-
PBSA approach. 

Complex Evdw Eelect Epolar Enonpolar ΔGbinding 
D2–Sirt1 ‒211.28 ± 16.09 ‒5.27 ± 9.88 97.92 ± 15.266 ‒25.43 ± 1.13 ‒144.07 ± 19.45 
D3–Sirt1 ‒211.85 ± 12.41 ‒36.8 ± 13.13 108.20 ± 16.34 ‒26.66 ± 1.00 ‒167.12 ± 16.35 

The energy contributions to protein–ligand binding were further analyzed to high-
light disparities in the binding free energy between vitamin D2 and vitamin D3. Figure 7 
displays energy contributions from various residues, with both vitamins adopting distinct 
orientations and interacting with different amino acids within the binding pocket. 

Figure 6. The 2D free energy surface (FES) as a function of pose RMSD and distance for (A) vitamin
D2 at (0.35, 0.24) nm and (B) vitamin D3 at (0.15, 0.38) nm. (C) The 1D free energy for the center of
mass distance, D3 ranging from 0.15 nm to 0.2 nm and D2 at 0.35 nm.

Table 1. The binding free energy (kJ/mol) of vitamin D–SIRT1 complexes calculated using the
MM-PBSA approach.

Complex Evdw Eelect Epolar Enonpolar ∆Gbinding

D2–Sirt1 −211.28 ± 16.09 −5.27 ± 9.88 97.92 ± 15.266 −25.43 ± 1.13 −144.07 ± 19.45
D3–Sirt1 −211.85 ± 12.41 −36.8 ± 13.13 108.20 ± 16.34 −26.66 ± 1.00 −167.12 ± 16.35

The energy contributions to protein–ligand binding were further analyzed to high-
light disparities in the binding free energy between vitamin D2 and vitamin D3. Figure 7
displays energy contributions from various residues, with both vitamins adopting distinct
orientations and interacting with different amino acids within the binding pocket. Interac-
tions with residues His363, Phe414, Phe273, and Ile316 were consistently observed across
all complexes, albeit with varying energetic contributions.

An interesting distinction was observed between the vitamin D2 complex and the
vitamin D3 complex. In the vitamin D2 complex, residues Asp292 (0.97 kJ/mol) and Lys203
(1.59 kJ/mol) contributed unfavorably to the total binding free energy, while Gln294 played
a significant role. In contrast, the vitamin D3 complex was influenced by Asp204 as a major
contributor (Figure 7). Both Gln294 and Asp203 formed conventional hydrogen bonds with
the hydroxyl groups of vitamin D, highlighting their roles in complex stability.
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3.4. Solvation Free Energy Calculations

In Tables 2 and 3 we summarize the molecular dynamics solvation free energy cal-
culations of vitamins D2 and D3, respectively, in water and a representative polar protic
(ethanol), polar aprotic (butanone), and non-polar (cyclohexane) solvent. As described
earlier, the total solvation free energy (non-interacting to fully interacting solute), ∆Gsolv, is
written as a sum of an electrostatic contribution resulting from solute–solvent intermolecu-
lar electrostatic interactions (full Lennard–Jones and no electrostatic to full electrostatic)
and a Lennard–Jones (LJ) contribution (non-interacting to full Lennard–Jones and no elec-
trostatic interactions). The electrostatic contribution captured association and long-range
interactions between the solute and solvent, while the LJ contribution accounted for cavity
formation and short-range dispersion and repulsion interactions. In our discussion of
solvation free energy, remember that the solvation free energy corresponded to the transfer
of the solute from a non-interacting ideal gas state to a solution at the same molar density.
Therefore, the lower the solvation free energy, the greater the affinity of the solute for
the solution.

Table 2. The total solvation free energy of vitamin D2 (kJ/mol) in water and a representative
polar protic (ethanol), polar aprotic (butanone), and non-polar (cyclohexane) solvent. The solvation
free energy is broken down into a contribution from solute–solvent electrostatic intermolecular
interactions (“electrostatic”) and Lennard–Jones intermolecular interactions (“LJ”).

Solvent ∆Gsolv (Electrostatic) ∆Gsolv (LJ) ∆Gsolv (Total)

Water −30.05 ± 0.05 18.72 ± 0.33 −11.34 ± 0.33
Ethanol −18.52 ± 0.05 −43.48 ± 0.21 −62.01 ± 0.21

Butanone −13.15 ± 0.03 −64.85 ± 0.20 −78.00 ± 0.20
Cyclohexane −5.61 ± 0.03 −78.06 ± 0.24 −83.67 ± 0.24

In Tables 4 and 5 we summarize the solvation free energy calculations with the uESE
of vitamins D2 and D3, respectively, in the same solvents considered using molecular
dynamics simulations. Within uESE, the total solvation free energy, ∆Gsolv, is likewise writ-
ten as a sum of an electrostatic contribution resulting from solute–solvent intermolecular
electrostatic interactions and a second “correction” term that accounts for cavity formation
and dispersion and repulsion interactions.
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Table 3. The total solvation free energy of vitamin D3 (kJ/mol) in water and a representative
polar protic (ethanol), polar aprotic (butanone), and non-polar (cyclohexane) solvent. The solvation
free energy is broken down into a contribution from solute–solvent electrostatic intermolecular
interactions (“electrostatic”) and Lennard–Jones intermolecular interactions (“LJ”).

Solvent ∆Gsolv (Electrostatic) ∆Gsolv (LJ) ∆Gsolv (Total)

Water −27.21 ± 0.05 18.06 ± 0.30 −9.15 ± 0.30
Ethanol −18.26 ± 0.05 −43.20 ± 0.20 −61.46 ± 0.21

Butanone −13.95 ± 0.03 −64.50 ± 0.19 −78.46 ± 0.19
Cyclohexane −5.85 ± 0.02 −77.29 ± 0.22 −83.14 ± 0.23

Table 4. The total solvation free energy of vitamin D2 (kJ/mol) in water and a representative
polar protic (ethanol), polar aprotic (butanone), and non-polar (cyclohexane) solvent. The solvation
free energy is broken down into a contribution from solute–solvent electrostatic intermolecular
interactions (“electrostatic”) and a second term accounting for all other effects (“correction”).

Solvent ∆Gsolv (Electrostatic) ∆Gsolv (Correction) ∆Gsolv (Total)

Water −39.807 26.133 −13.677
Ethanol −38.702 −41.530 −80.228

Butanone −38.112 −83.467 −121.579
Cyclohexane −16.288 −79.940 −96.228

Table 5. The total solvation free energy of vitamin D3 (kJ/mol) in water and a representative
polar protic (ethanol), polar aprotic (butanone), and non-polar (cyclohexane) solvent. The solvation
free energy is broken down into a contribution from solute–solvent electrostatic intermolecular
interactions (“electrostatic”) and a second term accounting for all other effects (“correction”).

Solvent ∆Gsolv (Electrostatic) ∆Gsolv (Correction) ∆Gsolv (Total)

Water −38.522 6.079 −32.443
Ethanol −37.447 −44.313 −81.760

Butanone −36.882 −80.768 −117.650
Cyclohexane −15.761 −76.224 −91.985

Considering the electrostatic contribution, for both vitamins D2 and D3, we found
that water < ethanol < butanone < cyclohexane. Vitamins D2 and D3 contain a single
hydroxyl (OH) group capable of donating and accepting a hydrogen bond, so this trend
was not unexpected. Both molecular dynamics and uESE predicted the same qualitative
trend. We do note, however, that the numerical values were different. As compared with
the molecular dynamics predictions, uESE predicted that the electrostatic contributions in
water, ethanol, and butanone did not vary significantly.

Next, considering the LJ contribution from the molecular dynamics calculations, we
found that water > ethanol > butanone > cyclohexane. Moreover, in general, the change in LJ
contribution was much greater than the change in the electrostatic contribution, thus dictating
the trend in the total solvation free energy that water > ethanol > butanone > cyclohexane. For
the case of vitamin D2, while the electrostatic contribution was 11.53 kJ/mol lower in water
than in ethanol, the LJ contribution was 62.20 kJ/mol greater in water than in ethanol. This
led to a total solvation free energy that was 50.67 kJ/mol greater in water than in ethanol.

Considering the correction term for the uESE calculations, we likewise found that
water > methanol > butanone, and while butanone < cyclohexane, the difference was small as
compared with water and the polar solvents. For water and the polar solvents, we found that
the change in the correction term was much greater than the change in the electrostatic term
and dictated the trend in the total solvation free energy that water > ethanol > butanone. As
compared with the molecular dynamics results, uESE did predict butanone < cyclohexane;
nonetheless, the difference between cyclohexane and water was comparable.
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PubChem reports that both vitamins D2 and D3 are insoluble in water
(PubChem—Cholecalciferol, 2024; PubChem—Ergocalciferol, 2024). The results here sug-
gest that while vitamins D2 and D3 can hydrogen bond favorably with water, the cavity
formation is highly unfavorable, and that is a reason for the poor aqueous solubility. The
difference in the total solvation free energy between two solvents is equivalent to the
transfer-free energy and is directly related to the log partition coefficient or log relative
solubility. Using the uESE results, comparing water and ethanol, the results suggest the
solubility is 1011 and 108 times larger in methanol for vitamins D2 and D3, respectively.
Comparing water and cyclohexane, the results suggest the solubility is 1014 and 1010 times
larger in cyclohexane methanol for vitamins D2 and D3, respectively.

The results corroborate our finding that the binding affinity of vitamins D2 and D3
increased (or the binding free energy decreased) in an aqueous environment. Given the
unfavorable cavity formation of vitamins D2 and D3 in water leading to poor aqueous
solubility, it was preferable for vitamins D2 and D3 to be bound to the protein as compared
with being solvated in bulk water.

While there were differences between the molecular dynamics and the uESE results
presented in the manuscript, both led to the same result that vitamins D2 and D3 had a
relatively poor aqueous solubility as a result of the unfavorable process of carving a cavity
in solution. For the case of water, this would involve disrupting water’s hydrogen bond net-
work, which includes overcoming favorable water–water hydrogen bonds. The advantage
of using uESE was we could readily perform calculations in water and 91 organic solvents
with significantly less computational cost. In the Supporting Information accompanying
the electronic version of this manuscript, we tabulated the total solvation free energy and
its contributions for vitamins D2 and D3 in all 92 solvents computed using uESE.

4. Conclusions

The current study offers insights into the potential mechanisms of vitamin D as
an anti-aging agent, focusing specifically on its interaction with various protein targets,
notably Sirtuin 1 (SIRT1). Utilizing molecular docking techniques, the research analyzed
binding affinity values, revealing that SIRT1 displayed a significant binding affinity with
both forms of vitamin D. This led to further exploration of its stability through molecular
dynamics simulations.

The results from molecular docking, RCS, and classical MD simulations suggest that
vitamin D may serve as an activator of Sirtuin 1 (SIRT1) [66]. Upon activation, SIRT1 plays
a crucial role in regulating cellular longevity and metabolism by deacetylating proteins
that control gene expression, including those involved in aging processes [67]. Since
SIRT1 is primarily localized in the nucleus, it can interact with transcription factors that
work alongside the Vitamin D Receptor (VDR). This interaction enhances VDR activity
by promoting deacetylation, thereby modulating vitamin D’s effects on gene expression
related to hallmarks of aging such as inflammation and stress resistance [68].

The solvation free energy calculation compared the solubility of vitamins D2 and
D3 in water relative to other organic solvents. It was observed that even though both
vitamins D2 and D3 strongly interacted with water, the overall solubility was low due
to a higher correction contribution, which was highly attributed by unfavorable higher
cavity formation in water. Even when compared with other solvents, water scored a low
solubility; these findings verified that vitamins D2 and D3 preferred to interact with SIRT1
than in a bulk aqueous environment strongly.

Our study provides insights into the interactions, stability, and solubility of vitamin D
and anti-aging proteins. While these findings suggest that vitamin D may support healthy
aging, particularly through its interactions with proteins, further research is necessary
to establish a direct link between these molecular interactions and the management of
specific human pathologies. Although it is well documented that adequate vitamin D levels
contribute to overall health, our results do not directly confirm that vitamin D alone can
mitigate human diseases. Therefore, we recommend continued exploration of vitamin
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D’s therapeutic potential, combining experimental studies with clinical trials to better
understand its role in disease prevention and health promotion.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/chemengineering8050104/s1: Figure S1: Conformational changes
of different conformers indicating their RMSD for (A) 2ZC9 (B) 2ZDA (C) 2ZFP (D) 2ZGB (E) 2ZHQ
(F) 2ZIQ. Figure S2: Binding affinity of vitamin D2 and D3 across anti-aging receptors in blind
docking. Figure S3: Binding affinity of vitamin D2 and D3 against anti-aging receptors for grid-
based docking. Figure S4: The binding affinity of vitamin D2 and D3 against anti-aging receptors
in a hydrated system. Figure S5: Time-dependent RMSD values for apo and holo of Sirt1 with
vitamin D. Figure S6: Time-dependent Rg values for apo and holo proteins of Sirt1 with vitamin
D. Figure S7: Time-dependent pose RMSD values of vitamin D to the Sirt1 pocket’s residues. The
Supplementary Materials also includes: “a spreadsheet containing the results of all of the uESE
solvation free energy calculations for Vitamin D2 and D3 in water and 92 solvents”.
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