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Abstract: This study explores the adsorption efficiency of biochar derived from palm trees and Ficus
nitida for the removal of various contaminants, including Cu(II), Pb(II), iodine, and chlorpyrifos from
aqueous solutions. Biochar was prepared using a two-step pyrolysis process for date palm biochar
and single-step pyrolysis for Ficus nitida biochar. Characterization techniques such as SEM, EDX, and
FTIR revealed a significant surface area and a variety of functional groups in both types of biochar,
essential for effective adsorption. The date palm biochar exhibited superior adsorption capacities
for Cu(II) and Pb(II) ions, achieving efficiencies up to 99.9% and 100%, respectively, due to its high
content of oxygen-containing functional groups that facilitated strong complexation and ion exchange
mechanisms. Conversely, Ficus nitida biochar demonstrated a higher adsorption capacity for iodine,
reaching 68% adsorption compared to 39.7% for date palm biochar, owing to its greater surface area
and microporosity. In the case of chlorpyrifos, Ficus nitida biochar again outperformed date palm
biochar, achieving a maximum adsorption efficiency of 87% after 24 h of incubation, compared to
50.8% for date palm biochar. The study also examines the effect of incubation time on adsorption
efficiency, showing that the adsorption of chlorpyrifos by date palm biochar increased significantly
with time, reaching a maximum of 62.9% after 48 h, with no further improvement beyond 12 h.
These results highlight the importance of biochar characteristics, such as surface area, pore structure,
and functional groups, in determining adsorption efficiency. The findings suggest that optimizing
pyrolysis conditions and surface modifications could further enhance the performance of biochar as a
cost-effective and sustainable solution for water purification and environmental remediation.

Keywords: biochar; adsorption; heavy metals; chlorpyrifos; water purification

1. Introduction

Heavy metal contamination resulting from industrial waste, natural processes, or an-
thropogenic activities can be considered as one of the most significant environmental issues
for water resources [1–3]. Most of the heavy metals found in wastewater are considered
toxic and carcinogenic to humans [2]. Previous studies have reported that effluent from
several industries contains heavy metals (Cu, Pb, Cr, Fe, and Zn) with concentrations far
above the standards set by the WHO [4].

Copper and lead are considered two of the most harmful elements due to their exten-
sive use and their negative impact. Industrial processes such as machining, forging, rolling,
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extrusion, and the use of copper-based fungicides in agriculture are primary contributors
to the release of copper, particularly in its toxic soluble form, Cu(II), into water bodies [5].
Some operations such as refining processes, automobile maintenance, and batteries pro-
duce a large amount of toxic lead (Pb) which has harmful effects on water quality, the
environment, and human health [6,7]. Iodine, which originates from the food, chemical,
and pharmaceutical industries, and nuclear power plants, can also cause environmental
contamination [8–11]. It is very harmful due to its high toxicity to the thyroid glands, and
the occurrence of hypothyroidism in cases of excessive amounts [12,13]. In addition to
heavy metals, environmental contamination from industrial processes introduces pesticide
residues like chlorpyrifos into water bodies. These pollutants pose significant health risks,
such as genotoxicity, endocrine disruption, and neurological issues, necessitating efficient
and cost-effective removal technologies.

To address the issue of contaminant removal from wastewater, various techniques
have been introduced by researchers. These include membrane filtration, oxidation, chem-
ical precipitation, microbial degradation, ion exchange, solvent extraction, coagulation,
electrocoagulation, steam stripping, and adsorption [14,15]. However, many of these meth-
ods are resource-intensive and require substantial electrical power. Among these methods,
adsorption stands out due to its ease of implementation, flexibility, multiple benefits, high
renewability, and cost-effectiveness, particularly in terms of regeneration for reuse. Carbon-
based adsorbents, such as biochar, are especially effective for the adsorption of toxic metals
like Cu(II) and Pb(II), as well as other pollutants, including iodine and chlorpyrifos, from
contaminated water [16,17].

Biochar, which is considered as one of the natural and simple carbon-based adsorbents,
can be used for metal removal from aqueous solutions. This biochar can be derived from
agricultural waste or biomass through a low-temperature pyrolysis process [18]. Campos
et al. [3] prepared biochar from rice husks, olive pits, and wood chips and used it to absorb
Cu(II) and Pb(II) from aqueous solution [3]. In another study, Ghanim [19] produced
high-quality biochar from date pits [19]. Recently, Alghamdi and Alasmary [20] prepared
biochar from date palm waste and magnetized it through Fe-intercalation, and used it
to adsorb Cd(II) and Pb(II) ions from wastewater [20]. The adsorption capacity of the
magnetic biochar is higher than that of normal biochar. Another study has been undertaken
to remove Pb(II) and Cd(II) from synthetic waste solutions using palm fibers chemically
treated with sulfuric acid, oxalic acid, HNO3, and Na2SO3 [21]. The palm fibers treated
with sulfuric acid gave the highest adsorption percentages. Mahdi et al. [22] described
in detail the preparation of biochar from date seed biomass and used it for lead ion
(Pb(II)) adsorption from an aqueous solution, and it was found that the best adsorption
conditions are pyrolysis at a temperature of 550 ◦C for a holding time of 3 h and a pH
of nearly 6. Al-Fulaiti et al. [23] reported that the best performance in the adsorption
of iodine from aqueous solutions is using cyclodextrin (CD) derivatives (α, β, γ and
β-hydroxypropyl-CD) [24]. Cyclodextrin is a non-toxic, biodegradable material, and it
is a cyclic oligosaccharide macromolecule [24,25]. I2 molecules can be adsorbed on the
hydrophobic chains and in CD hydrophobic cavities [26]. As described by Windiastuti
et al. [27], iodine can also be adsorbed from an aqueous solution through low-cost biochar,
prepared from empty oil palm bunches by the application of a hydrothermal carbonation
process [27]. The biochar was activated before and after pyrolysis by heating it using an
autoclave at 121 ◦C for 90 min. In these treatments, alkaline activators were used. Biochar
was then soaked using NaOH or KOH with a concentration of 0%, 4%, 8%, and 12% for 3 h.
The results showed that the adsorption of iodine ranged from 208.86–616.32 mg/g [27].

In this study, we explore biochar derived from Ficus nitida and date palm waste—two
abundant and underutilized resources in Saudi Arabia. These biochar materials exhibit
unique structural and chemical properties that enhance their adsorption efficiency. The
biochar produced in this study is expected to have a high surface area, porosity, and a
diverse range of functional groups, making it highly effective for the adsorption of Cu(II),
Pb(II), iodine, and chlorpyrifos pesticide from contaminated water. By utilizing locally
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available waste materials, this research not only addresses the critical environmental is-
sue of water contamination but also promotes sustainable waste management practices.
The findings provide valuable insights for developing cost-effective and efficient adsor-
bents, contributing to the broader goal of ensuring clean and safe water resources through
sustainable technologies.

2. Materials and Methods
2.1. Biochar Preparation

In this study, biochar was prepared from the mid-ribs of date palm leaves collected
from Al-Madinah Al-Munawara, Saudi Arabia. The preparation process involved a slow
pyrolysis technique executed in two distinct steps using a vacuum furnace. Initially, the
samples were air-dried for four weeks to remove moisture content. Subsequently, the
dried specimens were heated at a controlled rate of 10 ◦C per minute up to 300 ◦C. This
temperature was maintained for a holding time of 1 h to facilitate the partial decomposition
of organic materials. The samples were then allowed to cool overnight to room temperature
to stabilize the intermediate products. In the second step, the specimens were reheated at
the same controlled rate of 10 ◦C per minute, but this time up to a higher temperature of
600 ◦C. The holding time at this temperature was also 1 h. This step was crucial for further
decomposing the organic materials and enhancing the carbonization process, resulting
in a biochar with a high surface area and increased porosity. After this second heating
phase, the samples were once again cooled overnight to room temperature. The two-step
pyrolysis process ensures the production of biochar with desirable structural and functional
properties, suitable for adsorption applications.

For the preparation of biochar from Ficus nitida, branches were collected and subjected
to an initial air-drying process for about three weeks. This drying period was essential to
reduce the moisture content and facilitate the subsequent pyrolysis process. After drying,
the branches were debarked and sawn into suitable pieces to maximize surface area and
ensure uniform pyrolysis. The prepared samples were then subjected to pyrolysis under
oxygen-limited conditions in a muffle furnace. The absence of oxygen is critical to prevent
combustion and ensure proper carbonization of the biomass. The furnace temperature
was raised to 500 ◦C and maintained for a holding time of 60 min. This temperature and
duration were selected based on the thermal decomposition characteristics of Ficus nitida,
aiming to maximize the development of micropores and functional groups on the biochar
surface. Following the pyrolysis, the biochar was allowed to cool to room temperature. The
cooled biochar was then ground to a fine powder to increase the surface area and enhance
its adsorption capabilities. Finally, the ground biochar was stored in sealed bags to prevent
contamination and maintain its quality for subsequent use. Figures 1 and 2 summarize the
preparation procedures for date palm and Ficus nitida biochar, respectively.
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2.2. Biochar Characterization

For the characterization of both types of biochar, a comprehensive approach was
taken to understand their structural and chemical properties. The microstructures of the
biochar surfaces were meticulously investigated using a scanning electron microscope (Jeol
JSM-5300 SEM, Tokyo, Japan) equipped with an energy-dispersive X-ray (EDX) analyzer.
SEM was utilized to capture high-resolution images of the biochar surface morphology,
revealing details about the porosity, texture, and structural features. EDX analysis comple-
mented the SEM imaging by providing elemental composition data, identifying the types
and quantities of elements present on the biochar surfaces. This dual analysis enabled a
thorough examination of the physical and elemental characteristics of the biochar, which
are crucial for understanding its adsorption properties. To identify the functional groups
present on the biochar surface, Fourier transform infrared (FTIR) spectroscopy was em-
ployed. The analysis was performed using a Burker Tensor 37 spectrometer (Karlsruhe,
Germany), operating in the spectral range of 400–4000 cm−1. The FTIR technique involves
measuring the absorption of infrared radiation by the biochar sample, which provides
information about the various functional groups attached to the biochar surface. The KBr
pellet technique was used to prepare the biochar samples for FT-IR analysis. Specifically,
1.0 mg of finely ground biochar was intimately mixed with 100 mg of potassium bromide
(KBr). The mixture was then compressed into a transparent pellet under high pressure.
This pellet was subsequently placed in the path of an infrared beam in the spectrometer.
The resulting FT-IR spectra displayed peaks corresponding to different functional groups,
such as hydroxyl, carbonyl, and aromatic groups, which play a vital role in the adsorption
processes. The comprehensive characterization of the biochar using SEM, EDX, and FTIR
provided detailed insights into surface morphology, elemental composition, and functional
group distribution. These characteristics are essential for evaluating and optimizing the
biochar’s effectiveness in adsorbing heavy metals and pesticides from aqueous solutions.

2.3. Adsorption of Heavy Metals by Biochar

The adsorption of Cu(II), Pb(II), and iodine from aqueous media was investigated
using biochar prepared from date palm and Ficus nitida. For all pollutants, stock solutions
were prepared, and biochar concentrations were varied to assess adsorption efficiency. For
the adsorption of Cu(II) and Pb(II), stock solutions of 1000 ppm CuSO4·5H2O and 100 ppm
Pb(II) were prepared, respectively. Different concentrations of biochar (20, 40, 60, and 80
mg) were incubated with 10 mL of 200 ppm Cu(II) or 100 ppm Pb(II) solutions for 24 h. The
remaining concentrations of Cu(II) and Pb(II) were determined using atomic absorption
spectroscopy (ContrAA 300, Jena, Germany) after filtration with a 0.2 µm syringe filter. For
iodine, a 0.1 M stock solution was prepared, and biochar samples were incubated with 50
mL of the iodine solution for 1 h. The residual iodine concentration was determined by
titration using Na2SO3 0.1 N in the presence of a starch indicator. Adsorption efficiency
was monitored over time, with incubation periods ranging from 2 to 30 h.

The percentage of adsorption (%Ads) was calculated as follows:

%Ads =
Conc. in control − conc. in treatment

conc. in control
× 100
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2.4. Adsorption of Chlorpyrifos by Biochar

A solution of 1000 ppm of chlorpyrifos, with a chemical structure shown in Figure 3,
was prepared in acetone with the presence of tween 80 as an emulsifier then diluted with
distilled water to a final concentration of 100 ppm. About 10 mL of the chlorpyrifos solution
was incubated with different amounts of biochar for 24 h then filtered with a syringe filter
of 0.2 µm, and the residual concentration was determined using HPLC. A constant amount
of biochar was incubated with 10 mL of chlorpyrifos solution 100 ppm for interval times of
3, 6, 12, 24, and 48 h. Then, the solution was filtered and determined using HPLC.
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Figure 3. Chemical structure of chlorpyrifos.

Chlorpyrifos residues were performed on high-performance liquid chromatography
(Agilent 1260 HPLC Infinity system, Waldbronn, Germany) equipped with a variable
wavelength ultraviolet detector (VWD). The system consists of a quaternary gradient pump
to control the flow rate of the mobile phase, an autosampler for automatic injection, a
vacuum degasser, and a column thermostat (5–80 ◦C). Five microliters of each sample
were injected onto the reversed-phase ZORBAX Eclipse Plus C18 column (250◦ 4.6 mm id,
5 mm particle size) using the autosampler apparatus with a 100 µL sample loop. Data were
managed using HP Chem station software (B.04.03). The mobile phase was acetonitrile:
water (40:60, v/v) and the flow rate was 1 mL/min and the temperature of the column was
40 ◦C. The detector wavelengths (nm) were 242 and 233 for acetamiprid and methomyl,
respectively. The retention times of acetamiprid and methomyl were 3.96 ± 0.04 and
2.795 ± 0.03 min, respectively.

3. Results and Discussion
3.1. Main Features and Functional Groups of Biochar Surfaces

Figure 1 illustrates the microstructures of biochar surfaces produced from date palm
(Figure 4a) and Ficus nitida (Figure 4b). A large number of well-organized and relatively
uniform enlarged pores are found in both types of biochar. The large and uniform pores
are obtained due to more efficient evaporation of volatiles and other organic components
resulting from the application of the two-step pyrolysis process with the applied conditions.
Such pores aid in the improvement of the biochar’s adsorption properties, particularly in
the removal of pollutants [28].

Figure 5 illustrates the EDX analysis for the two types of biochar. These results indicate
that carbon and oxygen are the most abundant elements in both types. However, the per-
centage of carbon is higher than that of oxygen. The high temperature of pyrolysis (600 ◦C)
facilitates the dehydration and volatilization processes, resulting in an increased carbon
content [29]. Traces of other elements such as magnesium, sodium, silicon, phosphorus,
and sulfur are only observed in the date palm biochar, while calcium and potassium are
observed in the two types of biochar, as listed in Table 1. The presence of elements like
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magnesium and silicon at high pyrolysis temperatures can be attributed to the insoluble
metallic oxides found in the biochar samples [28,29].
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FTIR spectra for the two types of biochar prepared from date palm and Ficus nitida are
shown in Figures 6a and 6b, respectively, and the results of these spectra are summarized
in Table 2. The bands recorded between 3200 to 3700 cm−1 and observed in both types of
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biochar confirm the presence of stretching vibration of the O-H group. It is typically associ-
ated with the hydrogen-bonded O-H group in carboxylic and phenolic compounds [30,31].
Aliphatic substitution of aromatic rings can be confirmed by the presence of methyl groups
observed for two types at 2088–3000 cm−1 [31]. The presence of ring stretching C=C was
confirmed in both biochars by the peak noticed around 1560 cm−1 [32]. Peaks recorded
between 1600 and 1800 cm−1 in the Ficus nitida biochar may confirm the vibration of
C=C in aromatics or may attributed to C=O for carboxyl or carbonate lactones [33]. Bands
recorded in both types at 1420 cm−1 correspond to aliphatic C-H groups [30]. The peaks
that were also recorded in the range of 1000–1240 cm−1 for both types are assigned to the
stretching C-O group in phenolic, alcoholic compounds and carboxylic acids [34], also at
the range of 1000–1100 cm−1, can be attributed to asymmetric Si-O stretching [35] and
may be confirmed by the results of EDX in which a traces of silicon were observed for the
date palm biochar. All bands observed for both biochars in the range of 400–600 cm−1 are
assigned to organic matter such as carbonate and silicates [36]. In addition, bands in the
700–900 cm−1 range, associated with C-H out-of-plane bending in substituted aromatic
rings, further confirm the presence of aromatic structures [37,38] in both types of biochar.
The physicochemical properties of biochar are mainly affected by the biomass material,
and the conditions of pyrolysis (heating rate, temperature, and holding time) [34]. The
pores and surface functional groups, particularly carbonyl, hydroxyl, and methyl, represent
the main features of the surface which affect its adsorption efficiency [39,40]. In addition,
other oxygen-rich functional groups on the biochar surface, such as carboxyl and phenolic
hydroxyl groups, play a crucial role in the adsorption of heavy metals [41].

Table 1. Elemental analysis of both types of biochar as observed by electron dispersive X-ray.

Element

Biochar Type

Date palm Ficus nitida

Mass % ± SD Mass % ± SD

C 62.06 ± 0.21 72.93 ± 0.39
O 27.89 ± 0.31 23.80 ± 0.71

Mg 0.28 ± 0.02 --
Na 3.32 ± 0.07 --
Si 4.37 ± 0.06 --
P 0.46 ± 0.02 --
S 0.17 ± 0.01 --

Ca 0.54 ± 0.03 1.11 ± 0.09
K 0.91 ± 0.03 2.16 ± 0.11

O/C ratio 0.45 0.33

FTIR analysis of the biochar before and after the adsorption (Figure 6c,d) of chlor-
pyrifos reveals distinct changes in functional groups, confirming their involvement in the
adsorption process. For Ficus nitida biochar, the disappearance of bands corresponding
to the -OH group suggests that these groups actively participated in the interaction with
chlorpyrifos. This interaction is further supported by the notable shifts in the carbonyl
(C=O) and C-O bond intensities, which are indicative of complexation and interaction
with oxygen-containing functional groups during adsorption. Similarly, in the case of date
palm biochar, the reduction in intensity of the C=C bands after adsorption points towards
π–π interactions with the aromatic ring of chlorpyrifos. The shift in the C-O bond, along
with changes in the hydroxyl group bands, demonstrates that these functional groups
facilitated the adsorption process, most likely through hydrogen bonding and electrostatic
interactions. The differences in the FTIR spectra before and after adsorption highlight the
critical role of these surface functional groups in enhancing the adsorption efficiency of
chlorpyrifos on both types of biochar [42].
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Figure 6. FTIR spectra of biochar prepared from date palm before adsorption (a), Ficus nitida before
adsorption (b), date palm after adsorption (c), and Ficus nitida after adsorption (d).

Table 2. FTIR bands and corresponding functional groups.

Wave Number (cm−1) Assignments

3000–3700 -OH group
2800–3000 C-H (methyl)
≈2000 C-C

1600–1800 C=O/COOH
1560 C=C

1420–1450 C-H asymmetric
1317–1375 C-O asymmetric of aromatic
1000–1260 C-O

700–900 C-H aromatic (out of plan)
400–600 In organic matter

3.2. Adsorption of Cu(II) from Aqueous Solution on Different Amounts of Biochar

The adsorption of Cu(II) ions from aqueous solutions was evaluated using biochar
prepared through a two-step pyrolysis process, resulting in a material with a highly porous
structure and elevated carbon content. This porous structure enhances the biochar’s capac-
ity to attract and retain copper ions through electrostatic interactions. The specific pyrolysis
conditions employed not only maximized the porosity but also led to the formation of
functional groups observed in the biochar, such as hydroxyl, carbonyl, and phenolic groups.
The ion exchange mechanism also plays a critical role in the adsorption process. The
negatively charged sites on the biochar surface interact with the positively charged copper
cations (Cu(II)), enabling effective ion exchange and subsequent removal of copper ions
from the solution.
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The efficiency of the biochar in adsorbing copper ions was quantitatively assessed by
measuring the absorbance of Cu(II) at different concentrations, as depicted in Table 3 and
Figure S1. The data demonstrate a strong linear relationship between Cu(II) concentration
and absorbance, confirming the high adsorption capacity of the biochar. Remarkably, the
date palm biochar achieved adsorption efficiencies ranging from 99.11% to 99.9% with the
addition of small amounts, proving its effectiveness. These findings validate the superior
performance of date palm-derived biochar in removing Cu(II) from aqueous solutions,
attributable to its optimized structural properties and functional group composition. The
results highlight the potential of using this biochar as a cost-effective and sustainable
adsorbent for heavy metal remediation in water treatment applications.

Table 3. Adsorption of Cu(II) (200 ppm) on different amounts of biochar.

Ficus nitida Biochar Date palm Biochar
Amount of Biochar

(g/10 mL) The Mean Concentration of
Cu(II) (mg/L) % of Adsorption The Mean Concentration of

Cu(II) (mg/L) % of Adsorption

0.02 125.6 37 42 79
0.04 56.8 72 1.78 99.11
0.06 35 83 0.6 99.7
0.08 23.8 88 0.2 99.9

As shown in Table 3, the efficiency of date palm biochar in the removal of Cu(II)
from the aqueous solution, in all cases of addition, is higher than that of Ficus nitida
biochar. Elemental analysis revealed that the percentage of oxygen in date palm biochar
is higher compared to Ficus nitida biochar, leading to an increase in oxygen-based func-
tional groups. These groups significantly enhance the biochar’s adsorption efficiency for
Cu(II). Similar results have been observed by other researchers, where biochar produced
from hardwood and corn stalks showed maximum copper ion removal percentages of
up to 95%, while biochar from rice husks, compost, and orange waste exhibited lower
efficiencies [43,44]. The date palm leaf midrib biochar, therefore, optimizes its structural
properties and enhances the presence of functional groups, making it more effective for cop-
per adsorption. Consequently, this transformation of date palm waste into useful biochar
offers an ecological solution for water purification and heavy metal remediation.

3.3. Adsorption of Pb(II) from Aqueous Solution on Different Amounts of Biochar

As stated in the case of Cu(II)adsorption, different amounts of biochar (0.02, 0.04, 0.06,
and 0.08 g/10 mL) were added to absorb Pb(II) from the aqueous solution. The linear
relationship between different concentrations of Pb(II) and the corresponding absorbance
in the case of date palm biochar is illustrated in Table 4. The data indicate that increasing
the amount of biochar enhances the adsorption percentage of Pb(II). Table 4 lists the
mean concentration of Pb(II) (mg/L) and its adsorption (%) for both date palm and Ficus
nitida biochar.

Table 4. Adsorption of Pb(II) on different amounts of both types of biochar.

Date palm Biochar Ficus nitida Biochar
Amount of Biochar

(g/10 mL) The Mean Concentration of
Pb(II) (mg/L) % of Adsorption The Mean Concentration of

Pb(II) (mg/L) % of Adsorption

0.02 0.15 99.9 24.6 75
0.04 0.11 99.9 19. 4 80
0.06 0 100 15.1 85
0.08 0 100 8.1 92
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The results show that with the addition of a small amount (0.02 g/10 mL) of date palm
biochar, 99.85% adsorption of Pb(II) from the aqueous solution was achieved. In compari-
son, the same amount of Ficus nitida biochar resulted in a lower adsorption percentage
of 75.38%. When the amount of date palm biochar was increased to 0.06 or 0.08 g/10 mL,
100% adsorption of Pb(II) was observed. However, for the same amounts of Ficus nitida
biochar, the adsorption percentages were 84.96% and 91.87%, respectively. These findings
highlight the superior biosorption efficiency of date palm biochar in removing Pb(II) from
aqueous solutions.

Several mechanisms contribute to the removal of Pb(II), including precipitation, com-
plexation, ion exchange, electrostatic attraction, and physical adsorption [45]. The pre-
cipitation mechanism was confirmed by detecting Pb(II) particles on the biochar surface,
attributed to the precipitation of carbonate minerals and phosphates [46,47]. The efficiency
of mineral precipitation is further enhanced with increased pyrolysis temperature. The
presence of C-O groups combined with a significant amount of Pb in solution indicates
surface complexation. Generally, the complexation ability of hydroxyl groups is more
effective than that of carboxyl groups [48]. Ion exchange occurs between the cations on
oxygen-containing functional groups and Pb ions [49], while Pb can also combine with
-COOH and -OH groups on the biochar surface through electrostatic interactions [50].

Various removal mechanisms, such as precipitation, complexation, ion exchange,
electrostatic attraction, chemical bond adsorption, and physical adsorption, play significant
roles in Pb+2 removal [45]. The detection of Pb particles on the biochar surface due
to the precipitation of carbonate minerals and phosphates confirms that precipitation is
one of the main Pb removal mechanisms [46–52]. The precipitation of Pb ions is pH-
dependent, with local high alkalinity sites on the biochar surface forming at pH > 6.0,
leading to precipitation [53,54]. Higher pyrolysis temperatures enhance the effect of mineral
precipitation [47]. Complexation, involving the interaction of electrons with donors and
acceptors, is crucial for Pb adsorption by biochar, although its significance decreases at
higher pyrolysis temperatures [47]. During the adsorption process, surface complexation
occurs, with C-O groups binding a large amount of Pb [55,56]. The metal complexing ability
of hydroxyl groups surpasses that of carboxyl groups [48]. Ion exchange between cations
on oxygen-containing functional groups and Pb ions, along with electrostatic interactions
involving -COOH and -OH groups, also contribute to Pb removal [49,50].

The retention of toxic metals by various forest tree species has been extensively re-
viewed [57]. Ficus nitida, in particular, has been utilized by several investigators for the
adsorption of Pb, Cu, and Cd [58]. In one study, biochar prepared from KMnO4-treated
hickory wood through slow pyrolysis at 600 ◦C demonstrated increased surface oxygen-
containing functional groups, resulting in strong sorption abilities for Pb(II), Cu(II), and
Cd(II) [59]. Various researchers have described the strong bonding affinity of oxygen-
containing functional groups, such as hydroxyl, phenolic hydroxyl, and carboxyl groups,
to heavy metal ions in aqueous solutions [43].

3.4. Adsorption of Iodine on Different Amounts of Biochar

To investigate the effects of biochar type and dosage on the removal of iodine from
aqueous solutions, different amounts of biochar (0.1, 0.2, 0.3, and 0.4 g/50 mL) were
added to iodine solutions. The adsorption efficiency was evaluated by measuring the
residual iodine concentration in each case. The results, detailed in Table 5, reveal significant
differences in iodine adsorption between Ficus nitida and date palm biochar. For the highest
biochar dosage of 0.4 g/50 mL, Ficus nitida biochar exhibited an adsorption efficiency
of 68%, while date palm biochar achieved a lower adsorption efficiency of 39.7%. These
differences can be attributed to the inherent structural and chemical properties of the two
biochar types. Ficus nitida biochar, with its higher surface area and greater pore volume,
provides more active sites for iodine adsorption. The increased presence of functional
groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, on the Ficus nitida biochar
surface enhances its ability to form interactions with iodine molecules. These functional
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groups facilitate both physisorption and chemisorption processes, leading to higher iodine
uptake. In contrast, date palm biochar, despite having a considerable adsorption capacity,
has a lower surface area and fewer active sites compared to Ficus nitida biochar. The
lower efficiency of date palm biochar in iodine adsorption can be attributed to its structural
limitations and the lesser availability of functional groups essential for iodine interaction.
The observed adsorption trends underscore the importance of biochar characteristics in
determining their effectiveness for specific contaminant removal. The higher efficiency of
Ficus nitida biochar highlights its potential as a superior adsorbent for iodine removal in
water treatment applications. Further optimization of pyrolysis conditions and surface
modifications could enhance the adsorption capabilities of both biochar types, providing
cost-effective and sustainable solutions for water purification.

Table 5. Adsorption of iodine on different amounts of both types of biochar.

Biochar Type
Date palm Ficus nitidaAmount of Biochar (g/50 mL)

% of Adsorption % of Adsorption
0.1 24 18
0.2 27 31
0.3 33 46.8
0.4 39 68

The effect of incubation time on the adsorption efficiency of iodine by date palm
biochar was studied by incubating 0.4 g of biochar with an iodine solution for varying peri-
ods, ranging from 2 to 30 h. As illustrated in Figure 7, the adsorption percentage increased
with the incubation time, reaching a maximum of 60.3% after 12 h. Beyond this incubation
period, up to 30 h, no further significant increase in adsorption was observed, and the
maximum adsorption remained at 60.3%. The initial increase in adsorption efficiency can
be attributed to the biochar’s surface functional groups and its microstructural properties.
The biochar’s surface area and the presence of micropores play a crucial role in enhancing
its iodine adsorption capacity. As the incubation period increases, more iodine molecules
diffuse into the biochar’s micropores, which are less than 2 nm in size, and interact with the
functional groups present on the biochar surface [60–62]. The adsorption indices for iodine
are generally related to the availability and distribution of these micropores [63]. Despite
the high adsorption capacity observed, the percentages of iodine adsorption are lower than
those of Pb(II) on date palm biochar. This discrepancy is primarily due to the larger pore
size distribution in date palm biochar, which may not be as effective in adsorbing smaller
iodine molecules compared to larger Pb(II) ions. Activated carbon, on the other hand,
undergoes high-temperature activation processes that create a more extensive network of
smaller pores, thereby exhibiting higher iodine adsorption capacities [64,65]. Additionally,
the presence of surface impurities on biochar can react chemically with iodine, affecting its
iodine number—a parameter that indicates the capacity for iodine adsorption [66,67]. High
levels of oxygen-containing functional groups, such as carboxyl groups, can reduce the
iodine number due to their reactivity with potassium iodide [68]. This interaction can lead
to a decrease in the effective adsorption capacity of the biochar for iodine. These findings
highlight the critical role of biochar’s structural and chemical properties in determining its
adsorption efficiency for different contaminants. Optimizing the pyrolysis conditions and
possibly introducing surface modifications could enhance the iodine adsorption capacity of
date palm biochar, making it a more versatile adsorbent for water purification applications.
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3.5. Adsorption of Chlorpyrifos on Biochar

The adsorption of chlorpyrifos on different amounts of biochar was systematically
investigated, and the results are presented in Table 6. The data reveal a significantly higher
adsorption capacity of Ficus nitida biochar compared to date palm biochar. Specifically,
after an incubation period of 24 h, the adsorption efficiency for a maximum biochar amount
of 0.08 g/10 mL was 87% for Ficus nitida biochar, whereas date palm biochar exhibited a
lower adsorption efficiency of 50.8%. The superior performance of Ficus nitida biochar can
be attributed to its inherent structural and chemical properties. The biochar derived from
Ficus nitida has a higher surface area and a greater number of adsorption sites compared to
date palm biochar. These characteristics are crucial for enhancing the interaction between
the biochar surface and chlorpyrifos molecules, thereby facilitating higher adsorption
efficiencies. The adsorption process is largely driven by the presence of functional groups,
such as hydroxyl (-OH) and carboxyl (-COOH) groups, which are more prevalent on
the surface of Ficus nitida biochar. These functional groups play a vital role in binding
chlorpyrifos molecules through various mechanisms, including hydrogen bonding, π–π
interactions, and Van der Waals forces. The trend of increasing adsorption percentages
with the amount of biochar is consistent with the availability of more adsorption sites as
the biochar dosage increases [69]. This increase in adsorption sites enhances the probability
of chlorpyrifos molecules interacting with the biochar surface, thus improving the overall
adsorption efficiency. Additionally, the porous nature of the biochar, especially in the case
of Ficus nitida, provides ample space for the chlorpyrifos molecules to be trapped and
retained within the pore structures. It is also important to consider the specific surface
chemistry of the biochar. The Ficus nitida biochar, due to its higher content of oxygen-
containing functional groups, exhibits stronger interactions with chlorpyrifos molecules.
These functional groups can form stable complexes with chlorpyrifos, thus enhancing its
adsorption capacity. On the other hand, date palm biochar, while still effective, has fewer
active sites and functional groups, resulting in lower adsorption efficiencies.

For the addition of 0.08 g/10 mL of date palm biochar, the adsorption percentages of
chlorpyrifos were evaluated after different incubation periods of 3, 6, 12, 24, and 48 h. The
results, illustrated in Figure 8, demonstrate that increasing the incubation period from 3 to
12 h leads to a significant increase in adsorption efficiency, from approximately 37% to 60%.
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Beyond 12 h, no substantial improvement in adsorption was observed, with the maximum
adsorption percentage reaching 62.9% at 48 h. The initial increase in adsorption efficiency
can be attributed to the availability of surface functional groups and the porous structure
of the biochar. The biochar’s ability to adsorb chlorpyrifos is significantly influenced by
its surface area and the presence of micropores. As the incubation period increases, more
chlorpyrifos molecules are able to diffuse into these micropores and interact with the
functional groups present on the biochar surface. These interactions include hydrogen
bonding, Van der Waals forces, and π–π interactions, which facilitate the retention of
chlorpyrifos molecules within the biochar matrix.

Table 6. Percentage of adsorption of chlorpyrifos (100 ppm) on different amounts of both types
of biochar.

Biochar Type
Amount of Biochar (g/10 mL) Date palm Ficus nitida

% of Adsorption % of Adsorption
0.02 14 18
0.04 26 50
0.06 29 62
0.08 50 87

The study conducted by various investigators [70–72] evaluated the efficiency of
conventional water treatment methods, rice husk biochar, commercial activated carbon,
and Ficus nitida biochar for the removal of chlorpyrifos from water. Their results indicated
that rice husk biochar is particularly efficient for chlorpyrifos removal, suggesting its
potential as a cost-effective alternative to commercial activated carbon [70]. Further studies
demonstrated that biochar prepared from rice straw at high temperatures (300 ◦C, 400 ◦C,
500 ◦C, and 600 ◦C) could adsorb multiple herbicides simultaneously, enhancing the
degradation of these herbicides in soil. In another study, biochar derived from Ficus
nitida tree residues was prepared at 500 ◦C and 700 ◦C. This biochar, both alone and
as a carrier for frankincense essential oil, showed significant insecticidal activity against
stored product insects such as Tribolium castaneum, Rhyzopertha dominica, and Oryzaephilus
surinamensis. The biochar prepared at 500 ◦C was particularly effective, with O. surinamensis
being the most susceptible [71]. These findings highlight the versatile applications of Ficus
nitida biochar in both environmental and agricultural contexts. In the present study, FTIR
analysis revealed the presence of numerous functional groups on the surface of Ficus
nitida biochar, including carboxyl (-COOH) and hydroxyl (-OH) groups. These functional
groups enhance the biochar’s adsorption capacity by providing active sites for chlorpyrifos
binding [72–74]. Additionally, the adsorption process is influenced by the intraparticle
diffusion of chlorpyrifos molecules into the micropores of the biochar, which affects the
diffusion rate to the exterior surface of the adsorbent [75]. Due to its non-toxic nature,
biochar can be safely utilized for environmental remediation and recycling purposes. The
intraparticle diffusion mechanism plays a crucial role in the adsorption process, as it
governs the rate at which micro-pollutants penetrate the micropores and interact with the
internal surface area of the biochar [75]. These findings emphasize the potential of using
date palm biochar for the adsorption of chlorpyrifos and other pollutants, underscoring
the importance of optimizing biochar properties to enhance its adsorption efficiency for
various environmental applications.
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3.6. Regeneration of Biochar for Cu(II) Adsorption

The regeneration potential of an adsorbent is a critical parameter for determining its
sustainability and reusability in multiple adsorption cycles. To evaluate the regeneration
capability of date palm biochar, a study was conducted using 0.08 g of biochar per 10 mL
of Cu(II) solution, where the initial adsorption efficiency reached 99.9%. The biochar was
subjected to five consecutive adsorption–desorption cycles, as shown in Figure 9. The
results indicate that the biochar retained high adsorption efficiency throughout the cycles,
with a marginal reduction in performance by the fifth cycle.

The adsorption efficiency during each cycle remained above 96%, demonstrating
excellent regeneration potential. This slight reduction in adsorption over multiple cycles
could be attributed to partial pore saturation or minor structural changes in the biochar
surface during the regeneration process. However, the overall performance remained
robust, highlighting the biochar’s suitability for long-term applications in water treatment,
especially for removing Cu(II) ions.
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4. Conclusions

This study investigated the adsorption efficiency of biochar derived from palm trees
and Ficus nitida for the removal of various contaminants, including Cu(II), Pb(II), iodine,
and chlorpyrifos from aqueous solutions. The biochar was prepared using a two-step
pyrolysis process for date palm biochar and single-step pyrolysis for Ficus nitida biochar.
Characterization techniques, including SEM, EDX, and FTIR, revealed that both types of
biochar possess a significant surface area and a variety of functional groups essential for
effective adsorption. The date palm biochar demonstrated a higher adsorption capacity
for Cu(II) ions compared to Ficus nitida biochar, with adsorption efficiencies ranging from
99.11% to 99.9%. This higher capacity is attributed to the high percentage of oxygen-
containing functional groups on the date palm biochar surface, which facilitated strong
complexation and ion exchange mechanisms. Similarly, the date palm biochar also showed
superior performance in removing Pb(II) ions from aqueous solutions, achieving up to
100% adsorption at higher biochar dosages. The primary mechanisms involved included
precipitation, complexation, ion exchange, and electrostatic interactions.

In contrast, the Ficus nitida biochar exhibited a higher adsorption capacity for iodine,
achieving 68% adsorption at the highest dosage, compared to 39.7% for date palm biochar.
This increased efficiency is due to the greater surface area and functional groups present
in Ficus nitida biochar. The study also highlighted the importance of micropores in de-
termining iodine adsorption capacities. Furthermore, Ficus nitida biochar outperformed
date palm biochar in the adsorption of chlorpyrifos, with a maximum adsorption efficiency
of 87% after 24 h of incubation, compared to 50.8% for date palm biochar. The higher
adsorption capacity of Ficus nitida biochar for chlorpyrifos can be attributed to its struc-
tural characteristics and the presence of functional groups that enhance interaction with
chlorpyrifos molecules.

The effect of incubation time on the adsorption efficiency was also examined, showing
that the adsorption percentage increased significantly with incubation time, reaching a max-
imum of 62.9% for chlorpyrifos on date palm biochar after 48 h. The initial rapid increase in
adsorption was due to the availability of adsorption sites, with no significant improvement
observed beyond 12 h of incubation. These findings underscore the importance of biochar
characteristics, such as surface area, pore structure, and functional groups, in determining
adsorption efficiency. Optimizing pyrolysis conditions and surface modifications could
further enhance the performance of biochar as a cost-effective and sustainable solution for
water purification and environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemengineering8050105/s1, Figure S1: The relationship between
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Figure S2: The relationship between the concentrations of Pb (II) and the corresponding absorbance
in the case of palm tree biochar.
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