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Abstract: Sustainability requirements must be met by the appropriate selection of efficient and
environmentally friendly materials and processes. We present materials obtained via all-in-water
methods: first, few-layer graphene (FLG)–polyvinyl alcohol (PVA) colloids and then electrospun
PVA-FLG fibers. The effects of the FLG concentration, and indirectly of ultrasound, are reflected via
the modification of the structural and physical properties, including the microstructure, viscosity,
thermal degradation and mechanical properties, of colloids and fiber mats. The primary results are
highly encouraging for further optimization and the development of conductive, and mechanically
resistant, materials.

Keywords: green process; exfoliation; polyvinyl alcohol nanofibers; PVA–graphene composites;
PVA–graphene fibers; electrospinning

1. Introduction

Polymer nanocomposites are a large and constantly developing family of materials that
find applications in many different sectors, according to their properties. Due to the huge
recent interest in carbon nanomaterials, especially graphene, intensive research is being
carried out on composites containing these nanomaterials. High electrical and thermal
conductivity, mechanical strength and flexibility, hydrophobic and barrier characteristics,
chemical and thermal resistance, and adsorption are some of the properties that graphene-
based nanomaterials can introduce into their composites, particularly in the sectors of
energy, medicine, and the environment [1,2].

To benefit from the optimal performances of these composites with nanoscopically re-
lated properties at the macroscopic scale, they need to be adequately synthesized/prepared
and macronized for final use. The interactions and interface qualities of nanocomposites
have a direct impact on the properties of macroscopic composites, being directly related
to the final performance. Among the different macroscopic shaping methods, solution
electrospinning for 2D shaping seems to be interesting, as it can provide different structures,
from nano to microfibers, or morphologies and assemblies with variable surface areas and
porosities, consequently finding application in various fields [3]. Filters, membranes, and
tissues based on electrospun nanofibers for biomedical applications are of major interest [4].

Despite the diverse potential of electrospinning, the technique requiring an electro-
static field may encounter several significant difficulties in the case of conductive-based
material formulations. This is the case for solutions made from carbon nanomaterials. There
are several parameters influencing the electrospinning of liquids, which can be defined
as “technical” process parameters (voltage, flow rate, type of needle and collector, and
distance between them), formulation parameters (concentration, conductivity, molecular
weight, surface tension) and environmental conditions [3,5]. As for liquids, solvents with
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high volatility and low surface tension maintain a proper balance between the boiling
point and evaporation rate. Among the electrospun polymer composites, several examples
contain nanocarbon fillers, mainly carbon nanotubes (CNTs) or graphene oxide (GO) [6].
The dispersion of CNTs usually requires the use of surfactants, whereas graphene oxide
(GO) is highly hydrophilic and can be dispersed in highly polar solvents such as water. This
presence of oxygen-rich hydrophilic groups, which is beneficial to dispersion, deprives GO
material of the conductive and mechanical properties associated with the destroyed C=C
conjugated lattice [7]. The reason why GO is widely studied is its well-known synthesis by
the Hummer method, which, however, has some disadvantages, namely a long duration,
harsh oxidation conditions and the need for reduction into reduced GO (rGO) [7,8].

In sustainable development and the circular economy, it is necessary to reduce the
number of preparation steps and to use green methods. We recently published a paper
on PVA-FLG films, in which FLG was first obtained by exfoliating expanded graphite
(EG) in water using bovine serum albumin (BSA) as a surfactant [9,10]. Here, the aqueous
PVA-FLG colloid is prepared in situ by the exfoliation of EG in PVA solution (PVA with
“surfactant” role) to test the possibility of its direct use for fiber production by electrospin-
ning. The water-soluble PVA polymer, thanks to its biocompatibility and biodegradability,
provides an excellent platform for the development of composite materials for various
applications, e.g., medical implants, drug delivery systems or food packaging, where the
mechanical and gas barrier properties (O2 for instance) can be tuned using graphene-based
additives [11–13]. The thermal and(or) electrical conductivity of such composites open up
new application areas.

The challenging aspect of electrospinning is related to the high surface tension of the
solvent (i.e., water), a conductive material (FLG), and the lack of surfactant. When it comes
to composite solutions such as (PVA + FLG), the nozzle clogging caused by the graphene
particles agglomerates is a problem [14]. Here, an annular ring-shaped emitter is used,
making the process more efficient and reliable [14].

2. Materials and Methods

PVA (Mowiol, Mw 130,000, Sigma-Aldrich, St-Quentin Fallavier, France) was prepared
as a 15 wt.% aqueous solution at 80 ◦C overnight.

The appropriate amount of expanded graphite (EG, Carbon Lorraine) was added to
the PVA solutions and then sonicated for 2 h using an ultrasonicator (BRANSON 550). After
exfoliation, the PVA-FLG colloids were subjected to 2 h of settling and then supernatant
separation in order to remove the thicker part of weakly exfoliated EG. Three stable aqueous
PVA-FLG colloids with 4, 8 and 16 wt. % of FLG were finally obtained.

The electrospinning process was carried out for two hours using a hand-built high-
voltage electrospinning machine. The prepared solution was injected into an annular
ring-shaped emitter with a 0.5 mm gap and a diameter of 35 mm [14]. The spinning process
was controlled with an injection rate of 20 mL/h, voltage of 35 kV, and collection distance
of 22 cm. To improve solvent volatilization and the elongation of the fibers, the ambient
conditions were carefully maintained in the range of 25–30 ◦C and the humidity was
maintained at 25%.

Scanning electron microscopy (SEM) analysis was performed on the ZEISS Gemini
SEM 500 microscope with a resolution of 5 nm.

Diameter distribution histograms were created using the Image J, version 1.5 program.
Transmission electron microscopy (TEM) analyses were performed on the JEOL 2100

FEG microscope operated at 200 kV and equipped with a spherical aberration corrector.
Prior to the analysis, the aqueous or ethanol suspension of FLG was transferred by drop
casting and then dried onto a classical 300 mesh TEM grid.

Thermogravimetric analyses (TGA) were carried out on TA Instrument Q5000IR by
heating the cut electrospun films in the platinum crucibles up to 800 ◦C with a heating rate
of 10 ◦C/min under an air flow of 25 mL/min.
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A rotational rheometer (MCR 301, Anton Paar GmbH) performed the steady-state
viscosity measurements of the PVA and PVA-FLG suspensions. The experiments were
carried out under R.T. conditions with a cone plate geometry of 50 mm in the shear
gap ramp. Viscosity data from 0.1 to 100 s−1 were collected to ensure a comprehensive
characterization of the rheological behavior of the material.

The mechanical tensile tests on the PVA-FLG nanofiber nonwovens were carried out
with a Discovery Hybrid Rheometer DHR 3 from TA Instruments, equipped with linear
tensile geometries. Rectangular samples with a width of ~10 mm, a length of ~45 mm and
a thickness of ~100 µm were cut from large scaffolds and fixed between two clamps. The
thickness of each sample was measured using an IP65 digital micrometer.

3. Results and Discussion

A detailed description of the aqueous PVA colloids containing or not containing
FLG is given in the experimental section. It is worth noting that the preparation is a
one-step synthesis, first enabling the exfoliation of EG into FLG by PVA “surfactant-like”
action under ultrasonication into the well dispersed PVA-FLG colloids and then their
electrospinning. Three composites were obtained, with relative weight FLG contents of
4, 8 and 16% according to TGA analysis, as described below. An optical image of the
representative macroscopic electrospun fiber sheets is presented in Figure 1.
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with a lower FLG content (4, 8%) and especially in PVA-FLG (4%), the fiber diameter is 
more homogenous compared to that in PVA fibers. Due to the relatively large lateral size 
of the FLG flakes, the flakes can be easily distinguished from the overall fiber morphology. 
They are either individually embedded/integrated into the PVA fiber, mainly in the case 
of smaller FLG flakes (Figure 2, PVA-FLG (8%) and PVA-FLG (16%), high resolution), or 
provide a platform for fiber interconnections (Figure 2, PVA-FLG (4%), medium and high 

Figure 1. Optical image of electrospun fiber sheets: PVA-FLG (16%) on the left, PVA on the right,
inset: PVA-FLG (4%).

According to the SEM micrographs, the electrospun materials are an assembly of
smooth fibers with an average lateral diameter of about 0.1 to 0.6 µm, as shown in Figure 2.
A more detailed distribution is presented on the histograms collected from the average
resolution micrographs (10 µm scale), as shown in Figure 2. There is no clear correlation
between the FLG concentration and fiber diameter, as observed for the CNT fillers in
polyacrylonitrile [15]. The average diameter of fibers decreases from 0.36 µm for PVA
to 0.22 µm and 0.23 µm for PVA-FLG (4%) and (8%), and increases to 0.4 µm for PVA-
FLG (16%). This phenomenon can be explained by the viscosity differences, as shown
below, and by the steric expansion effect in the case of most FLG-charged composites. For
the composites with a lower FLG content (4, 8%) and especially in PVA-FLG (4%), the
fiber diameter is more homogenous compared to that in PVA fibers. Due to the relatively
large lateral size of the FLG flakes, the flakes can be easily distinguished from the overall
fiber morphology. They are either individually embedded/integrated into the PVA fiber,
mainly in the case of smaller FLG flakes (Figure 2, PVA-FLG (8%) and PVA-FLG (16%),
high resolution), or provide a platform for fiber interconnections (Figure 2, PVA-FLG (4%),
medium and high resolution, PVA-FLG (16%), low and medium resolution). In both cases,
they are well covered by PVA, which confirms the good interface between both species.
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This compatibility is particularly observed in the PVA-FLG (4%) film, where a kind of glued
network is formed.
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Figure 2. Diameter distribution and SEM micrographs of PVA and PVA-FLG nanofibers (PVA, PVA-
FLG (4%), PVA-FLG (8%), PVA-FLG (16%). For pristine PVA fibers (i.e., left column), the solution
was not sonicated.

Compared to pristine PVA fibers prepared from a non-sonicated solution (Figure 2, left
column), additional SEM micrographs (Figure 3) revealed that the ultrasonication treatment
increased the uniformity of the PVA fibers (named after PVA–sonic fibers), which had a
mean diameter of 0. 44 µm. This indicates that ultrasound has a beneficial effect on the
solubilization and homogeneity of PVA in water, which could originate from a different
chain entanglement. Similar findings were observed by Shenoy et al., who investigated the
self-interactions of PVA solutions prepared at 80 ◦C and 92 ◦C [16].
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Figure 3. Diameter distribution and SEM micrographs of PVA fibers with different resolutions
prepared from a sonicated solution.
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The highly developed interface between PVA and FLG flakes could be observed via
TEM, as shown in Figure 4a–c. Due to the covering by the polymer, a deeper analysis of the
FLG surface and edges in order to determine the number of sheets in a single FLG flake
is challenging. To solve this issue, the prolonged acquisition was applied directly to the
surface of the composites to expose the highly graphitic FLG surface, as shown in Figure 4c.
To count the number of sheets, the combustion of the composite at 500 ◦C was performed
prior to the analysis. Data from several micrographs confirm a variable number of sheets,
mostly lower than 10, as shown in Figure 4a–f. The results are very promising, as a lower
number of FLG sheets could be achieved via the optimization of the synthesis parameters.
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Figure 4. TEM micrographs: (a,b) PVA-FLG composite, (c) PVA-FLG composite after prolonged
electron exposition, (d–f) FLG flakes from PVA-FLG after combustion at 500 ◦C.

The TGA combustion curves above 530 ◦C clearly show the presence of FLG in the
fibers, with the relative amount of FLG reaching around 4, 8 and 16%, Figure 5. Above this
temperature, the combustion of pure PLA is complete.

The first combustion zone up to c.a. 250 ◦C, often related to physiosorbed species such
as water, changes slightly from a dropping one by c.a. 8% wt (%) for pure PVA to quasi-
stable PVA or even increasing one in the case of the composites. In DTG, there are three
clearly distinguishable peak maxima, which shift downwards or upwards by 20–30 ◦C
depending on the FLG content. Detailed analysis shows some shifts in Tonset and Toffset up
to 20◦ and 40 ◦C, respectively. In general, the main combustion zone (Toffset − Tonset) is nar-
rower in the composites by about 20 ◦C compared to PVA, without taking into account the
last combustion zone related to the remaining FLG. In PVA-FLG (4%) and PVA-FLG (16%),
a higher temperature is required for the combustion of wt. 50% (T50) compared to pure
PVA, i.e., 420 ◦C vs. 380 ◦C, and then the combustion accelerates in the higher temperature
zones. These modifications may be related to the formation of a physical barrier at FLG
and the problem of the diffusion of degraded PVA gas species [17], and on the other hand,
the high thermal conductivity of FLG, which causes faster heat transfer and the accelerated
interfacial degradation of PVA [9]. The effect of ultrasounds can be observed in the TGA of
PVA–sonic fibers compared to non-sonicated PVA. The main changes include the quasi-
absence of adsorbed species in the low-temperature region and the overall combustion
running faster, especially in the first main zone (Toffset − Tonset = 260 ◦C instead of 340 ◦C
in PVA). Here, 50 wt.% of PVA–sonic was already oxidized at T50 = 345 ◦C instead of 380
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◦C for PVA. The behavior of PVA–sonic fibers under oxidative TGA conditions is consistent
with SEM observations confirming a kind of homogenization of PVA chains through their
lower entanglement, or shortening (or both). The shortening of PVA chains eventually
caused by the tip-ultrasonications may be related to the cavitation and sonolysis process
occurring during ultrasonication in water [18,19]. Acoustic cavitation in the presence of air
generates hydrogen, hydroxyl radicals and superoxide radicals that can attack the polymer
chains. In the composites, the additional role of EG or FLG during the ultrasonication
is difficult to assess in this context. The high thermal conductivity of the nanocarbons
and their potential radical scavenging have to be taken into account; therefore, the further
shortening and functionalization of PVA chains cannot be excluded [20].

ChemEngineering 2024, 8, x FOR PEER REVIEW 6 of 9

overall combustion running faster, especially in the first main zone (Toffset - Tonset = 260 °C 
instead of 340 °C in PVA). Here, 50 wt.% of PVA–sonic was already oxidized at T50 = 345 
°C instead of 380 °C for PVA. The behavior of PVA–sonic fibers under oxidative TGA con-
ditions is consistent with SEM observations confirming a kind of homogenization of PVA 
chains through their lower entanglement, or shortening (or both). The shortening of PVA 
chains eventually caused by the tip-ultrasonications may be related to the cavitation and 
sonolysis process occurring during ultrasonication in water [18,19]. Acoustic cavitation in 
the presence of air generates hydrogen, hydroxyl radicals and superoxide radicals that 
can attack the polymer chains. In the composites, the additional role of EG or FLG during 
the ultrasonication is difficult to assess in this context. The high thermal conductivity of 
the nanocarbons and their potential radical scavenging have to be taken into account; 
therefore, the further shortening and functionalization of PVA chains cannot be excluded 
[20].

Figure 5. TGA (and DTG) analysis curves of PVA (a), PVA-FLG (b–d) composites, and PVA–sonic 
(e).

According to rheology, as shown in Figure 6a, the viscosity of pure PVA colloid re-
mains almost unchanged after ultrasonic treatment, indicating that the modification of the 
polymer chains observed via TGA and SEM microscopy does not have a significant effect 
on the viscosity. As for the composites, the viscosity decreases in PVA-FLG (4%) and PVA-
FLG (8%), which is not related to the addition of FLG but to the decantation process that 
follows the sonication treatment. As described above, due to the decantation step applied 
in order to settle and remove the thicker part of FLG, well-stabilized supernatant suspen-
sions with a lower FLG concentration are recovered. The lower viscosity of the superna-
tants compared to PVA alone indicates that a part of the PVA settled down together with 
FLG, confirming the PVA–FLG interactions. With the subsequent stepwise addition of 
FLG, the viscosity increases, with the most concentrated sample almost reaching the same 
value as that for pure PVA. To check the impact of the decantation step, viscosity meas-
urements were also performed for the non-stabilized colloid (without decantation). As 
expected, the viscosity of such a composite is significantly higher than that of PVA alone. 
The change in viscosity in the presence of FLG is an important factor that needs to be 
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Figure 5. TGA (and DTG) analysis curves of PVA (a), PVA-FLG (b–d) composites, and PVA–sonic (e).

According to rheology, as shown in Figure 6a, the viscosity of pure PVA colloid
remains almost unchanged after ultrasonic treatment, indicating that the modification of
the polymer chains observed via TGA and SEM microscopy does not have a significant
effect on the viscosity. As for the composites, the viscosity decreases in PVA-FLG (4%) and
PVA-FLG (8%), which is not related to the addition of FLG but to the decantation process
that follows the sonication treatment. As described above, due to the decantation step
applied in order to settle and remove the thicker part of FLG, well-stabilized supernatant
suspensions with a lower FLG concentration are recovered. The lower viscosity of the
supernatants compared to PVA alone indicates that a part of the PVA settled down together
with FLG, confirming the PVA–FLG interactions. With the subsequent stepwise addition
of FLG, the viscosity increases, with the most concentrated sample almost reaching the
same value as that for pure PVA. To check the impact of the decantation step, viscosity
measurements were also performed for the non-stabilized colloid (without decantation).
As expected, the viscosity of such a composite is significantly higher than that of PVA
alone. The change in viscosity in the presence of FLG is an important factor that needs to
be optimized in the subsequent electrospinning process.
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The basic properties of electrospun fibers, such as electrical conductivity and mechan-
ical resistance, were investigated. As can be observed in Figure 6b, the addition of FLG
affects the mechanical properties, and in general the composites exhibit a higher tensile
modulus and tensile strength, with decreased ductility compared to PVA alone. The in-
crease in the FLG content from 4 to 8 wt.% results in an increased tensile strength without
significantly modifying the ductility, while further loading with FLG up to 16 wt. % has
a negligible effect on the tensile strength with the increase in elongation at break. Due to
the relatively high thickness of FLG flakes at this stage of development, the FLG content,
ensuring the notable improvement of the mechanical properties in the composites, is much
higher than that of the composites containing rGO [8,21]. As mentioned above, the most
significant advantage lies in the preparation method, which avoids the harsh conditions
needed to provide GO first (strong oxidants) and then rGO (e.g., hydrazine, temperature ≈
1000 ◦C). The improvement in mechanical performance is similar to that recently reported
for a multilayer film made from electrospun PVA fibers coated with electrosprayed rGO
flakes and then hot-pressed (22 MPa tensile strength and 34% elongation at break, 13.7%
rGO) [16]. The optimal results obtained here for the most charged composite show that
the FLG amount could be increased further. Higher FLG loading would also ensure the
conductivity of the films. In this context, the associated interconnected organization of FLG
with the fibers observed locally via SEM is also encouraging. The prepared fiber films are
not yet conductive even at the highest FLG loading, which is primarily attributed to the
intrinsic properties of FLG due to its still considerable thickness and/or the insufficiently
favorable distribution and arrangement of FLG inside the fibers and of the fibers themselves.
The phenomena of percolation are more complex than in the case of previously studied
drop-cast PVA-FLG films. The different structure of the components in the films produced
using both techniques makes them hardly comparable [9]. In drop-casted films, the optimal
mechanical improvement was observed for the composite containing 1%wt. FLG, while
charge percolation occurred at a loading of 3% wt.

4. Conclusions

The initial experiments involving the direct synthesis of FLG via the exfoliation of EG
in water with PVA to FLG-PVA colloids, followed by the efficient electrospinning of the
colloids into nanofibers films, show very promising results. Further optimization concerns
several parameters related to colloid synthesis (in order to obtain thinner FLG flakes) and
electrospinning. Regardless of the conductivity requirements, the presented engineering
concept may also be useful in other application areas, such as the medical sector and the
use of implants with enhanced mechanical properties.
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