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Abstract: The use of amine-based solvents for carbon dioxide (CO2) capture has shown significant
promise; however, operational challenges such as high energy requirements, solvent degradation, and
equipment corrosion highlight the need for enhanced solutions. This review focuses on identifying
amine-based solvents and additives that can improve CO2 capture efficiency while minimizing
costs and avoiding substantial modifications to existing industrial facilities. Specifically, the study
emphasizes the development of a comprehensive database of additives to optimize CO2 capture
processes. A detailed analysis of recent advancements in amine-based solvents was conducted,
with a focus on (i) process optimization strategies, (ii) sector-specific CO2 emission profiles, and
(iii) equipment issues associated with conventional chemical solvents. The study evaluates these
solvents’ kinetic and thermodynamic properties and their potential to address critical operational chal-
lenges, including reducing corrosion, solvent viscosity, and evaporation rates. The findings highlight
the pivotal role of amino group-containing compounds, particularly alkanolamines, in enhancing
CO2 capture performance. The structural versatility of these compounds, characterized by the pres-
ence of hydroxyl groups, facilitates aqueous dissolution while offering kinetic and thermodynamic
benefits. This review underscores the importance of continued innovation in solvent chemistry and
the integration of amine-based solvents with emerging technologies to overcome current limitations
and advance the implementation of efficient and sustainable CO2 capture technologies.
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1. Introduction

Carbon dioxide (CO2) is one of the significant waste gases from factory exhaust and
industrial activities, transportation, and electricity; these production sectors emit the most
CO2 by employing fossil fuels [1–3]. Most CO2-containing gases fall into typical gas
mixtures, such as fuel gas (H2 and CO2), flue gas (N2 and CO2), and CO2-containing gas
mixtures that comprise high CO2 concentrations (>15 mole%), such as natural gas, biogas,
landfill gas, and refinery gases [4–6]. As the concentration of greenhouse gases in the
atmosphere increases, effective CO2 emission reduction strategies, such as carbon capture,
utilization, and storage (CCUS), are required to counter this trend [7–13]. Moreover, a carbon
capture strategy is essential to prevent CO2 emissions from all possible sources [14–18].

Emerging technologies focus on developing advanced materials and innovative tech-
niques to enhance CO2 capture efficiency and selectivity. Approaches such as metal–organic
frameworks (MOFs) [19], solid sorbents (e.g., zeolites or clay/sand pellets) [20,21], covalent
organic frameworks (COFs) [22], and covalent microporous polymers (CMPs) [23] have
demonstrated potential due to their high porosity [24], structural stability, and tunable
functionalities for CO2 adsorption [25]. Electrochemical processes leveraging renewable
electricity to integrate CO2 capture with green hydrogen production [26] and membrane
separation technologies that offer modular, solvent-free solutions for CO2 capture are also
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gaining traction [27,28]. Additionally, advanced porous materials, including polymeric
and nanostructured adsorbents, are being developed to improve CO2 selectivity and effi-
ciency [29]. More ambitious methods, such as direct air capture (DAC) [30], aim to extract
CO2 directly from the atmosphere, promising net-negative emissions but facing challenges
such as low CO2 concentrations and high operational costs. Despite the significant advance-
ments, the scalability, and economic feasibility remain critical hurdles for the industrial
adoption of emerging technologies [31].

Conversely, mature technologies dominate industrial-scale CO2 capture due to their
reliability, scalability, and proven performance in diverse applications. Processes like amine-
based solvent absorption [32], widely used for post-combustion capture, are favored for
their high CO2 capture efficiency despite drawbacks such as high energy requirements for
regeneration and solvent degradation [33]. Pressure swing adsorption (PSA), temperature
swing adsorption (TSA), and vacuum swing adsorption (VSA) are established methods for
pre-combustion and high-purity CO2 capture, with VSA offering lower energy requirements
compared to TSA [34,35]. Cryogenic separation is suitable for streams with high CO2
concentrations, while calcium looping provides high thermal efficiency for large-scale
applications [34]. Additionally, oxy-fuel combustion produces concentrated CO2 streams
but faces challenges in retrofitting existing infrastructure due to high costs [36]. While
these technologies are well-suited for current industrial needs, continued evolution aims to
address energy intensity and integration challenges, creating opportunities for synergistic
advancements with emerging approaches. Table A1 summarizes the main advantages and
disadvantages of emerging and mature technologies for CO2 capture processes.

Chemical absorption with aqueous solvents has been the most reliable and promising
technology for CO2 capture after large-scale combustion [37]. It consists of reversible
reactions of CO2 with chemical solvents to form weakly bonded intermediate compounds
that can be regenerated by applying heat to the original solvent and CO2 stream [38].
Two technological approaches usually reduce the energy used for CO2 solvent regenera-
tion [39–41]: (a) new solvent development, either using a selective CO2 solvent or mixing
various solvents or additives, and (b) process optimization. Amine-based, carbonate-based,
aqueous ammonia, and ionic liquid-based systems are the standard systems for carbon
dioxide capture [42–46]. Among these technological options, the amine-based solvents are
the most mature technology and the most used worldwide [47–50].

Namieśnik and Zygmunt [51] stated that amines are organic compounds derived
from ammonia, like alcohols and ethers derived from water. Amines can be produced by
decomposing larger molecules, i.e., amino acids and ammonia synthesis [52]. In addition,
amines can be classified according to the number of alkyl (or aryl) groups attached to the
nitrogen atom as primary amines (with only one radical bonded), secondary amines (with
two radicals bonded), and tertiary amines (with three radicals bonded) [53]. Compared
to tertiary amines, primary and secondary amines may have mobile hydrogen atoms on
nitrogen, allowing for better performance [54]. Other amine-based solvents have also been
proposed for CO2 capture. Among these, heterocyclic amines stand out [55]. Heterocyclic
amines are compounds with at least one heterocyclic ring, a cyclic chemical structure with
two or more different elements [56]. Their reactivity in the capture process requires the
absorption of the acid-free carbonic proton produced by the interaction between CO2 and
water. Owing to its basicity (in virtually all amines), the amine–water reaction interaction
results in pH values higher than 8.5. Therefore, it facilitates faster CO2 reactivity. Piper-
azine [57,58] and 3-piperidine-1,2-propanediol [59] are examples of heterocyclic amines
used in CO2 capture processes.

Alkanolamines originate from primary amines [60]. This group comprises three com-
ponents: a hydroxyl group as the primary alcohol, an amino group as the primary amine,
and an alkane backbone. Secondary and tertiary alkanolamines, each composed of sec-
ondary and tertiary amines, contain one or more hydroxyl groups in their backbones [59,61].
The −OH group in alkanolamines reduces instability and favors solubility in water [62].
Altway et al. [63] stated that different amine-based solvents have been extensively stud-



ChemEngineering 2024, 8, 129 3 of 20

ied for CO2 capture purposes. Figure 1 shows the chemical structure of the most com-
monly used amines for CO2 capture—monoethanolamine (MEA), diethanolamine (DEA),
methyldiethanolamine (MDEA), piperazine (PZ), and diisopropanolamine (DIPA) [44,64].
The dominant mechanism for CO2 capture by these amines involves the formation of car-
bamates through a nucleophilic attack of the amine nitrogen on the carbon of CO2, forming
carbamic acid, which subsequently deprotonates to produce a carbamate ion. This reaction
is prevalent in primary and secondary amines, such as MEA and DEA [65]. In contrast,
tertiary amines like MDEA do not form carbamates directly, but promote CO2 capture
through the bicarbonate equilibrium by facilitating the conversion of dissolved CO2 into
bicarbonate ions [66]. Adding PZ as an activator in tertiary amine systems enhances the
reaction kinetics, enabling faster absorption rates [67].
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A formulated amine can generally be defined as an amine specifically designed to carry
out basic functions or simple tasks. Major solvent producers sell many patented solvents
based on formulated amines with a high degree of secrecy about the chemical composition
and the operational performance of these commercial solvents [68]. Nevertheless, formu-
lated amines are versatile chemical solvents suitable for industrial applications [68,69].
According to Koehler and Claffey [70], polyisobuteneamine (PIBA) has been widely used
for formulated amines. Chowdhury et al. [59] explored mixtures of amine sorbents, mainly
primary and tertiary or secondary and tertiary amines, for example, MEA and MDEA or
DEA and MDEA, respectively. These integrated components have higher reaction rates than
the primary and secondary amine solvents proposed for industrial gas processing. Amines
that are consumed in industrial processes have become impractical. Storage-deteriorated
amines need to be cleaned before use, and they are too expensive owing to amine loss
through oxidation and additional losses in cleaning processes.

Adding additives to chemical solvents could efficiently separate CO2 gas, such as
ionic liquids, surfactants, and physical and chemical absorbers [71,72]. Additives, such
as aqueous amine solvents, contain either a single amine or several amines. While single-
amine solvents are still commercially used, amine blends and formulated amines tend to
be rational alternatives for gas separation. Newly produced high-performance solvents
are also based on amine blends [66,68]. Several research studies have been focused on
discovering new mixed amine solvents, primarily concentrating on the laboratory scale [66],
and on conventional amine blends and/or additives to improve the capture processes of
current industrial technologies [73]. Capturing and releasing CO2 via a cyclical chemical ab-
sorption/regeneration mechanism is expected to result in more than half the cost of capturing
absorbent regeneration and reducing the energy consumption of absorbent regeneration [59].

Several amine solvent solutions have been studied. However, an ideal solvent has
not been found. One of the essential factors is implementing a closed process that allows
solvents to be reused at minimal environmental and economic costs. Researchers must al-
ways consider the overall effect of the implementation of new technology and how it can be
tested to provide solutions on a local or global scale [74]. Efforts by the scientific community
have focused on finding additives that improve carbon dioxide capture processes [75]. This
could be due to the increase in operational problems caused by conventional amines in their
industrial use, such as technologies employed in natural gas, petroleum, coal-fuel-fired
thermal power plants, and chemical process industrial units [76]. Furthermore, the high
capital required to acquire permits and licenses for formulated amines is confidential [77].
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Hence, this state-of-the-art review from the last 20 years focuses on scientific articles,
proceedings, and patents to identify chemical solvents and additives to improve the CO2
capture process in mainly amine-based solutions. The identification and classification of
chemical solvents and additives reduce typical problems related to amine usage, such as
volatility and corrosion of equipment and pipes, as well as reduce unscheduled downtime
as much as possible, high regeneration temperatures, and high energy consumption. An
extensive and in-depth study of chemical additives employed to enhance and improve
CO2 capture is carried out to establish the most effective options for choosing possible
additives for future studies. The chemical solvents and additives obtained are then classified
according to technical aspects, such as their performance and viability. Moreover, we
identify some characteristics when choosing different additives (as their efficiency might
come from kinetics or thermodynamic enhancement) and analyze the actual tendencies
within this field of investigation.

2. Methodology

A systematic search was conducted in several databases to ensure a comprehensive
review of amine-based solvents and additives that could improve CO2 capture, using
keywords aligned with the study’s objectives. First, the most effective characteristics for
choosing amine-based compounds as chemical solvents to enhance and improve CO2
capture were established. Second, the solvents and additives identified were classified
according to their technical aspects, such as their performance and feasibility. Finally, some
physicochemical characteristics of the kinetic and thermodynamic types were identified as
related to the stability of the derivatives formed by the interaction between CO2 and the
compounds. At the beginning of the study, the search focused on keywords and databases
centered on the study’s objectives, as indicated in Table 1. Therefore, the selection was
based on common words plus compound terms, and one more was added to the above
results to narrow down the search criteria. This study was based on a literature review
focused on the last 20 years consulting scientific articles, proceedings, and patents on
databases and search engines such as Scopus, Web of Science, Crossref, Google Patents,
SciFinder, and OnePetro.

Table 1. The establishment of keywords employed for the search in the search-motor database
was consulted.

Establishment Specific Words Variable Words

Amine-based solvents
Additives improvements CO2 capture amine

Classification; mechanism;
kinetics; formulated amines;

amine mixtures; solvents;
industrial problems; processes;
improvements; conventional;

renewable

Research Approach

More than 150 research articles were found, starting at the beginning of the 21st
century to 2024, where a clear tendency to increase research on amine-base compounds as
chemical solvents for CO2 capture exponentially was observed (Figure 2), with than 70% of
the publications in the period 2015–2014.

The scientific community’s effort to find additives that improve CO2 capture tends to
increase. This could be due to the increase in operational problems that conventional amines
cause in their industrial use, such as technologies employed in natural gas, petroleum, coal-
fuel thermal power plants, and chemical process industrial units [41]. Furthermore, the high
capital required to acquire permits and licenses for formulated amines is confidential [42].
There might be many cases that solve and prove this trend, but this study proposes one
by assuming that a chemical capture process undergoes amine-based blends composed of
additives. In that case, the capture process rate might increase, helping industrial operation
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units prevent their main problems like corrosion and reducing maintenance and energetic
costs, especially in countries that base their economies on oil and gas production.
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3. Challenges in Amine-Based Solvents Used in CO2 Capture Processes

Typically, the capture process that uses aqueous amines includes two units (Figure 3):
The first column, labeled the absorber, is where absorption occurs due to contact between
the sour gas and the chemical solvent in a countercurrent arrangement. The second column,
labeled the stripper, releases the previously absorbed CO2 and regenerates the chemical sol-
vent, which can be used again to promote absorption in the first column [78,79]. Additional
equipment, like pumps, condensers, and reboilers, must perform well in gas-processing
quantities and reduce energy consumption. The sweet gas must meet quality specifications
depending on downstream natural gas usage [80]. The CO2 content must be <1–2 mole% if
used as fuel gas [81].
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CO2 capture processes using aqueous amines as chemical solvents employ amine-
based compounds that have been thoroughly tested on laboratory and pilot scales to
study their ability to achieve high absorption potential, cyclic loading and cyclic capacity,
improved absorption rate, low solvent regeneration energy, decreased corrosion, and
thermal degradation [82]. The effectiveness of several chemical solvents depends not only
on their CO2 absorption capacity and efficiency, particularly the role of the thermodynamic
solution, but also on their kinetics [83–85]. It has been shown that using amines as additives,
the most widely used chemical solvents to capture and sequester carbon dioxide, is an
exciting option for improving the overall performance [72,86].

Most amine-based chemical compounds and blends have been employed as 10–65 wt.%
solutions in deionized or distilled water [40,60,82,87,88]. However, it is essential to mention
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that in various processes, amines can vary their concentrations as a function of the desired
grade of capture, operational arrangements of the industrial plant, or even the character-
istics of the gas current employed due to corrosion problems [89]. Higher concentrations
can reduce the circulation of amines and increase absorption temperature and corrosion
rate. Amine units can usually meet performance promises and have no operational issues
during early service. However, device efficiency typically deteriorates with time, primarily
due to the build-up of pollutants and impurities and lack of maintenance [40].

A single method cannot be selected based only on the solution flow rate when employ-
ing amine-based compounds as chemical solvents. Consequently, it is essential to point out
the typical characteristics of conventional amines. Chemical solvents employed as aqueous
amines have advantages and disadvantages [90], as illustrated in Table 2.

Table 2. Advantages and disadvantages of amine-based technology for CO2 capture.

Advantages Disadvantages

• Less volatile
• Good stability of absorbent
• Enhancement role used as additives
• Mature technology

• Low carbon dioxide loading capacity
• The high corrosion rate of the equipment
• Amine oxidation by SO2, NO2, HCl, and

HF, and the presence of oxygen in the
natural gas stream

• High energy consumption during
high-temperature absorbent regeneration

• Toxicity and environmental issues
• High capital costs (CAPEX) and

operational costs (OPEX)

Amine solvents can cause operational problems in absorption units [91], which can be
mitigated by maintaining a temperature approach between the lean amine and feed gas,
skimming hydrocarbons from rich amine flash drums and reflux drums, and improving
particulate filters and carbon filters [37,40,92,93]. The drawbacks of the most common
amines employed in the capture process are as follows [64,94–96]:

1. Low carbon dioxide loading capacity. The solubility of CO2 in the liquid phase is essential
for adequately measuring the absorption effectiveness. As a result, replacing water
in amine solvents with organic co-solvents such as alcohols will also increase the
physical solubility of CO2 in solutions, enhance solvent regeneration performance,
and reduce regeneration costs. However, the elevated volatility of co-solvents is a
drawback for industrial applications. In addition, the higher viscosity of organic
solvents such as amines may harm the heat exchanger efficiency, absorption kinetics,
and pumping costs [91].

2. High corrosion rate of the equipment. CO2 capture systems as amine-based chemical
solvents are used in industrial processes, which may corrode lines and equipment
owing to their chemical nature, leading to bicarbonate and carbamate species [97,98].
Some techniques have been implemented, such as incorporating corrosion inhibitors
or introducing alternate absorption liquids [99–101]. Electrochemical tests must be
performed to clarify the potential harm incurred by the preceding evidence [102].
Other operational problems include solvent chemical instability, which is more prone
to using primary and secondary amines than tertiary amines [103].

3. Amine oxidation by SO2, NO2, HCl, and HF, and the presence of oxygen in the natural gas
stream. Oxidative degradation of amine solutions reduces CO2 capacity absorption
and can increase corrosion in natural gas treatment facilities [104,105]. Vega et al. [106]
summarized the main degradation products of the common amine-based solvents.

4. High energy consumption during high-temperature absorbent regeneration. In comparison,
mixed amine solvents can lead to a lower circulation flow rate, which means smaller
equipment sizes and lower capital and operational costs [91]. Using an alkanolamine,
such as a liquid absorbent, causes variable debris and operative problems such as
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corrosion, volatility, and thermal degradation at 100–150 ◦C, making it difficult to
control. Therefore, the use of power and cost is high and may increase in each
absorption process [107]. Thus, developing improved chemical methods for CO2
capture processes is required to prevent high temperatures and mitigate their adverse
effects [108,109]. The amine degradation activity can result in the loss of solvents,
accumulation of byproducts, foaming, and corrosion, significantly affecting the CO2
capture efficiency [110]. Moreover, as is well known in industrial applications, a
high-grade amine vaporization loss arises in the absorber when the sweet gas escapes
and is saturated with water at a higher temperature.

5. Toxicity and environmental issues. Solvent emissions are a severe problem in the in-
dustrialization of the amine-based CO2 capture process [111]. Amine-based solvent
degradation during operation, driven by thermal and oxidative stresses, generates
harmful byproducts such as nitrosamines, nitramines, and aldehydes, which can pose
risks to human health and ecosystems. Nitrosamines, in particular, are classified as
potential carcinogens and have strict regulatory limits in many jurisdictions [112].
Additionally, amines and their degradation products can leach into water systems if
they are not properly managed, leading to contamination and ecological harm [113].
The corrosive nature of amine solutions also contributes to increased maintenance and
material costs, potentially exacerbating waste management issues, as corroded mate-
rials require disposal [114]. Advanced solvent formulations with improved thermal
and oxidative stability can reduce the formation of hazardous byproducts. In contrast,
process design improvements such as effective byproduct removal and closed-loop
systems can minimize environmental release.

6. High capital costs (CAPEX) and operational costs (OPEX). CAPEX is associated with
the equipment required for CO2 absorption and amine-based solvent regeneration.
Developing new equipment materials and process optimization could help reduce the
capital cost for existing and new industrial facilities [115–117]. For its part, OPEX is
associated with plant operation and maintenance issues; these costs can be minimized
by reducing the viscosity and foaming of the aqueous solution, reducing the amine
loss through evaporation, lowering energy consumption in the solvent regeneration
unit, and reducing the corrosion rate. Some additives have been tested to improve
the operational performance of amine-based solvents, e.g., imidazolium-based ionic
liquids can reduce the viscosity [118], piperazine and bicine control the foam for-
mation [119], and ionic surfactants can reduce the energy requirement in the amine
regeneration processes [120]. Blending two or more amines has been recognized as an
efficient strategy to formulate competitive liquid sorbents, as it allows one to benefit
from the advantages of each individual amine, improving the CO2 absorption and
desorption rates and energy consumption during the regeneration process [73].

4. Amine-Based Solvents and Additives to Improve the CO2 Capture Process
4.1. Classification According to Their Chemical Nature

A classification based on the origin of the compounds was performed, focusing on
their chemical nature, as shown in Table 3. Extensive research has been conducted on
chemical solvents, additives, and promoters to improve CO2 absorption. According to their
chemical nature and engineering aspects, the criteria for classification are conventionally
named products employed in the CO2 capture process. The additives were grouped into
primary, secondary, and tertiary amine categories. Additional classifications correspond to
other amine compounds with structures different from those of primary, secondary, and
tertiary amino acids (containing a mixture). Some other compounds that do not contain
amines in their chemical structures but remain as chemical solvents are also classified
as other chemical compounds. The chemical compounds were classified into families
because it is necessary to manage the information efficiently. However, this study found
that additives are not just close to kinetic or thermodynamic improvements. Additives
can also control foaming production or protect the available equipment to avoid corrosion.
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Hence, chemical solvents as additives/promoters to improve chemical absorption are at the
forefront of investigative applications. The main benefit comes from the existence of these
chemical additive (purchasable) compounds. Its utilization is being tested, and the current
infrastructure does not need to be transformed or adapted for its implementation. Details
of each compound identified in this study can be found in the Supplementary Materials.

Table 3. Abbreviations in the classification of amine-based solvents and additives.

Chemical Nature
(Abbreviation) Compounds Identified Compounds [References]

Alkanolamine Family
(AAM) 43

AMP [85,121–126]; AMPD [121]; AEDP [121,124]; THAM [121,127];
MEA [78,85,96,122–126,128–134]; DEEA [59,60,87,108,134–138];
AEEA [122,126,131,136]; AEP [122]; DMEA [59,60,108,126,137];

DMA-1P [59,60]; DEA-1P [59,60]; DMA-2P [59,60]; DEA-2P [59,60];
DIPAE [59]; DMA-2M-1P [59,60]; DMA-2,2-DM-1P [59];

4EMA-2B [59]; EDEA [59,135]; IPDEA [59,123]; tBDEA [59];
DMA-1,2-PD [59,60]; DEA-1,2-PD [59,60]; TEA [59,139];
MDEA [59,60,78,85,88,96,123,124,126,129,137,139–145];

DEAB [60]; DEA [78,96,123,124,126,131,145]; MAMP [123];
EAMP [123]; IPAE [123]; IBAE [123]; SBAE [123]; MMEA [124,126];

NBMEA [124]; TBMEA [124]; EMEA [124,135]; DIPA [124];
AMPDI [124]; MAPA [87,129]; TEPA [129]; DGA [85]; TIPA [137,139];

triMEA [126]

Heterocyclic Amines
(HCA) 21

PZ [78,85,122,124,131,146,147]; NMP [146,148]; IMI [146];
4-A1MPD [134]; 1-(2HE)PRLD [59]; PRLD-1,2-PD [59]; 1-(2HE)PP [59]; 3PP-1,2-PD [59];

1M-2PPE [59,123]; 3H-1MPP [59]; 1E-3HPP [59];
AEPI [88,143,149]; BTA [140]; H [149]; SRT [149]; 2-PMA [149];

2-2-AEP [149]; 4-2-AEM [149]; NFM [148]; PYR [139]; DMP [126]

Amino Acids
(AmA) 12

Arg [142,150]; L-His [149]; D-His [149]; L-Phe [149]; D-Phe [149];
L-DOPA [149]; D-DOPA [149]; L-Trp [149]; D-Trp [149]; L-Tyr [149];

D-Tyr [149]; 4-A-L-Phe [149]

Amine Family
(AF) 10

BEHA [78]; N,N-DM13PDA [134]; N,N-DM12EDA [126,134];
TMEDA [110,126]; TMPDA [110]; TMBDA [110]; EDA [43,78,135];

DETA [129,141]; TETA [88,129,141]; TELA [78,85]

Ionic Liquids
(IL) 10

[EMIM]BF4 [71]; [EtOHMim][PF6] [151]; [EtOHMim][BF4] [151];
[EtOHMim]Cl [151]; [Choline][PF6] [151]; [Choline][BF4] [151];
[Choline]Cl [151]; 2-PHEN [152]; 3-PHEN [152]; 4-PHEN [152]

Organic Salts
(OS) 5 TBAB [71,153,154]; TBAF [155]; TBAC [153]; TBPB [152,153];

TBPC [153]

Alcohols
(Al) 3 TEG [146]; MeOH [131,156]; PHEN [152]

Antifoam Emulsions
(AE) 2 SAG 7133 [140]; VP 5371 [140]

Catecholamines
(Cam) 2 DA [149]; ADR [149]

Cyclic Esters
(CEs) 2 PC [71,148]

Cyclic Ethers
(CEt) 2 PEGDME [148]; THF [153,154]

Corrosion Inhibitors
(CI) 1 CRO27005 [140]

Inorganic Compounds
(IC) 1 AM [121,151]

Resines
(R) 1 Amberlite IRA-402 [108]

Surfactants
(S) 1 SDBS [71]

Thiophenes
(TF) 1 SUF [146,148]

Note: The full names and CAS registry numbers of all additives listed above are available in the Supplementary
Materials.
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Figure 4 shows the percentage of additives being used as promoters in the chemical
absorption of carbon dioxide. The compounds with amines in their structure are separated
into four groups because of their nature; the remnant components are described as each
one’s chemical family. It is also important to clarify that the compounds described in
Figure 4 are mainly used as promoters, considering the employment of a base solution
(unrelated to basicity) as the support or template of the chemical experiments and how the
promoters show their improvements. Regarding additives, compounds containing amine
groups in their structure are the most commonly employed in carbon dioxide capture,
representing 74% of the total compounds.
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The primary group of compounds used in CO2 capture processes is the alkanolamine
family, which is formed mainly by primary alkanolamines (composed of primary amines
and alcohols). Other groups are secondary and tertiary alkanolamines, formed by secondary
and tertiary amines and one or more hydroxyl groups. To unite all alkanolamine groups, an
alkanolamine family was established. These are the most frequent additives that enhance
the capture process because the alcohol group increases their solubility, avoiding the
blend’s major viscosity problems. Reciprocal alkanolamines are widely developed as
promoters because of their availability at purchase and use; they are the most commonly
employed chemical solvents in industrial applications. Here lies the most typical amine
MEA. This group’s most typical secondary and tertiary amines are DEA and MDEA,
respectively. These amines are also considered base solutions because of their current
industrial applications. Many types of research have commonly evaluated their possible
improvements, such as Liu et al. [60] and You et al. [121], who stated that low-energy
regeneration has drawn a great deal of interest in absorption compared to other traditional
amine absorbents.

The second group consists of amine-cyclic-based additives and heterocyclic amines.
Their names reveal their forms and importance, mainly as kinetic promoters, which will
be explained below. The most studied additive in this category has been piperazine
(PZ), which consists of a six-membered ring, four carbons, and two nitrogens in opposite
positions. PZ can be considered a new standard for CO2 capture technology [147] due to its
“high absorption rate, good stability, low viscosity, and high capacity” [146].

The third group corresponds to amino acids that have appeared in recent years.
Many studies have been conducted to justify their new importance as additives in the
capture process. According to Bavoh et al. [157], amino acids have chemically more robust
interactions with water through zwitterion mechanisms and can be more environmentally
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friendly. The next group is ionic liquids (IL); these compounds have the same characteristics
as amino acids, i.e., the strong electronic interaction between the compounds and CO2 [46].
Their stability is also higher than that of the conventional additives. However, it is challenging
to synthesize ionic compounds as they require specific ambient conditions and are among the
most expensive compounds to investigate [158]. Additionally, the use of IL has been proposed
to increase exponentially over time, as stated in the investigation by Haider et al. [158].

In addition, one of the major groups is the amine family. This group is composed of
smaller families that contain only amine groups. The four smaller ones are monoamines,
consisting of compounds with only one amine group; diamines, consisting of two amine
groups; triamines, consisting of three amine groups; and tetramines, consisting of four
amine groups, depicting the presence of primary, secondary, or tertiary amines.

As seen in Figure 4, the alkanolamine family, heterocyclic amine, amino acid, ionic
liquid, and amine family comprise the top five employed additives. These compounds are
called the big five compounds because they represent 83% of the total additives considered
in this study. Smaller percentages are compounds with no amine groups, which might
cause their use. They include organic salts, alcohols, surfactants, catecholamines, antifoam
emulsions, inorganic compounds, cyclic esters, cyclic ethers, corrosion inhibitors, thio-
phenes, and resins. Most of them can be related to additives. Their efficiency is not focused
on improving the in situ capture process itself, but instead on improving the technical
aspects of capture, such as foam formation or one of the process’s significant problems,
such as corrosion.

Blended solvents, composed of an amine blend and some chemical additives, have
been proposed to overcome the limitations of chemical absorption with amine-based sol-
vents. The benefits of amine blends are also limited to individual amines on the market [123].
Gómez-Díaz et al. [84] studied the effect of primary amines (MEAs), secondary amines
(DEAs), and tertiary amines (TEAs) on absorption with and without the addition of CO2
with a purity of 99.99%. They demonstrated that the primary reaction was carbamate
formation when MEA and DEA were employed. The stability of DEA-carbamate was lower
than that of MEA-carbamate because of the higher steric hindrance of DEA. Therefore, it
reduced the overall rate and lowered the absorption value. Because TEA reacts differently
with CO2 and water, it has a different absorption value. If an additive is added to amines,
their properties change. Gómez-Díaz et al. [84] concluded that the absorption efficiency of
amines can be disposed of according to the following scale: DEA < MEA < TEA. This scale
can be modified by incorporating various additives, with the primary objective being the
investigation of kinetic or thermodynamic additives to enhance its properties. An example
of kinetic and thermodynamic promoters occurs in MEA in the presence of sodium dodecyl
sulfate (SDS); tetra-n-butylammonium bromide (TBAB) can increase the mass transfer rate
and solubility in the presence of the additive, respectively [159].

Another study of conventional MDEA was conducted by Wang et al. [88]: A mixture
of simulated carbon dioxide and nitrogen flue gas was combined to perform this exper-
iment, with no further purification (99.99%) and distilled water. It was prepared under
two conditions: absorption and desorption. The amine additives were triethylenetetramine
(TETA) and 1,3-Diamino-2-propanol (AEP), each employed with different compositions
at vol%, one with the conventional amine and distilled water; the other with the amine
additive TETA and distilled water; and the final with MDEA, TETA, AEP, and distilled
water at different compositions. The experiment was conducted at 25 ◦C with 1 bar of
absorption and 100 ◦C with 1 bar for desorption. It was observed that the viscosity and
concentration of the amine blend increased with the addition of additives. The results
indicate that the absorption capacity increased with the addition of additives to the amine
base solution. These results also recalled that the activation effect of the chemical solvents
was much better than expected, as MDEA < MDEA + TETA < MDEA + TETA + AEP.
Similarly, the desorption efficiency of the additives also improved as solvents were added.
However, the negative effect reflected in the experiment was the increase in viscosity;
thus, it was confirmed that there was a noticeable increase in viscosity with an increasing
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volume fraction of additives. Even though the experiment revealed no direct relationship
between the absorption performance and viscosity, an additional negative effect was the
low desorption efficiency.

4.2. Improvements in the CO2 Capture Process

According to the additive classification, the analysis proposed in this study reveals
the different improvements of the additives’ different families. The results are shown in
Figure 5. The final classification of additives can be divided into enhancements that directly
affect the capture process per se and others that involve enhancements that prevent specific
problems in the equipment and around the process.
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Thermodynamic enhancements are related to those that affect the solubility, vis-
cosity, evaporation, and physicochemical properties of the additives in the blends. For
example, You et al. [121] employed different alkanolamines as additives, such as AMP
(2-amino-2-methyl-1-propanol), AMPD (2-amino-2-methyl-1,3-propanediol), AEDP (2-
amino-2-ethyl-1,3-propanediol), and THAM (tri(hydroxymethyl) aminomethane), to test
their efficiency as thermodynamic promoters to avoid evaporation in the experiment,
demonstrate it in different graphs of removal efficiency, and quantify the results at the
scale of weight loss. In addition, Xu et al. [151] used different ionic liquids to test their
efficiency. The results are shown as the variation in CO2 concentration for the different
additives in the treated gas, the variation in the blend concentration in the process, and
a comparative table of the total CO2 capacity in blended solutions. This gives the final
result of the improvement in both experiments; thus, the thermodynamic improvement
is confirmed. Kinetic enhancements are based on the reaction mechanism that can be
macroscopically observed during the tests and at the absorption–desorption rate. Xiao
et al. [134] tested different amine compounds, an alkanolamine, two diamines, and one
heterocyclic amine, such as DEEA (diethylethanolamine), N,N-DM13PDA (N,N-dimethyl-
1,3-propanediamine), N,N-DM12EDA (N,N-dimethyl-1,2-ethanediamine); and 4-A1MPD
(4-amino-1-methylpiperidine), respectively. The evaluation was performed to observe the
absorption curves versus carbamate formation rate data of carbamate bicarbonate concen-
trations versus CO2 loading. Wang et al. [86] studied the influence of TETA and AEP in
MDEA. The CO2 absorption capacity, average CO2 absorption rate, and absorption and
desorption rates were quantified as a function of time. Both experiments resulted in an
improvement in absorption rates, which confirmed the improvement in kinetic efficiency.
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At this point, a few compounds may reflect both improvements, as suggested by
the analysis of different studies that or many not contain dual information. Yuan and
Rochelle [146] investigated the effects of piperazine (PZ) with different additives. The
results reflected an improvement in viscosity and solubility with piperazine usage, which
can be categorized as a thermodynamic improvement according to the present study’s
classification. On the other hand, piperazine blends also exhibited an increase in the
CO2 absorption rate capacity, cyclic capacity, and average absorption rate, which in this
study can be reflected as a kinetic improvement. Finally, the other enhancements were
strongly related to the surroundings of the capture process, as foam can be produced
during this process. Antifoam emulsions were then added to control this formation.
Mota-Martínez et al. [140] investigated it and studied the effect of corrosion inhibitors on
the blends. Vullo et al. [149] studied the effect of additives, such as amines and amino acids,
which slightly improved the kinetic parameters of the blends. This category is located
within others because the effects have been proven in the catalytic processes of carbon
anhydrases when analyzing the investigation results. Thus, this process can be stigmatized
at a much smaller scale than that proposed in this study. Additionally, the first study can
reduce the maintenance frequency of the absorption–desorption equipment.

5. Final Remarks and Perspectives

This extensive research review of different articles and their subsequent classifications
according to the characteristics of the additives made it possible to classify them according
to their chemical nature. It has been shown that amine compounds, specifically alka-
nolamines, are the primary group and the most employed additives because of their high
percentage of use to improve CO2 capture. Few additives enhance industrial operability
compared to those that can improve kinetic and thermodynamic conditions. Both are the
most desirable because they are the source of the most significant improvements, such
as reducing additive volatility, decreasing viscosity, or increasing capture rate. Likewise,
avoiding changes in current capture units by considering new additives does not affect the
economy of industries or the environment. It is suggested that the selection or design of
tertiary alkanolamines should be made with linear alkanol chains instead of branched ones
for better CO2 capture performance in industrial applications.

Amine-based solvents remain a cornerstone of CO2 capture technology due to their
high capture efficiency and seamless integration with existing infrastructure, particularly
in post-combustion applications. Despite their widespread adoption, these solvents are
hindered by several challenges, including substantial energy requirements for solvent
regeneration, chemical degradation leading to byproduct formation, equipment corrosion,
and environmental concerns associated with waste management [64]. To address these
limitations, ongoing research is advancing the development of next-generation amine-based
solvents. Innovations such as blended amine formulations and novel solvent chemistries
are being explored to reduce energy consumption, enhance thermal and oxidative stability,
and minimize corrosivity [160]. Complementary process optimization strategies, including
advanced heat integration techniques, intercooling, and energy recovery systems, aim to
improve overall operational efficiency [118]. Furthermore, integrating renewable energy
sources into the regeneration process presents an opportunity to significantly reduce the
carbon footprint of these systems [161].

The integration of amine-based solvents with emerging technologies also holds con-
siderable promise. Hybrid systems that combine amine solvents with technologies such as
membranes or solid sorbents could capitalize on the strengths of each approach, potentially
achieving greater efficiency and flexibility in CO2 capture [162]. These advancements
highlight the enduring relevance of amine-based solvent technologies. However, their
future success depends on continued innovation to mitigate environmental and economic
impacts while maintaining scalability and reliability for industrial applications [163].
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Appendix A

Table A1. Advantages and disadvantages of emerging and mature technologies for CO2 capture.

Category Technology Advantages Disadvantages

Emerging
technologies

Metal-Organic
Frameworks (MOFs)

High selectivity and
tunable structures;

low regeneration energy; potential
for direct air capture.

Limited scalability; high material costs;
stability challenges under

industrial conditions.

Solid sorbents
(e.g., zeolites)

Reusable; reduced energy
requirements; lower environmental
impact compared to liquid solvents.

Sensitivity to humidity; performance
degradation over multiple cycles;

limited CO2 loading capacity compared
to liquid systems.

Covalent Organic
Frameworks (COFs)

High porosity and
structural stability;

tunable functionality for
CO2 selectivity;

low regeneration costs.

Limited scalability; challenging
synthesis methods; potential

degradation in industrial
environments.

Covalent Microporous
Polymers (CMPs)

High surface area and CO2 affinity;
lightweight and chemically robust;

customizable functionality.

Expensive synthesis; lower CO2
capture capacity compared to some

MOFs; potential difficulty in
scaling production.

Electrochemical
processes

Low-temperature operation; direct
utilization of renewable electricity;
integration with green hydrogen.

High operational costs; limited
industrial deployment; lower capture

rates in current designs.

Membrane separation
Compact design; no chemical

solvents required; modular
scalability.

Low CO2 purity for some applications;
susceptibility to fouling;

energy-intensive compression required
for high-pressure streams.

Direct Air Capture (DAC)
Captures CO2 directly from

ambient air;
potential for net-negative emissions.

High energy and cost demands; low
CO2 concentrations in air require large

processing volumes.

https://www.mdpi.com/article/10.3390/chemengineering8060129/s1
https://www.mdpi.com/article/10.3390/chemengineering8060129/s1
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Table A1. Cont.

Category Technology Advantages Disadvantages

Mature
Technologies

Chemical solvents
(e.g., Amine-based solvents)

High capture efficiency; proven
scalability; compatibility with

existing infrastructure.

High energy consumption for
regeneration; solvent degradation and

corrosivity; high capital and
operational costs.

Pressure Swing
Adsorption (PSA)

Well-suited for pre-combustion
capture; rapid cycle times; no
chemical solvents required.

Requires high-pressure gas streams;
limited effectiveness for

low-concentration CO2 sources;
energy-intensive compression.

Temperature Swing
Adsorption (TSA)

High selectivity for CO2; effective
for low-pressure or dilute gas
streams; simple regeneration.

High energy requirements due to
heating; slower cycle times because of

thermal inertia.

Vacuum Swing
Adsorption (VSA)

Lower energy requirements
compared to TSA; faster cycle times;

effective for high-concentration
streams.

Requires robust vacuum equipment;
less effective for dilute or very

low-pressure gas streams; higher
capital and maintenance costs.

Cryogenicseparation
Produces high-purity CO2;

well-suited for gas streams with
high CO2 concentrations.

Very energy-intensive due to cooling
requirements; high capital costs;

limited viability for dilute CO2 sources.

Calcium looping
High thermal efficiency; suitable for
large-scale applications; regenerable

sorbents.

High-temperature operation; potential
for sorbent attrition; requires

integration with existing industrial
processes.

Oxy-fuel Combustion
Produces a concentrated CO2
stream, simplifying capture;

integrates with power generation.

Requires oxygen separation, which is
energy-intensive; retrofitting existing

systems is complex and costly.
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