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Abstract: Density functional theory (DFT) and molecular dynamics (MD) simulations
were employed to investigate the inhibition mechanism of cationic quaternary ammonium
surfactant corrosion inhibitors (CIs) with varying chain lengths in 1.0 M HCl and 500 ppm
acetic acid on Fe (110) surfaces. DFT calculations demonstrated that all surfactant CI
molecules possess favorable inhibition properties, with the cationic quaternary ammonium
groups (N+) and alpha carbon serving as electron-donating reactive centers, characterized
by a low band-gap energy of 1.26 eV. MD simulations highlighted C12, with a 12-alkyl
chain length, as the most promising CI molecule, exhibiting high adsorption and binding
energies, a low diffusion coefficient, and a random distribution at low concentrations,
thereby facilitating optimal adsorption onto the Fe (110) metal surface. The insights gained
from computational modeling regarding the influence of alkyl chain length on inhibition
efficiency, coupled with the comprehensive theoretical understanding of cationic quaternary
ammonium surfactant CI molecules in acidic corrosion systems, can serve as a foundation
for the future development of innovative surfactant CI molecules incorporating ammonium-
based functional groups.

Keywords: corrosion inhibitor; quaternary ammonium; MD simulation; DFT calculation;
adsorption

1. Introduction
Corrosion is defined as degradation of materials, with consequent diminution of

their properties, due to deteriorative interactions with environments to which they are
exposed [1]. The environments that are usually exposed to pipelines that can enhance
the corrosion rate are corrosive media such as dissolved H2S, Cl2, O2, and CO2. Another
environment faced by pipelines in petroleum industries is organic acid condition. The
presence of organic acid increases the solubility of corrosion product films, leading to the
reduction in protective corrosion products. The presence of these acids will increase the

ChemEngineering 2025, 9, 7 https://doi.org/10.3390/chemengineering9010007

https://doi.org/10.3390/chemengineering9010007
https://doi.org/10.3390/chemengineering9010007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemengineering
https://www.mdpi.com
https://orcid.org/0000-0003-3345-6453
https://orcid.org/0000-0003-0599-0261
https://orcid.org/0000-0002-0252-417X
https://orcid.org/0000-0003-3451-9719
https://doi.org/10.3390/chemengineering9010007
https://www.mdpi.com/article/10.3390/chemengineering9010007?type=check_update&version=1


ChemEngineering 2025, 9, 7 2 of 15

hydrogen concentration and the acidic environment that favors the corrosion attack towards
the metal surface. Among all organic acids, acetic acid is the most abundant, produced by
the reaction between hydrocarbons in crude oil, water molecules, and chemicals used to
enhance the oil recovery process [2,3].

Corrosion-resistant alloys (CRAs), protective coatings, corrosion inhibitors, and ca-
thodic protection are commonly employed in the petroleum industry to control corrosion.
While CRAs and corrosion inhibitors are effective in reducing internal corrosion caused by
corrosive fluids, which can lead to the degradation of processing equipment and pipelines,
corrosion inhibitors are widely regarded as a highly economical and efficient method for
mitigating internal corrosion [4]. A review by Xiong et al. [5] has stated that the surfac-
tant molecules can perform as corrosion inhibitors due to their high affinity to adsorb
over the interface, resulting in a higher potential in resolving corrosion issues over metal
surfaces. Verma et al. [6] also stated that the corrosion inhibition performance of surfac-
tants is based on the surfactant molecules’ adsorption capacity over the metal surface’s
reactive sites. Cationic quaternary ammonium surfactant is a surfactant compound that
contains a hydrophilic head (N+) and a hydrophobic tail (alkyl chain) that is an excellent
corrosion inhibitor due to its properties that could be adsorbed on the metal surface and
form a protective layer [7]. The strong adsorption of nitrogen atoms from the cationic
quaternary ammonium surfactant molecules on the metal surface leads to the formation
of an adsorption film that separates the metal from the corrosive medium [8]. In 2021,
Abdellaoie et al. [9] found that cationic quaternary ammonium surfactant, namely, 12-(2,
3-dioxoindolin-1-yl)-N,N,N-trimethyldodecanammonium bromide, has a higher inhibi-
tion efficiency (95.9%) at a concentration of 1.0 mM in the presence of 1.0 M HCl at a
temperature of 298 K. Moreover, Alnajjar et al. [10] synthesized N,N-dimethyl-N-(3-((2-
nitrophenyl)sulfonamido)propyl)dodecan-1-aminium iodide, another cationic quaternary
ammonium surfactant, and found that this surfactant was able to increase the inhibition
efficiency up to 98.6% in the presence of 15% HCl solution. Numin et al. (2022) highlighted
the prevalence of cationic quaternary ammonium (N+) as a key functional group in sur-
factant inhibitor design [11]. Thus, developing novel surfactant inhibitors using N+ as a
headgroup could offer significant potential for corrosion mitigation.

Adsorption is critical for the inhibitory activity of surfactant-based corrosion inhibitors.
Numin et al. emphasized the importance of understanding adsorption properties for
elucidating inhibition mechanisms [11]. Computational simulations, including DFT and
MD, can provide valuable insights into these properties. For instance, Zhu et al. (2021)
demonstrated that Gemini surfactant 10-12-10, predicted to have lower bandgap energy
and higher adsorption energy, exhibited superior corrosion inhibition compared to its
monomeric counterpart 1227 [12]. This correlation between computational predictions
and experimental observations underscores the potential of computational simulations
for screening and predicting surfactant inhibitor performance. In 2019, Gao et al. studied
the effect of the alkyl chain of cationic quaternary ammonium cationic surfactants on
corrosion inhibition in HCl solution experimentally. They found that the dodecyl trimethyl
ammonium chloride (DTAC) performed the best with the highest inhibition efficiency of
>90% [7]. However, the in-depth study on the adsorption mechanism of cationic quaternary
ammonium cationic surfactants by computer simulation methods is limited. The previous
researchers only focused on the strong acidic conditions such as HCl, sulfuric acid (H2SO4),
and phosphoric acid (H3PO4), and there is a lack of studies in acetic acid (CH3COOH)
conditions, which are more applicable in the petrochemical industries’ pipelines. Thus, this
study focuses on the adsorption mechanism of cationic quaternary ammonium surfactants
with varying alkyl chain lengths (C10, C12, C14, C16, and C18) on Fe(110) surfaces in the
presence of HCl and acetic acid, using DFT calculations and MD simulations.
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2. Materials and Methods
2.1. Density Functional Theory (DFT) Calculation

DFT calculations offer a rapid and reliable method for predicting the electronic proper-
ties of corrosion inhibitors, enabling theoretical analysis of their electronic structures [13]. A
compound’s electronic properties directly influence the adsorption behavior of ammonium
surfactant cationic CIs on metal surfaces. Using the TmoleX software 4.0, DFT calculations
were performed on ammonium surfactant CIs with varying alkyl chain lengths (C10, C12,
C14, C16, and C18). These calculations employed the hybrid B3LYP functional [14,15] and
the def-SV(P).h basis set [16,17] in a non-aqueous, vacuum environment. The input file was
generated for ground-state calculations under DFT settings, and the resulting parameters
were visualized and analyzed using the TmoleX program.

The output parameters calculated include the highest occupied molecular orbital
energy (EHOMO) and the lowest unoccupied molecular orbital energy (ELUMO). Then,
both HOMO and LUMO energy were used to calculate the other inhibition parameters of
ammonium surfactant cationic CI molecules, such as band-gap energy (∆E), number of
transferred electrons (∆N), electronegativity (χ), hardness (η), softness (σ), ionization po-
tential (I), and electron affinity (A). The derived output parameters, equation, description,
and reference are tabulated in Table 1.

Table 1. The output parameters, equations, descriptions, and references for the DFT calculation.

Parameters Equation Description Reference

EHOMO From DFT Ability to donate electrons [18]
ELUMO From DFT Ability to accept electrons [18]

∆E ∆E = ELUMO − EHOMO Reactivity of the molecules [18]
I I = −EHOMO Ability to donate electrons [19]
A A = −ELUMO Ability to accept electrons [19]
χ χ = I+A

2 Ability to attract electrons [20]

η η = I−A
2

Resistance towards the deformation of
electron cloud around the molecules [20]

σ σ = 1
η

Capacity of an atom or groups of atoms to
receive electrons [21]

∆N ∆N = χFe−χinh
2(ηFe+ηinh)

The number of electron transfers from
molecules to metal surfaces [22,23]

2.2. Molecular Dynamics (MD) Simulation

MD simulations have been employed to investigate the molecular-level interactions
between corrosion inhibitors and corrosion systems in the presence of acetic acid. These
simulations can provide insights into the molecular orientation of CI molecules on metal
surfaces, the strength of adsorption, and the aggregation behavior of CI molecules at various
concentrations [24]. The initial coordinates of C10, C12, C14, C16, and C18 CI molecules
were submitted to the Automated Topology Builder (ATB) and Repository Version 3.0 server
to obtain optimized geometric, chemical, and topological information. The metal surface
used in this simulation was Fe (110) because it is a densely packed surface and, therefore,
the most stable [25]. In the adsorption energy (Eads) and binding energy (Ebind) calculation,
each CI molecule filled the center of the box with a size of 51.60, 51.60, and 77.40 Å. The Fe
(110) and the acidic medium were added into the box that contained hydronium ion (H3O+),
chloride ion (Cl−), water (H2O), and acetic acid molecules. Figure 1 shows the corrosion
system without the presence of a CI molecule. For molecular aggregation analysis, the
systems were constructed at five different concentrations of CI molecules (0.04, 0.08, 0.12,
0.16, and 0.20 M).
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After system preparation, the MD simulation commenced with energy minimization
using the steepest descent and conjugate gradient methods for 5000 steps. This step resolved
atomic collisions, bond distortions, and other unfavorable interactions, resulting in a more
stable initial structure for the simulation. Subsequently, the simulation proceeded with a
5 ns canonical (NVT) ensemble followed by a 5 ns isothermal–isobaric (NPT) ensemble. The
NVT ensemble established the appropriate system temperature for calculating adsorption
energy, while the NPT ensemble allowed for the investigation of molecular aggregation at
different temperatures. Periodic boundary conditions (PBCs) were applied in all directions
(x, y, and z) with a 2.0 fs time step. Electrostatic interactions were calculated using the
Particle Mesh Ewald (PME) method [26] with a grid spacing of 0.12 nm and fourth-order
interpolation. Coulomb and Lennard–Jones interactions were summed up to 1.2 nm, and
the neighbor list with a cutoff of 1.2 nm was updated every five steps. Bond lengths for
solute and organic solvent molecules were constrained using the LINCS algorithm [27],
while the SETTLE algorithm was employed for water molecules [28]. The GROMACS
software package version 4.5 with the GROMOS force field was utilized throughout the
simulation (see Tables S1–S5 Supplementary Material the partial atomic charges for all
CI molecules).

3. Results and Discussion
3.1. Density Functional Theory (DFT) Calculation

DFT calculations can elucidate the adsorption properties of CI molecules on metal
surfaces. The HOMO, localized on the cationic quaternary ammonium groups of CI
molecules, represents electron-donating sites that can interact with the empty 3d-orbitals
of iron (Fe) atoms. Conversely, the LUMO, located on the alpha carbon, represents electron-
accepting sites capable of back-donation from the metal surface [29,30]. Table 2 illustrates
the optimized structures, HOMOs, and LUMOs of all CI molecules. The cationic quaternary
ammonium groups, characterized by both polar (N+) and non-polar (alkyl) termini, exhibit
good electrolyte properties and strong adsorption tendencies [31]. The HOMO distribution
on these groups facilitates electron donation to the Fe 3d-orbitals. Additionally, for C10,
C14, and C16, the alpha carbon, acting as a LUMO site, can engage in back-donation with
the Fe atoms, further enhancing adsorption. The cationic nature of the nitrogen atom in the
quaternary ammonium groups promotes physisorption, a charge-based interaction that
hinders chloride anion attack on the Fe surface, thus inhibiting the anodic iron oxidation
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reaction [32]. However, the study by Abdellaoui et al. in 2021 demonstrated that the
adsorption of cationic quaternary ammonium surfactants onto metal surfaces can involve
both physisorption and chemisorption, also called mixed inhibitors [9]. Chemisorption
occurs through the formation of covalent bonds, with electron transfer from the nitrogen
cation and alpha carbon of the cationic quaternary ammonium surfactant to the vacant d-
orbital of the metal surface. Alternatively, a back-donation mechanism can transfer electrons
from the metal d-orbital to the carbon adjacent to the cationic quaternary ammonium
surfactant region (Figure 2).

Table 2. Optimized structures, HOMO, and LUMO of ammonium surfactant CI molecules.

CI Molecule Optimized HOMO LUMO

C10
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Figure 3. Geometrically optimized structure of C10 structure, HOMO, LUMO, and bandgap energy 
value illustration. 

A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the 
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the 
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the 
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the 
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the 
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the 
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the 
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the 
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the 
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the 
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
transferred electrons from CI molecules (∆𝑁). The positive value of ∆𝑁 indicates that the
major electron transfer process is from CI molecules to the iron metal surfaces [34,35]. The 
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A study by Han et al. [12]  has proven experimentally that the CI molecule with the 
lowest ∆𝐸 value gave the highest efficiency as a corrosion inhibitor compared to CI mol-
ecules that have a higher ∆𝐸 value. The HOMO and LUMO energy values also affect the
electronegativity (𝜒), hardness (η), and softness (σ) of the CI molecules. All CI molecules 
have a low 𝜒 value, which indicates the higher ability of the molecules to donate elec-
trons. The low value of η and high σ value also show the higher reactivity of the CI mole-
cules in the electron transfer process [33]. The final output parameter is the number of 
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The output parameters derived from the DFT calculation are tabulated in Table 3.
The adsorption ability as a donor–acceptor contributor of CI molecules is depicted by the
energy of HOMO (EHOMO) and LUMO (ELUMO). The higher value of EHOMO implies the
higher donor ability, while the higher value of ELUMO represents the acceptor ability of
the CI molecules. The band gap energy, ∆E, is the difference between LUMO energy and
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HOMO energy, where the lower ∆E value for all CI molecules (1.26 eV) indicates the higher
reactivity of the CI molecules as a donor–acceptor contributor. The identical band gap
energy values observed among all cationic quaternary ammonium surfactant CI molecules
with varying alkyl chain lengths indicated that the reactivity of these molecules is primarily
determined by their reactive HOMO and LUMO regions. This finding is attributed to the
quantum chemical DFT calculations, which were performed on individual CI molecules
without considering any solvent effects. Consequently, the alkyl chain length exerts a
minimal influence on the band gap energy. However, the alkyl chain can play a crucial
role in molecular adsorption by providing steric hindrance and protecting the reactive
region from interactions with other molecules. This aspect will be explored further in the
subsequent section on MD simulation methods. The illustration of the HOMO, LUMO, and
∆E for the C10 molecule is shown in Figure 3.

Table 3. Calculated DFT calculation parameters of all cationic quaternary ammonium cationic
surfactant CI molecules.

CI
Molecule

EHOMO
(eV)

ELUMO
(eV)

∆E
(eV)

Ionization
Potential, I

Electron
Affinity, A

Global
Hardness, η

Electronegativity,
χ

Softness, σ
Fraction of
Transferred
Electron, ∆N

C10 −0.2911577 0.9714327 1.2625904 0.2911577 −0.9714327 0.6312952 −0.3401375 1.584045 5.813554024

C12 −0.2911577 0.9687116 1.2598693 0.2911577 −0.9687116 0.62993465 −0.33877695 1.587466 5.825030382

C14 −0.2911577 0.9687116 1.2598693 0.2911577 −0.9687116 0.62993465 −0.33877695 1.587466 5.825030382

C16 −0.2857155 0.9741538 1.2598693 0.2857155 −0.9741538 0.62993465 −0.34421915 1.587466 5.829350037

C18 −0.2911577 0.9687116 1.2598693 0.2911577 −0.9687116 0.62993465 −0.33877695 1.587466 5.825030382
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A study by Han et al. [12] has proven experimentally that the CI molecule with
the lowest ∆E value gave the highest efficiency as a corrosion inhibitor compared to
CI molecules that have a higher ∆E value. The HOMO and LUMO energy values also
affect the electronegativity (χ), hardness (η), and softness (σ) of the CI molecules. All
CI molecules have a low χ value, which indicates the higher ability of the molecules to
donate electrons. The low value of η and high σ value also show the higher reactivity
of the CI molecules in the electron transfer process [33]. The final output parameter is
the number of transferred electrons from CI molecules (∆N). The positive value of ∆N
indicates that the major electron transfer process is from CI molecules to the iron metal
surfaces [34,35]. The electron-donating ability of these CI molecules is due to the HOMO
that is distributed at the alpha carbon regions of the molecules, representing the ability
to donate electrons compared to the LUMO that is only circulated at the next carbon
from the alpha carbon. DFT calculations have shown that cationic quaternary ammonium
surfactant CI molecules can act as both nucleophiles and electrophiles. These molecules can
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donate electrons to metal surfaces and receive electrons through back-donation, forming
coordination bonds via chemisorption. Moreover, the cationic nature of nitrogen allows for
physisorption through charge interaction with the metal surface [7]. The length of the alkyl
group attached to the cationic quaternary ammonium surfactants does not significantly
influence the electron-donating ability of the CI molecules, as indicated by the minimal
variation in the DFT-derived parameters. To assess the impact of alkyl chain length on
corrosion inhibition efficiency, the polarity and solubility of the compounds must also be
considered. Due to the inverse relationship between alkyl chain length and both polarity
and solubility, shorter alkyl chains generally correlate with improved corrosion inhibition
performance [36]. The effects of polarity and solubility will be further explored in the MD
simulation analysis with the presence of the corrosion solution.

3.2. Molecular Dynamics (MD) Simulation
3.2.1. Adsorption Properties of CI Molecules

The MD simulation was used to study the adsorption behavior and the interaction of CI
molecules (C10, C12, C14, C16, and C18) towards the Fe (110) metal surface in the presence
of 1.0 M HCl and 500 ppm acetic acid solution. The addition of HCl and acetic acid solution
is to increase the corrosion attack towards the metal surface. Figure 4 shows the top and side
view of the CI molecule on the Fe (110) surface after MD simulation. The molecules behaved
as if they were in a planar orientation on the Fe (110) surface, which is more favorable
towards the inhibition due to the mechanism of CI that should form a film formation to
cover the metal surface from the corrosion attack. The CI with planar orientation will
cover more surface than the horizontal orientation. Moreover, horizontal orientation will
also reduce the adsorption strength of its reactive site due to the hydrophobic part that
will undergo force of interaction with the bulk corrosion solution [37]. Theoretically, in
the horizontal orientation, longer alkyl chains on CI molecules experience greater shear
forces, which can disrupt the adsorption of the CI molecules’ reactive regions to the metal
surface. Figure 4 demonstrates the adsorption of the cationic quaternary ammonium group
onto the metal surface, accompanied by charge interactions and electron transfer between
the reactive region of the CI molecules and the metal. This observation aligns with the
DFT calculation results, which identified the cationic quaternary ammonium and alpha
carbon regions as the HOMO with a high electron-donating capacity. On the other hand,
the hydrophobic side of the surfactant molecules is also attached to the metal surface due
to the electron back donation from the Fe atom to the alkyl group of the CI molecule [37].
According to El Defrawy et al. in 2019, the back-donation ability of the CI molecules is
directly proportional to the hardness (η), as defined in the following Equation (1) [38]:

∆Eback−donation =
−η

4
(1)

where ∆Eback−donation is the band-gap energy for the back-donation mechanism. The
∆Eback−donation value is tabulated in Table 4 and shows that the values of η > 0 and
∆Eback−donation < 0 imply that back-donation from the metal to the CI molecule is en-
ergetically favored [39,40]. C12, C14, C16, and C18 have the highest back donation ability
with the same ∆Eback−donation value of −0.1574837 eV, compared to the C10 CI molecule
with a ∆Eback−donation value of −0.1578238 eV. As the LUMO region resides within the alkyl
groups, increasing the alkyl chain length by two carbons beyond the shortest inhibitor,
C10, to C12, enhances back-donation capability. C12 represents the optimal value for
back-donation, with the corresponding value remaining relatively constant up to C18.
Back-donation is also called the back-bonding mechanism, where the carbon atom in the
CI molecule can accept electrons back from the metal to strengthen the bond between the
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metal and the carbon of the CI molecule [41]. The results show that the cationic quater-
nary ammonium CI with a longer alkyl chain length provides a site for the back donation
mechanism from the Fe metal.
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molecules were removed for clarification.

Table 4. Global hardness and ∆Eback−donation values of all CI molecules after DFT calculation.

CI Molecules Global Hardness (η), eV ∆Eback−donation, eV

C10 0.6312952 −0.1578238
C12 0.62993465 −0.1574837
C14 0.62993465 −0.1574837
C16 0.62993465 −0.1574837
C18 0.62993465 −0.1574837

3.2.2. Adsorption Energy

Three different systems were constructed, and the energy of all systems was calculated
to find the adsorption energy at seven different temperatures (303, 313, 323, 333, 343, 353,
and 363 K). The systems include the corrosion system with CI molecules, the corrosion
system without CI molecules, and CI molecules only. Equation (2) was used to calculate
the adsorption energy (Eads) [33].

Eads = Etotal −
(

Esur f ace+solution + Einhibitor

)
(2)

where Etotal is the energy for corrosion in a system with CI molecules, Esur f ace+solution is
the energy for a corrosion system without CI molecules, and Einhibitor is the energy of the
system with CI molecules only. Figure 5 shows the plot of calculated adsorption energy for
all CI molecules in the acidic corrosion system at different temperatures. The negative value
of adsorption energy for all systems indicates the spontaneity of the adsorption process
between CI molecules and the Fe (110) metal surface. The higher the negative value of
adsorption energy denotes, the stronger the adsorption [24]. Another energy parameter
that can describe the inhibition of CI molecules is binding energy (Ebind). The Ebind value
can be translated from the adsorption energy and can be calculated using Equation (3):

Eads =−Ebind (3)
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The Eads and Ebind values for all molecules at temperature 323 K were tabulated
in Table 5, where the Ebind value for all molecules is positive, indicating its tendency
to the adsorption process. The order of binding energy for all molecules is as follows:
C16 > C12 > C10 > C14 > C18. Binding energy is referred to as the attraction forces be-
tween the CI molecules and the metal surfaces. For the cationic quaternary ammonium
surfactant CI molecules, the attraction forces mainly happen due to the ionic properties of
the hydrophilic head and the hydrophobic interaction of the hydrophobic tail in the bulk
solution of the corrosion system [37,42]. The results show that CI molecules’ adsorption and
binding energy values vary with different alkyl chain lengths. Among all the CI molecules,
C18, with the longest alkyl chain, exhibits the weakest adsorption strength. Conversely,
C16, with the second-longest alkyl chain, demonstrates the strongest adsorption strength,
adsorption magnitude, and binding energy. The alkyl chain length significantly influences
the adsorption strength of CI molecules onto the Fe (110) metal surface, with longer chains
generally leading to stronger adsorption. Extended alkyl chains effectively shield the posi-
tively charged nitrogen and alpha carbon of the cationic quaternary ammonium surfactant
from the shear and flow effects of the bulk corrosion solution. This is attributed to the
increased number of carbon atoms in longer chains, which can interact through van der
Waals forces, promoting aggregation among the alkyl chains rather than their interaction
with the surface. Additionally, the greater conformational freedom of longer chains can
hinder their ability to adopt the specific conformations required for strong adsorption. Fur-
thermore, longer alkyl chains can create steric hindrance, limiting the molecules’ proximity
to the metal surface and reducing the effective contact area, thereby decreasing adsorption
strength. The longer the alkyl chain length, the more the hydrophobic group that extends
away from the interface towards the solution and provides further protection by forming
an array of hydrophobic tails, resulting in the change of electrochemical behavior of the
metal [43,44]. Hence, the binding energy between the reactive regions (HOMO and LUMO)
of the corrosion inhibitor molecule with the Fe metal surface increases as the alkyl chain
length increases.

Table 5. The adsorption energy and binding energy of corrosion inhibitors with different alkyl chain
lengths at 323 K.

CI Molecules Adsorption Energy, Eads
(kcal/mol)

Binding Energy, Ebind
(kcal/mol)

C10 −461.88 461.88
C12 −501.59 501.59
C14 −452.01 452.01
C16 −597.12 597.12
C18 −413.12 413.12
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However, there are some cases where adding alkyl chain length reduces the adsorption
strength of the reactive site of the CI molecule towards the metal surface. The decrease
in adsorption may be due to the shear and the flow effect experienced by the extended
hydrophobic alkyl chain from the bulk solution. The results show a fluctuation of the
adsorption strength as the alkyl chain length extended. Hence, the optimum value of the
alkyl chain length is required to be explicitly investigated due to the variation effect of
the adsorption strength on the alkyl chain length of the cationic quaternary ammonium
surfactant CI molecules on the Fe (110) metal surface, where in this case the highest
adsorption is C16, followed by C12, C10, C14, and C18 molecules.

3.2.3. Molecular Aggregation

To investigate molecular aggregation, five systems were constructed for each CI
molecule at different concentrations (0.04, 0.08, 0.12, 0.16, and 0.20 M) in the presence of
1.0 M HCl, 500 ppm acetic acid, and a temperature of 333 K. To focus solely on molec-
ular aggregation in the bulk solution containing corrosion particles, the Fe (110) metal
surface was excluded from these systems. Figure 6 illustrates the constructed system. The
molecular behavior of the CI molecules was analyzed based on their diffusion towards
the bulk solution or corrosion particles. The diffusion coefficient, defined as the quantity
of a substance diffusing through a unit cross-sectional area per unit time under a unit
concentration gradient, was calculated using Einstein’s diffusion equations (Equations (4)
and (5)) [45,46].

MSD = {[Ri(t)− Ri(0)]
2
}

(4)

D =
1

6Na
∑N

i=1 {[Ri(t)− Ri(0)]
2
}

(5)

where t is the time, Ri(t) is the position vector of molecule i at time t, and N is the num-
ber of diffusing molecules. The mean square displacement (MSD) was derived from the
MD simulation, and the limiting slope of the MSD as a function of time can be used to
determine the diffusion coefficient of a molecule [47]. As shown in Figure 7, the diffusion
coefficient of CI molecules towards corrosion particles decreases with increasing alkyl
chain length. The increased hydrophobicity of longer alkyl chains hinders their diffusion
towards polar corrosion particles, creating a diffusion barrier that promotes adsorption
onto the metal surface and strengthens the metal–inhibitor interaction [48]. As noted by
Obot et al. [47], a low diffusion coefficient of CI molecules indicates promising inhibitory
capacity against the diffusion of corrosion particles. Their findings, supported by experi-
mental data, demonstrate that CI molecules with the lowest diffusion coefficient exhibit the
highest inhibition efficiency.

The diffusion coefficient of all CI molecules correlated with their aggregation behavior
in the corrosion system. A decrease in diffusion was associated with rapid aggregation
and cluster formation [25,49]. According to Sharma et al. [49], clustered CI molecules
exhibit weaker adsorption on metal surfaces compared to randomly dispersed molecules.
Table 6 presents the aggregation behavior of all CI molecules at various concentrations. C10
molecules, with the shortest alkyl chain, remained randomly dispersed in the bulk solution
and corrosion particles across all concentrations. Despite this random distribution, their
high diffusion coefficient suggests strong interactions with corrosion particles. However,
this behavior can hinder inhibition efficiency by reducing surface activity and weakening
adsorption strength (low adsorption and binding energies). C12 Themolecules exhibited
random dispersion at low concentrations (0.04 and 0.08 M) but began to form clusters at
0.12 M. This initial random dispersion favored inhibition efficiency, and the low diffusion
coefficient further contributed to enhanced surface activity and stronger adsorption. In
contrast, molecules with longer alkyl chains (C14, C16, and C18) formed clusters at all con-
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centrations, which is unfavorable for inhibition efficiency. Based on MD simulations, C12
surfactant molecules emerged as the most promising inhibitors, exhibiting a high negative
adsorption energy, high binding energy, a low diffusion coefficient, and random dispersion
at low concentrations. These computational findings align well with experimental results
reported by Gao et al. [7] in 2019, where dodecyl trimethyl ammonium chloride (DTAC)
surfactant molecules with a 12-carbon alkyl chain demonstrated the highest inhibition
efficiency compared to other surfactants with different chain lengths.
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Table 6. Cluster aggregation of all CI molecules at different concentrations.

CI
Molecules

Cluster Aggregation

0.04 M 0.08 M 0.12 M 0.16 M 0.20 M

C10
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4. Conclusions 
The DFT calculation and MD simulation methods successfully investigated the ad-

sorption properties of all cationic quaternary ammonium surfactants CI molecules with 
different chain lengths throughout this study. All CI molecules show a high reactive ad-
sorption center with lower band-gap energy at 1.26 eV in the DFT calculation. The region 
of the reactive adsorption center for all CI molecules is focused on the molecules’ ammo-
nium group (N+). The values of other parameters derived in the DFT calculation also 
showed the reactive center’s ability to donate and accept electrons on the metal surface. 
The inhibition efficiency ranking for all CI molecules based on adsorption energy and 
binding energy is as follows: C16 > C12 > C10 > C14 > C18, where C16 had the highest 
negative value of adsorption energy and the highest binding energy value. However, the 
C16 molecules formed a cluster even at low concentration in the molecular aggregation 
analysis. Thus, the C12 ammonium surfactants gave the most promising corrosion inhib-
itor compared to its significant surfactants with different chain lengths based on the MD 
simulation method analysis. It showed high adsorption and binding energy after C16 mol-
ecules, and it behaved in a randomly scattered form in the molecular aggregation analysis. 
The excellent agreement between the computer simulation data with the experimental re-
sults from the literature and the success in analyzing the inhibition efficiency of all am-
monium CI molecules proves the validity of using computer modeling in this application. 
Therefore, the CI activities and adsorption properties analysis based on computer model-
ing can be helpful for future reference on the development of a new CI molecule. 
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4. Conclusions
The DFT calculation and MD simulation methods successfully investigated the adsorp-

tion properties of all cationic quaternary ammonium surfactants CI molecules with different
chain lengths throughout this study. All CI molecules show a high reactive adsorption
center with lower band-gap energy at 1.26 eV in the DFT calculation. The region of the
reactive adsorption center for all CI molecules is focused on the molecules’ ammonium
group (N+). The values of other parameters derived in the DFT calculation also showed the
reactive center’s ability to donate and accept electrons on the metal surface. The inhibition
efficiency ranking for all CI molecules based on adsorption energy and binding energy
is as follows: C16 > C12 > C10 > C14 > C18, where C16 had the highest negative value
of adsorption energy and the highest binding energy value. However, the C16 molecules
formed a cluster even at low concentration in the molecular aggregation analysis. Thus,
the C12 ammonium surfactants gave the most promising corrosion inhibitor compared
to its significant surfactants with different chain lengths based on the MD simulation
method analysis. It showed high adsorption and binding energy after C16 molecules,
and it behaved in a randomly scattered form in the molecular aggregation analysis. The
excellent agreement between the computer simulation data with the experimental results
from the literature and the success in analyzing the inhibition efficiency of all ammonium
CI molecules proves the validity of using computer modeling in this application. Therefore,
the CI activities and adsorption properties analysis based on computer modeling can be
helpful for future reference on the development of a new CI molecule.
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