Biogeochemical Permeable Barrier Based on Zeolite and Expanded Clay for Immobilization of Metals in Groundwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carriers
2.2. Experimental Design
2.2.1. Sorption before and after Biofouling
2.2.2. Metal Immobilization during Microbial Growth
2.3. Methods
3. Results
3.1. Zeolite and LECA Biofilm Characterization
3.2. Metal Immobilization on Materials before and after Biofouling (Sorption Experiment)
3.3. Metal Immobilization on Materials during Biofouling (Bioaccumulation and Biomineralization Experiment)
3.4. Evaluation of the Binding Strength of Immobilized Forms of Metals on Analyzed Materials
4. Discussion
4.1. The Role of Biofouling in Metals Immobilization
4.2. The Role of Biomineralization in Metal Immobilization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Carboxyl | Carbonyl | Hydroxyl | Amino | Phosphoryl | Thiol (SH) | |
---|---|---|---|---|---|---|
Cr | [41,42] | [43] | [44,45] | [44] | [44] | [41,45] |
Mn | [46] | - | [46,47] | [46] | - | [46] |
Co | [48,49] | [48] | [49,50] | [48] | - | [51] |
Ni | [52,53] | [52,53] | [53,54] | [53] | - | |
Cu | [53,55,56] | [53,57] | [57] | [57] | [53,55,57] | [55] |
Zn | [58,59,60] | - | [58] | [58] | [58,59] | [51,58,61,62] |
Sr | [63] | - | [64] | - | [63] | |
Cd | [65,66,67] | - | [53,57] | [65,67] | [41] | [46] |
Ba | [63] | - | - | - | [68] | [63] |
Hg | [69,70,71] | [69] | [70,71] | [70,71] | [71] | [62,72,73,74] |
Pb | [53,75] | [53] | [76,77] | - | [53,75,76,77,78] | [62,72,73,74] |
References
- Safonov, A.V.; Boguslavsky, A.E.; Boldyrev, K.A.; Gaskova, O.L.; Naimushina, O.S.; Popova, N.M. Geochemical Modeling of the Uranium Behavior in Groundwater near the Sludge Storages during Bioremediation. Geochem. Int. 2021, 59, 56–65. [Google Scholar] [CrossRef]
- Boguslavskii, A.E.; Gas’kova, O.L.; Shemelina, O.V. Geochemical Model of the Environmental Impact of Low-Level Radioactive Sludge Repositories in the Course of Their Decommissioning. Radiochemistry 2016, 58, 323–328. [Google Scholar] [CrossRef]
- Safonov, A.V.; Boguslavsky, A.E.; Gaskova, O.L.; Boldyrev, K.A.; Shvartseva, O.S.; Khvashchevskaya, A.A.; Popova, N.M. Biogeochemical Modelling of Uranium Immobilization and Aquifer Remediation Strategies near Nccp Sludge Storage Facilities. Appl. Sci. 2021, 11, 2875. [Google Scholar] [CrossRef]
- Conca, J.; Strietelmeier, E.; Lu, N.; Ware, S.D.; Taylor, T.P.; Kaszuba, J.; Wright, J. Treatability Study of Reactive Materials to Remediate Groundwater Contaminated with Radionuclides, Metals, and Nitrates in a Four-Component Permeable Reactive Barrier. In Handbook of Groundwater Remediation Using Permeable Reactive Barriers; Elsevier: Amsterdam, The Netherlands, 2003; pp. 221–252. [Google Scholar]
- Benner, S.G.; Blowes, D.W.; Gould, W.D.; Herbert, R.B.; Ptacek, C.J. Geochemistry of a Permeable Reactive Barrier for Metals and Acid Mine Drainage. Environ. Sci. Technol. 1999, 33, 2793–2799. [Google Scholar] [CrossRef]
- Ludwig, R.D.; McGregor, R.G.; Blowes; Benner, S.G.; Mountjoy, K. A Permeable Reactive Barrier for Treatment of Heavy Metals. Ground Water 2002, 40, 59–66. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Vigneswaran, S.; Naidu, R. Permeable Reactive Barrier for Groundwater Remediation. J. Ind. Eng. Chem. 2008, 14, 145–156. [Google Scholar] [CrossRef]
- Vignola, R.; Bagatin, R.; De Folly D’Auris, A.; Flego, C.; Nalli, M.; Ghisletti, D.; Millini, R.; Sisto, R. Zeolites in a Permeable Reactive Barrier (PRB): One Year of Field Experience in a Refinery Groundwater-Part 1: The Performances. Chem. Eng. J. 2011, 178, 204–209. [Google Scholar] [CrossRef]
- Faisal, A.A.H.; Hmood, Z.A. Groundwater Protection from Cadmium Contamination by Zeolite Permeable Reactive Barrier. Desalination Water Treat 2015, 53, 1377–1386. [Google Scholar] [CrossRef]
- Rocha, L.C.C.; Zuquette, L.V. Evaluation of Zeolite as a Potential Reactive Medium in a Permeable Reactive Barrier (PRB): Batch and Column Studies. Geosciences 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Skinner, S.J.W.; Schutte, C.F. The Feasibility of a Permeable Reactive Barrier to Treat Acidic Sulphate- and Nitrate-Contaminated Groundwater. Water SA 2006, 32, 129–135. [Google Scholar] [CrossRef]
- Fuller, C.C.; Bargar, J.R.; Davis, J.A. Molecular-Scale Characterization of Uranium Sorption by Bone Apatite Materials for a Permeable Reactive Barrier Demonstration. Environ. Sci. Technol. 2003, 37, 4642–4649. [Google Scholar] [CrossRef] [PubMed]
- Holmes, R.R.; Hart, M.L.; Kevern, J.T. Reuse of Drinking Water Treatment Waste for Remediation of Heavy Metal Contaminated Groundwater. Groundw. Monit. Remediat. 2019, 39, 69–79. [Google Scholar] [CrossRef]
- Taha, G.M. Utilization of Low-Cost Waste Material Bagasse Fly Ash in Removing of Cu2+, Ni2+, Zn2+, and Cr3+ from Industrial Waste Water. Groundw. Monit. Remediat. 2006, 26, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.K.; Vithanage, M.; Das, D.B.; Kumar, M. A Review on Design, Material Selection, Mechanism, and Modelling of Permeable Reactive Barrier for Community-Scale Groundwater Treatment. Environ. Technol. Innov. 2020, 19, 100917. [Google Scholar] [CrossRef]
- Cantrell, K.J.; Kaplan, D.I.; Wietsma, T.W. Zero-Valent Iron for the in Situ Remediation of Selected Metals in Groundwater. J. Hazard. Mater. 1995, 42, 201–212. [Google Scholar] [CrossRef]
- Gu, B.; Liang, L.; Dickey, M.J.; Yin, X.; Dai, S. Reductive Precipitation of Uranium(VI) by Zero-Valent Iron. Environ. Sci. Technol. 1998, 32, 3366–3373. [Google Scholar] [CrossRef]
- Gibert, O.; Assal, A.; Devlin, H.; Elliot, T.; Kalin, R.M. Performance of a Field-Scale Biological Permeable Reactive Barrier for in-Situ Remediation of Nitrate-Contaminated Groundwater. Sci. Total Environ. 2019, 659, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2010, 44, 15–23. [Google Scholar] [CrossRef]
- Silva, G.; Pennafirme, S.; Lopes, R.; Lima, I.; Crapez, M. Imaging Techniques for Monitoring Bacterial Biofilms in Environmental Samples—An Important Tool for Bioremediation Studies. BAOJ Microbiol. 2017, 3, 1–15. [Google Scholar]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Abdusamadzoda, D.; Safonov, A.; Rodlovskaya, E. Zinc-Containing Effluent Treatment Using Shewanella Xiamenensis Biofilm Formed on Zeolite. Materials 2021, 14, 1760. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Safonov, A.; Boldyrev, K.; Gundorina, S.; Yushin, N.; Petuhov, O.; Popova, N. Selective Metal Removal from Chromium-Containing Synthetic Effluents Using Shewanella Xiamenensis Biofilm Supported on Zeolite. Environ. Sci. Pollut. Res. 2020, 27, 10495–10505. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Vergel, K.; Popova, N.; Artemiev, G.; Safonov, A. Metal Removal from Nickel-Containing Effluents Using Mineral–Organic Hybrid Adsorbent. Materials 2020, 13, 4462. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Safonov, A.; Ostovnaya, T.; Boldyrev, K.; Kryuchkov, D.; Popova, N. Bio-Zeolite Use for Metal Removal from Copper-Containing Synthetic Effluents. J. Environ. Health Sci. Eng. 2021, 19, 1383–1398. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Chaurand, P.; Rose, J.; Diels, L.; Bastiaens, L. Synergistic effects of sulfate reducing bacteria and zero-valent iron on zinc removal and stability in aquifer sediment. Chem. Eng. 2015, 260, 83–89. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sinha, A. Role of microorganisms in permeable reactive bio-barriers (PRBBs) for environmental clean-up: A review. Global NEST J. 2018, 20, 269–280. [Google Scholar]
- He, Y.T.; Wilson, J.T.; Wilkin, R.T. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater. Environ. Sci. Technol. 2008, 42, 6690–6696. [Google Scholar] [CrossRef] [PubMed]
- Safonov, A.V.; Andryushchenko, N.D.; Ivanov, P.V.; Boldyrev, K.A.; Babich, T.L.; German, K.E.; Zakharova, E.V. Biogenic Factors of Radionuclide Immobilization on Sandy Rocks of Upper Aquifers. Radiochemistry 2019, 61, 99–108. [Google Scholar] [CrossRef]
- Safonov, A.V.; Babich, T.L.; Sokolova, D.S.; Grouzdev, D.S.; Tourova, T.P.; Poltaraus, A.B.; Zakharova, E.V.; Merkel, A.Y.; Novikov, A.P.; Nazina, T.N. Microbial Community and in Situ Bioremediation of Groundwater by Nitrate Removal in the Zone of a Radioactive Waste Surface Repository. Front. Microbiol. 2018, 9, 1985. [Google Scholar] [CrossRef]
- Pavlov, S.S.; Dmitriev, A.Y.; Frontasyeva, M.V. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. JRNC 2016, 309, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Bogachev, M.I.; Volkov, V.Y.; Markelov, O.A.; Trizna, E.Y.; Baydamshina, D.R.; Melnikov, V.; Murtazina, R.R.; Zelenikhin, P.V.; Sharafutdinov, I.S.; Kayumov, A.R. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS ONE 2018, 13, e0193267. [Google Scholar] [CrossRef] [Green Version]
- Trafny, E.A.; Lewandowski, R.; Zawistowska-Marciniak, I.; Stępińska, M. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids. World J. Microbiol. Biotechnol. 2013, 29, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, D. User’s Guide to PHREEQC—A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations. US Geol. Surv. Water-Resour. Investig. Rep. 1995, 143, 95–4227. [Google Scholar] [CrossRef]
- Javanbakht, V.; Alavi, S.A.; Zilouei, H. Mechanisms of Heavy Metal Removal Using Microorganisms as Biosorbent. Water Sci. Technol. 2014, 69, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Sag, Y.; Kutsal, T. Recent Trends in the Biosorption of Heavy Metals: A Review. Biotechnol. Bioprocess Eng. 2001, 6, 376–385. [Google Scholar] [CrossRef]
- Viggi, C.C.; Pagnanelli, F.; Toro, L. Sulphate Reduction Processes in Biological Permeable Reactive Barriers: Column Experimentation and Modeling. In Chemical Engineering Transactions; Italian Association of Chemical Engineering—AIDIC: Milan, Italy, 2011; Volume 24, pp. 1231–1236. [Google Scholar]
- Marius, M.S.; James, P.A.B.; Bahaj, A.S.; Smallman, D.J. Influence of Iron Valency on the Magnetic Susceptibility of a Microbially Produced Iron Sulphide. In Journal of Physics: Conference Series; Institute of Physics Publishing: Bristol, UK, 2005; Volume 17, pp. 65–69. [Google Scholar]
- Mokone, T.P.; van Hille, R.P.; Lewis, A.E. Metal Sulphides from Wastewater: Assessing the Impact of Supersaturation Control Strategies. Water Res. 2012, 46, 2088–2100. [Google Scholar] [CrossRef]
- Martins, M.; Faleiro, M.L.; Barros, R.J.; Veríssimo, A.R.; Barreiros, M.A.; Costa, M.C. Characterization and Activity Studies of Highly Heavy Metal Resistant Sulphate-Reducing Bacteria to Be Used in Acid Mine Drainage Decontamination. J. Hazard. Mater. 2009, 166, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Jong, T.; Parry, D.L. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on Bacterially Produced Metal Sulfides. J. Colloid Interface Sci. 2004, 275, 61–71. [Google Scholar] [CrossRef]
- Sobol, Z.; Schiestl, R.H. Intracellular and Extracellular Factors Influencing Cr(VI and Cr(III) Genotoxicity. Environ. Mol. Mutagen. 2012, 53, 94–100. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Z.; Tie, Z.; Wang, B.; Ye, M.; Du, L.; Cui, R.; Liu, W.; Wan, C.; Liu, Q.; et al. Data-Informed Discovery of Hydrolytic Nanozymes. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef]
- An, H.; Tian, T.; Wang, Z.; Jin, R.; Zhou, J. Role of Extracellular Polymeric Substances in the Immobilization of Hexavalent Chromium by Shewanella Putrefaciens CN32 Unsaturated Biofilms. Sci. Total Environ. 2022, 810, 151184. [Google Scholar] [CrossRef] [PubMed]
- Viti, C.; Marchi, E.; Decorosi, F.; Giovannetti, L. Molecular Mechanisms of Cr(VI) Resistance in Bacteria and Fungi. FEMS Microbiol. Rev. 2014, 38, 633–659. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, Y.; Xu, Z.; Ding, Y.; Zhou, X.; Dong, M. A High Mn(II)-Tolerance Strain, Bacillus Thuringiensis HM7, Isolated from Manganese Ore and Its Biosorption Characteristics. PeerJ 2020, 8, e8589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, M.S. Biological Control of Manganese in Water Supplies in the Presence of Humic Acids; University of Kentucky: Lexington, KY, USA, 2013. [Google Scholar]
- Fawzy, M.A.; Hifney, A.F.; Adam, M.S.; Al-Badaani, A.A. Biosorption of Cobalt and Its Effect on Growth and Metabolites of Synechocystis Pevalekii and Scenedesmus Bernardii: Isothermal Analysis. Environ. Technol. Innov. 2020, 19, 100953. [Google Scholar] [CrossRef]
- Su, Y.; Sun, S.; Liu, Q.; Zhao, C.; Li, L.; Chen, S.; Chen, H.; Wang, Y.; Tang, F. Characterization of the Simultaneous Degradation of Pyrene and Removal of Cr(VI) by a Bacteria Consortium YH. Sci. Total Environ. 2022, 853, 158388. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Ali, A.; Afridi, S.; Baset, A.; Khan, A.U.; Ali, M. Green Fabrication of Co and Co3O4 nanoparticles and Their Biomedical Applications: A Review. Open Life Sci. 2021, 16, 14–30. [Google Scholar] [CrossRef]
- Dulay, H.; Tabares, M.; Kashefi, K.; Reguera, G. Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium Geobacter Sulfurreducens. Front. Microbiol. 2020, 11, 600463. [Google Scholar] [CrossRef]
- Levett, A.; Gleeson, S.A.; Kallmeyer, J. From Exploration to Remediation: A Microbial Perspective for Innovation in Mining. Earth Sci. Rev. 2021, 216, 103563. [Google Scholar] [CrossRef]
- Haque, M.M.; Mosharaf, M.K.; Haque, M.A.; Tanvir, M.Z.H.; Alam, M.K. Biofilm Formation, Production of Matrix Compounds and Biosorption of Copper, Nickel and Lead by Different Bacterial Strains. Front. Microbiol. 2021, 12, 1385. [Google Scholar] [CrossRef]
- Haider, A.; Ijaz, M.; Ali, S.; Haider, J.; Imran, M.; Majeed, H.; Shahzadi, I.; Ali, M.M.; Khan, J.A.; Ikram, M. Green Synthesized Phytochemically (Zingiber Officinale and Allium Sativum) Reduced Nickel Oxide Nanoparticles Confirmed Bactericidal and Catalytic Potential. Nanoscale Res. Lett. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Zhao, H.; Chen, G.; Chen, X. A Subcellular Level Study of Copper Speciation Reveals the Synergistic Mechanism of Microbial Cells and EPS Involved in Copper Binding in Bacterial Biofilms. Environ. Pollut. 2020, 263, 114485. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Yang, S.; Huang, Q.; Xue, A.; Cai, P. Biosorption Mechanisms of Cu(II) by Extracellular Polymeric Substances from Bacillus Subtilis. Chem. Geol. 2014, 386, 143–151. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, W.; Wang, N.; Mu, Y.; Zhu, J.; Luo, J. Adsorption of Cu2+ and Mechanism by Natural Biofilm. Water Sci. Technol. 2018, 78, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.A.; Mishra, B.; Myneni, S.C.B. High Energy Resolution-X-Ray Absorption Near Edge Structure Spectroscopy Reveals Zn Ligation in Whole Cell Bacteria. J. Phys. Chem. Lett. 2019, 10, 2585–2592. [Google Scholar] [CrossRef]
- Li, C.C.; Wang, Y.J.; Du, H.; Cai, P.; Peijnenburg, W.J.G.M.; Zhou, D.M. Influence of Bacterial Extracellular Polymeric Substances on the Sorption of Zn on γ-Alumina: A Combination of FTIR and EXAFS Studies. Environ. Pollut. 2017, 220, 997–1004. [Google Scholar] [CrossRef]
- Basak, G.; Lakshmi, V.; Chandran, P.; Das, N. Removal of Zn(II) from Electroplating Effluent Using Yeast Biofilm Formed on Gravels: Batch and Column Studies. J. Environ. Health Sci. Eng. 2014, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Desmau, M.; Carboni, A.; Le Bars, M.; Doelsch, E.; Benedetti, M.F.; Auffan, M.; Levard, C.; Gelabert, A. How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles? Front. Environ. Sci. 2020, 8, 82. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H.S. Antimicrobial Properties of ZnO Nanomaterials: A Review. Ceram. Int. 2017, 43, 3940–3961. [Google Scholar] [CrossRef]
- Deng, N.; Stack, A.G.; Weber, J.; Cao, B.; De Yoreo, J.J.; Hu, Y. Organic–Mineral Interfacial Chemistry Drives Heterogeneous Nucleation of Sr-Rich (Bax, Sr1−x)SO4 from Undersaturated Solution. Proc. Natl. Acad. Sci. USA 2019, 116, 13221–13226. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Dong, F.; Zhang, W.; Nie, X.; Wei, H.; Sun, S.; Zhong, X.; Liu, Y.; Wang, D. Contribution of Surface Functional Groups and Interface Interaction to Biosorption of Strontium Ions by Saccharomyces Cerevisiae under Culture Conditions. RSC Adv. 2017, 7, 50880–50888. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Q.; Zeng, Y.; Zhang, J.; Lu, G.; Dang, Z.; Guo, C. Bioaccumulation and Distribution of Cadmium by Burkholderia Cepacia GYP1 under Oligotrophic Condition and Mechanism Analysis at Proteome Level. Ecotoxicol. Environ. Saf. 2019, 176, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Boyanov, M.I.; Kelly, S.D.; Kemner, K.M.; Bunker, B.A.; Fein, J.B.; Fowle, D.A. Adsorption of Cadmium to Bacillus Subtilis Bacterial Cell Walls: A PH-Dependent X-Ray Absorption Fine Structure Spectroscopy Study. Geochim. Cosmochim. Acta 2003, 67, 3299–3311. [Google Scholar] [CrossRef]
- Xu, S.; Xing, Y.; Liu, S.; Luo, X.; Chen, W.; Huang, Q. Co-Effect of Minerals and Cd(II) Promoted the Formation of Bacterial Biofilm and Consequently Enhanced the Sorption of Cd(II). Environ. Pollut. 2020, 258, 113774. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Jroundi, F.; Paytan, A.; Guerra-Tschuschke, I.; Abad, M.D.M.; González-Muñoz, M.T. Barium Bioaccumulation by Bacterial Biofilms and Implications for Ba Cycling and Use of Ba Proxies. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdineaud, J.P.; Durn, G.; Režun, B.; Manceau, A.; Hrenović, J. The Chemical Species of Mercury Accumulated by Pseudomonas Idrijaensis, a Bacterium from a Rock of the Idrija Mercury Mine, Slovenia. Chemosphere 2020, 248, 126002. [Google Scholar] [CrossRef] [PubMed]
- Fathollahi, A.; Coupe, S.J.; El-Sheikh, A.H.; Sañudo-Fontaneda, L.A. The Biosorption of Mercury by Permeable Pavement Biofilms in Stormwater Attenuation. Sci. Total Environ. 2020, 741, 140411. [Google Scholar] [CrossRef]
- Dash, H.R.; Das, S. Interaction between Mercuric Chloride and Extracellular Polymers of Biofilm-Forming Mercury Resistant Marine Bacterium: Bacillus Thuringiensis PW-05. RSC Adv. 2016, 6, 109793–109802. [Google Scholar] [CrossRef]
- Desmau, M.; Levard, C.; Vidal, V.; Ona-Nguema, G.; Charron, G.; Benedetti, M.F.; Gélabert, A. How Microbial Biofilms Impact the Interactions of Quantum Dots with Mineral Surfaces? NanoImpact 2020, 19, 100247. [Google Scholar] [CrossRef]
- Yu, Q.; Szymanowski, J.; Myneni, S.C.B.; Fein, J.B. Characterization of Sulfhydryl Sites within Bacterial Cell Envelopes Using Selective Site-Blocking and Potentiometric Titrations. Chem. Geol. 2014, 373, 50–58. [Google Scholar] [CrossRef]
- Mishra, B.; Shoenfelt, E.; Yu, Q.; Yee, N.; Fein, J.B.; Myneni, S.C.B. Stoichiometry of Mercury-Thiol Complexes on Bacterial Cell Envelopes. Chem. Geol. 2017, 464, 137–146. [Google Scholar] [CrossRef]
- Templeton, A.S.; Trainor, T.P.; Spormann, A.M.; Newville, M.; Sutton, S.R.; Dohnalkova, A.; Gorby, Y.; Brown, G.E. Sorption versus Biomineralization of Pb(II) within Burkholderia Cepacia Biofilms. Environ. Sci. Technol. 2003, 37, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, M.; Mohamed Hatha, A.A. Cadmium and Lead Tolerance Mechanisms in Bacteria and the Role of Halotolerant and Moderately Halophilic Bacteria in Their Remediation. In Handbook of Metal-Microbe Interactions and Bioremediation; CRC Press: Boca Raton, FL, USA, 2017; pp. 557–573. ISBN 9781315153353. [Google Scholar]
- Kumari, S.; Mangwani, N.; Das, S. Interaction of Pb(II) and Biofilm Associated Extracellular Polymeric Substances of a Marine Bacterium Pseudomonas Pseudoalcaligenes NP103. Spectrochim Acta A Mol. Biomol. Spectrosc. 2017, 173, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Ngwenya, B.T.; Sutherland, I.W.; Kennedy, L. Comparison of the Acid-Base Behaviour and Metal Adsorption Characteristics of a Gram-Negative Bacterium with Other Strains. Appl. Geochem. 2003, 18, 527–538. [Google Scholar] [CrossRef]
Major Elements *, mg/L | Trace Elements **, µg/L | ||||||
---|---|---|---|---|---|---|---|
pH | 6.34 ± 0.2 | Al | 145 ± 4.4 | As | 0.6 ± 0.1 | Cs | 0.01 ± 0.001 |
salt concentration | 6670 ± 200 | Si | 9893 ± 297 | Br | 128 ± 0.2 | Ba | 612 ± 18.4 |
Na+ | 647 ± 19 | Sc | 2 ± 0.1 | Se | 2.7 ± 0.1 | La | 0.74 ± 0.02 |
K+ | 8.9 ± 0.3 | Ti | 3.1 ± 0.1 | Rb | 0.25 ± 0.2 | Ce | 1.16 ± 0.04 |
Ca2+ | 762.3 ± 22.8 | V | 0.9 ± 0.02 | Sr | 993 ± 30 | W | 0.3 ± 0.01 |
Mg2+ | 139.7 ± 4.2 | Cr | 5.06 ± 0.2 | Zr | 0.1 ± 0.01 | Pb | 0.92 ± 0.03 |
NH4+ | 12.3 ± 0.03 | Mn | 4482 ± 135 | Nb | 0.3 ± 0.01 | Th | 0.04 ± 0.001 |
NO3− | 3849 ± 115 | Fe | 17563 ± 527 | Mo | 2.24 ± 0.06 | U | 0.72 ± 0.02 |
SO42− | 467 ± 14 | Co | 16.5 ± 0.5 | Ru | 0.03 ± 0.001 | ||
Cl− | 6.3 ± 0.2 | Ni | 145 ± 4.4 | Rh | 2.03 ± 0.06 | ||
HCO3− | 305.1 ± 9.2 | Cu | 60 ± 1.8 | Pd | 0.02 ± 0.001 | ||
Ptot | 32.5 ± 1 | Zn | 150 ± 4.5 | Cd | 11.3 ± 0.34 |
Sample | Time, Days | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 7 | 15 | 20 | 30 | 40 | 50 | 60 | |
Zeolite | 0.12 ± 0.004 | 3.8 ± 0.13 | 4.6 ± 0.15 | 7.1 ± 0.22 | 8.5 ± 0.3 | 8.4 ± 0.3 | 4.5 ± 0.15 | 3.9 ± 0.13 | 3.5 ± 0.11 |
LECA | 0.26 ± 0.01 | 4.5 ± 0.15 | 7.9 ± 0.3 | 12.8 ± 0.45 | 12.9 ± 0.4 | 12.4 ± 0.43 | 11.5 ± 0.38 | 11.0 ± 0.35 | 10.9 ± 0.33 |
Sample | Nucleic Acid, % | Polysaccharides, % | Total Area of Fouling, % |
---|---|---|---|
Zeolite–bio | 5 ± 0.2 | 54 ± 2.6 | 59 ± 2.9 |
LECA–bio | 14 ± 0.7 | 75 ± 3.8 | 89 ± 4.3 |
Zeolite–biomineralization | 8 ± 0.4 | 45 ± 2.2 | 53 ± 2.6 |
LECA–biomineralization | 13 ± 0.6 | 71 ± 3.6 | 84 ± 4.1 |
Metal | LECA (bio) | LECA (bm) | LECA (bmp) | Zeolite (bio) | Zeolite (bm) | Zeolite (bmp) |
---|---|---|---|---|---|---|
Cr | 29.3 ± 1.0 | 97.5 ± 4.4 | 98.7 ± 4.3 | 65.5 ± 1.6 | 90.7 ± 4.0 | 91.5 ± 3.9 |
Mn | 26.7 ± 1.0 | 98.7 ± 4.2 | 99.4 ± 4.5 | 44.8 ± 0.9 | 89.4 ± 3.7 | 90.8 ± 3.7 |
Co | 18.6 ± 0.8 | 99.1 ± 4.5 | 98.1 ± 4.3 | 56.1 ± 1.9 | 82.3 ± 3.9 | 84.7 ± 2.9 |
Ni | 37.1 ± 1.7 | 99.6 ± 4.5 | 99.5 ± 4.4 | 67.4 ± 2.0 | 82.32.6 | 99.5 ± 3.9 |
Cu | 34.6 ± 1.4 | 92.5 ± 4.0 | 89.1 ± 3.0 | 34.5 ± 0.8 | 85.4 ± 2.4 | 88.1 ± 2.6 |
Zn | 68.4 ± 3.4 | 98.9 ± 4.4 | 99.8 ± 4.7 | 78.9 ± 3.6 | 92.1 ± 4.0 | 90.4 ± 3.7 |
Sr | 14.7 ± 0.7 | 31.2 ± 1.2 | 100 ± 5.0 | 44.7 ± 1.2 | 57.9 ± 1.9 | 100 ± 4.5 |
Cd | 75 ± 3.0 | 98.1 ± 4.7 | 99.2 ± 4.3 | 83 ± 3.0 | 98.4 ± 3.8 | 99.1 ± 4.4 |
Ba | 13.4 ± 0.3 | 16.2 ± 0.7 | 89.7 ± 3.8 | 19.7 ± 0.7 | 31.2 ± 1.5 | 98.5 ± 4.2 |
Hg | 68.9 ± 2.5 | 100 ± 4.4 | 100 ± 4.5 | 91.2 ± 2.6 | 100 ± 4.8 | 100 ± 4.5 |
Pb | 49.1 ± 1.8 | 97.9 ± 4.2 | 98.6 ± 3.9 | 89.1 ± 2.4 | 99.8 ± 4.8 | 99.3 ± 4.3 |
Metal | LECA (bio) | LECA (bm) | LECA (bmp) | Zeolite (bio) | Zeolite (bm) | Zeolite (bmp) |
---|---|---|---|---|---|---|
Cr | 64.9 ± 2.9 | 2.2 ± 0.1 | 2.11 ± 0.01 | 41.9 ± 2.1 | 2.1 ± 0.01 | 1.7 ± 0.03 |
Mn | 72.8 ± 3.5 | 1.3 ± 0.07 | 2.11 ± 0.01 | 32.3 ± 1.5 | 1.5 ± 0.01 | 1.9 ± 0.03 |
Co | 81.6 ± 3.9 | 3.9 ± 0.09 | 4.1 ± 0.1 | 30.4 ± 1.4 | 3.1 ± 0.02 | 2.9 ± 0.4 |
Ni | 49.4 ± 2.5 | 1.1 ± 0.03 | 1.8 ± 0.01 | 39.4 ± 1.9 | 0.9 ± 0.01 | 1.3 ± 0.01 |
Cu | 54.3 ± 2.8 | 1.5 ± 0.05 | 1.71 ± 0.01 | 39.8 ± 1.7 | 1.9 ± 0.2 | 1.8 ± 0.03 |
Zn | 43.4 ± 2.1 | 1.2 ± 0.06 | 0.9 ± 0.003 | 27.4 ± 1.2 | 3.9 ± 0.1 | 1.5 ± 0.03 |
Sr | 52.9 ± 2.7 | 34.1 ± 1.4 | 1.91 ± 0.03 | 38.9 ± 1.7 | 28.3 ± 0.08 | 0.9 ± 0.02 |
Cd | 43.6 ± 2.0 | 1.6 ± 0.05 | 1.5 ± 0.02 | 17.4 ± 0.8 | 1.3 ± 0.01 | 1.7 ± 0.01 |
Ba | 77.7 ± 3.1 | 42.4 ± 2.1 | 2.11 ± 0.5 | 29.2 ± 1.0 | 20.1 ± 1.0 | 1.1 ± 0.02 |
Hg | 12.8 ± 0.6 | 4.5 ± 0.0 | 3.1 ± 0.7 | 5.8 ± 0.01 | 1.1 ± 0.05 | 0.3 ± 0.001 |
Pb | 49.2 ± 2.2 | 1.5 ± 0.5 | 0.34 ± 0.01 | 23.7 ± 1.2 | 1.1 ± 0.05 | 0.84 ± 0.02 |
Phase | Without Additions, pH 6.5 | Sulfates Addition 500 mg, pH 8 | Sulfates Addition 500 mg, Phosphates Addition, pH 8 | Phosphates Addition, 500 mg | Formula |
---|---|---|---|---|---|
Carbonates | |||||
Aragonite | −0.8 | 1.7 | 1.6 | 1.6 | CaCO3 |
Calcite | −0.7 | 1.9 | 1.7 | 1.7 | CaCO3 |
Cerussite | 2.1 | 2.2 | 2.1 | 2.1 | PbCO3 |
Dolomite | −0.7 | 4.6 | 4.2 | 4.2 | CaMg(CO3)2 |
Dolomite-dis | −2.3 | 3.0 | 2.5 | 2.5 | CaMg(CO3)2 |
Dolomite-ord | −0.7 | 4.6 | 4.2 | 4.2 | CaMg(CO3)2 |
Huntite | −7.5 | 3.3 | 2.3 | 2.3 | CaMg3(CO3)4 |
Hydrocerussite | 3.5 | 3.7 | 3.4 | 3.4 | Pb3(CO3)2(OH)2 |
Monohydrocalcite | 3.5 | 3.7 | 3.4 | 3.4 | CaCO3:H2O |
Magnesite | −1.6 | 1.0 | 0.7 | 0.7 | MgCO3 |
Otavite | 1.0 | 3.4 | 3.3 | 3.3 | CdCO3 |
Rhodochrosite | −0.4 | 1.6 | 1.4 | 1.4 | MnCO3 |
Siderite | −0.7 | 0.8 | 0.7 | 0.7 | FeCO3 |
Smithsonite | −1.2 | 1.1 | 0.5 | 0.5 | ZnCO3 |
Strontianite | −0.3 | 2.4 | 2.4 | 2.4 | SrCO3 |
ZnCO3:H2O | −0.6 | 1.7 | 1.1 | 1.1 | ZnCO3:H2O |
Sulfides | |||||
Alabandite | −1.6 | 0.9 | 0.6 | 0.7 | MnS |
Bornite | 84.1 | 96.5 | 96.4 | 90.8 | Cu5FeS4 |
Cattierite | 9.2 | 13.3 | 13.3 | 12.4 | CoS2 |
CdS | 14.4 | 17.3 | 17.2 | 15.8 | CdS |
Chalcocite | 30.8 | 34.2 | 34.2 | 32.8 | Cu2S |
Chalcopyrite | 22.1 | 27.7 | 27.6 | 24.8 | CuFeS2 |
CoS | 3.8 | 4.3 | 4.3 | 4.8 | CoS |
Covellite | 14.2 | 17.7 | 17.7 | 16.3 | CuS |
Galena | 13.0 | 13.6 | 13.4 | 12.1 | PbS |
Metacinnabar | 18.8 | 22.2 | 22.2 | 20.8 | HgS |
Millerite | 6.3 | 9.6 | 9.6 | 8.2 | NiS |
Pyrite | 6.7 | 12.4 | 12.3 | 9.5 | FeS2 |
Pyrrhotite | 1.6 | 3.7 | 3.5 | 2.1 | FeS |
Troilite | 1.7 | 3.8 | 3.6 | 2.3 | FeS |
Vaesite | 9.1 | 16.1 | 16.0 | 13.2 | NiS2 |
Wurtzite | 7.4 | 10.3 | 9.76 | 8.3 | ZnS |
Phosphates | |||||
Hopeite | 4.67 | 4.6 | Zn3(PO4)2:4H2O | ||
Pb4O(PO4)2 | 6.7 | 6.7 | Pb4O(PO4)2 | ||
PbHPO4 | 5.0 | 5.0 | Pb4O(PO4)2 | ||
Oxyhydroxide | |||||
Delafossite | 4.9 | 9.4 | 9.3 | 9.3 | CuFeO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, N.; Artemiev, G.; Zinicovscaia, I.; Yushin, N.; Demina, L.; Boldyrev, K.; Sobolev, D.; Safonov, A. Biogeochemical Permeable Barrier Based on Zeolite and Expanded Clay for Immobilization of Metals in Groundwater. Hydrology 2023, 10, 4. https://doi.org/10.3390/hydrology10010004
Popova N, Artemiev G, Zinicovscaia I, Yushin N, Demina L, Boldyrev K, Sobolev D, Safonov A. Biogeochemical Permeable Barrier Based on Zeolite and Expanded Clay for Immobilization of Metals in Groundwater. Hydrology. 2023; 10(1):4. https://doi.org/10.3390/hydrology10010004
Chicago/Turabian StylePopova, Nadezhda, Grigoriy Artemiev, Inga Zinicovscaia, Nikita Yushin, Ludmila Demina, Kirill Boldyrev, Denis Sobolev, and Alexey Safonov. 2023. "Biogeochemical Permeable Barrier Based on Zeolite and Expanded Clay for Immobilization of Metals in Groundwater" Hydrology 10, no. 1: 4. https://doi.org/10.3390/hydrology10010004
APA StylePopova, N., Artemiev, G., Zinicovscaia, I., Yushin, N., Demina, L., Boldyrev, K., Sobolev, D., & Safonov, A. (2023). Biogeochemical Permeable Barrier Based on Zeolite and Expanded Clay for Immobilization of Metals in Groundwater. Hydrology, 10(1), 4. https://doi.org/10.3390/hydrology10010004