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Abstract: Groundwater samples contaminated with potentially toxic elements (PTE), including
metals and nitrate ions, were collected at a depth of 8–10 m from the Siberian Chemical Plant
multicomponent waste storage. The possibility of developing a permeable biogeochemical barrier
with zeolite and lightweight expanded clay aggregate (LECA) was investigated. The mass fraction and
properties of several metals (Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg and Pb) were determined to investigate
their fixation on the chosen materials at the given experimental conditions. It was established that
metals in sulfide or phosphate forms can be effectively immobilized via biomineralization on LECA,
whereas metals from the non-chalcogen group are primarily retained in the form of phosphates. The
formation of biogenic deposits of iron sulfide, which serve as a sorption–precipitation phase during
the immobilization of the majority of metals, is an important aspect of the LECA loading process.
The use of LECA and zeolite in the form of a two-component barrier is feasible based on the data
obtained. It is assumed that metal immobilization processes occur due to sorption mechanisms in the
zone of zeolite loading. Microbial nitrate removal and the formation of iron sulfide phases under
reducing conditions, which form a geochemical barrier for metals, are expected in the LECA zone.

Keywords: mesoporous zeolite; lightweight expanded clay aggregate (LECA); aquifer contamination;
permeable barrier; potentially toxic elements (PTE); sorption; biomineralization

1. Introduction

Electroplating enterprises, solid waste landfills, as well as mining activities, ore pro-
cessing, chemical and metalworking industries contribute to the contamination of both
underground and surface waters with potentially toxic elements (PTE: heavy metals and
acid anions). The most pronounced detrimental effect on the environment can be caused by
industrial effluents stored in the form of dumps or sludge, and in surface storage pools [1–3].
Notwithstanding the fact that many techniques for remediation of contaminated soils and
surface water bodies have been created and are continuously improved, the treatment of
contaminated groundwater continues to be an expensive and difficult task.

Various impermeable (e.g., cut-off walls in the ground) or permeable engineering
barriers have traditionally been used to prevent pollutant migration in groundwater [4].
Permeable barriers are considered to be a better long-term solution, as they do not disrupt
groundwater movement and do not induce blockages in the geologic horizon [5–7]. A vari-
ety of natural materials, including zeolites [8–10], limestone [6,11], apatite [12], artificially
created materials such as cement-based filter media (CBFM) [13], waste products (e.g., fly
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ash [14]), as well as numerous organic materials and their compositions with minerals [15],
can be used to create these barriers. The formation of in situ geochemical barriers using
reducing agents, such as zero-valent iron [16,17] and other additives, is another method of
treating groundwater. Their injection into the groundwater formation creates local zones
for metal immobilization.

One of the promising remediation strategies for combating multicomponent contami-
nation is the application of in situ biogeochemical barriers based on sorbents and highly
porous material, as well as microorganism growth stimulation by organic compounds. Nu-
merous studies have employed this strategy [18,19]. The development of microbial biofilms
that protect microorganisms from the toxic effects of the contaminated environment and
allow the microbial community to effectively cope with it is critical for the successful
operation of such barriers [20]. Shortcomings of this approach include the necessity of
extra nutrition for the microorganisms as well as biofouling of highly effective sorptive
materials causing deterioration of their properties. Biofilms, on the other hand, can im-
prove material sorption capacity since their polysaccharide matrix contains a significant
number of functional groups, which can participate in metal sorption [21–24]. Furthermore,
microbial processes can result in the formation of secondary mineral phases, such as sulfide
or ferruginous phases, which additionally contribute to metal immobilization [25–27].

Previously, we have studied the possibility of using zeolite, apatite, expanded clay,
vermiculite, and other materials along with organic stimulation as a groundwater per-
meable barrier near a storage facility for the immobilization of radionuclides, such as
cesium, strontium, uranium, and technetium, from radioactive waste [28]. The effects of
natural groundwater microflora on the sorption properties of materials were studied. It was
demonstrated that microbiological effects did not significantly alter the sorption properties
of the examined materials under the operating conditions of the barrier. In another study,
the possibility of using vermiculite, lightweight expanded clay aggregate (LECA), perlite,
zeolite, and shungite as filtration barrier in the aquifer near a solid domestic waste landfill
for Cd and Cr (VI) immobilization was investigated. Based on the results obtained by
authors of the present study and other researchers [4], the most optimal approach in case
of purification of groundwater with multi-component contamination is development of
permeable barriers consisting of several materials that create different conditions for the
immobilization of various contaminants.

The aim of the present study was to assess the possibility of using zeolite and LECA
as a permeable biogeochemical engineering barrier in groundwater with high nitrate and
sulfate contamination for metal ion immobilization, taking as an example, groundwater
collected near the multicomponent waste storage of the Siberian Chemical Plant (Tomsk
region, Russia).

A field test to create a groundwater biogeochemical barrier was conducted there
previously [29]. In less than one month, as a result of a single injection of organic matter,
the studied area was cleared of nitrate ions, but the effect was transient; in one year, con-
centrations of contaminants comparable to the initial ones were observed in the stonecrop
zone. In this case, enhancing the stable development of microorganisms in biofilms in
contaminated groundwater could be a critical solution for in situ nitrate, radionuclide, and
various metal removals.

2. Materials and Methods

In the present study, a groundwater sample was collected from a depth of 8–10 m in
the area of the basin of the Siberian Chemical Plant storage of polycomponent wastes. Water
samples were taken after pumping one and a half well volumes in sterile, 2 L plastic bottles,
hermetically sealed and stored at a temperature of +4 ◦C in a refrigerator. The sample
chemical composition and microbiological properties can be found in [29]. It contained
high concentrations of major components, nitrate ions and calcium, as well as PTE—Mn,
Fe, Ni, Cu, Sr, and Zn (Table 1).
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Table 1. Characteristics of the analyzed groundwater sample.

Major Elements *, mg/L Trace Elements **, µg/L

pH 6.34 ± 0.2 Al 145 ± 4.4 As 0.6 ± 0.1 Cs 0.01 ± 0.001

salt concentration 6670 ± 200 Si 9893 ± 297 Br 128 ± 0.2 Ba 612 ± 18.4
Na+ 647 ± 19 Sc 2 ± 0.1 Se 2.7 ± 0.1 La 0.74 ± 0.02
K+ 8.9 ± 0.3 Ti 3.1 ± 0.1 Rb 0.25 ± 0.2 Ce 1.16 ± 0.04

Ca2+ 762.3 ± 22.8 V 0.9 ± 0.02 Sr 993 ± 30 W 0.3 ± 0.01
Mg2+ 139.7 ± 4.2 Cr 5.06 ± 0.2 Zr 0.1 ± 0.01 Pb 0.92 ± 0.03
NH4

+ 12.3 ± 0.03 Mn 4482 ± 135 Nb 0.3 ± 0.01 Th 0.04 ± 0.001
NO3

− 3849 ± 115 Fe 17563 ± 527 Mo 2.24 ± 0.06 U 0.72 ± 0.02
SO4

2− 467 ± 14 Co 16.5 ± 0.5 Ru 0.03 ± 0.001
Cl− 6.3 ± 0.2 Ni 145 ± 4.4 Rh 2.03 ± 0.06

HCO3
− 305.1 ± 9.2 Cu 60 ± 1.8 Pd 0.02 ± 0.001

Ptot 32.5 ± 1 Zn 150 ± 4.5 Cd 11.3 ± 0.34

* Detection limit = 100 µg/L, with the exceptions of K, Cl = 10 µg/L, and P = 25 µg/L. ** Detection limit: As, Nb,
Ba = 0.1 µg/L; Br = 16 µg/L; Se = 1.6 µg/L; Zr, Nb, Ru, Pd, Cd, W = 0.01 µg/L; Mo, Pb = 0.02 µg/L, Cs = 0.001 µg/L;
La = 0.003 µg/L; Ce = 0.004 µg/L; Th, U = 0.002 µg/L.

2.1. Carriers

Natural zeolite (Clinoptilolite type) from the Chola deposit (Transbaikalia, Russia)
was purchased from the “Zeolite-Trade” company (http://www.zeolite.spb.ru/ accessed
on 17 January 2021). The zeolite “Trade” consists of isometric aggregates of 3–5 mm and
microaggregates of micron size with thin isometric pores and elongate channels. This
structure ensures simultaneous high filtration and sorption properties. The density of the
“Trade” zeolite is 2.2–2.6 g/cm3, the specific surface area is 10.1 m2/g, and the bulk weight
is 1.02–1.2 g/cm. Natural zeolite was ground up and sieved, and the fraction with a size
300–100 µm was used for further experiments.

Lightweight expanded clay aggregate (LECA) produced by the PJSC “Keramzit”
(Serpuhov, Russia, https://zao-keramzit.com) (accessed on 26 January 2021). Is a mixture
of clay minerals (smectite, beydelite) heated at 1200 ◦C. It is composed of highly porous
aggregates up to 5 mm in size and pores ranging from several nanometers to 0.5 mm.
Despite its high porosity and specific surface, the LECA has a low chemical activity due to
the highest and most stable oxidation state of its components during burning, when water
and organic matter are completely removed.

2.2. Experimental Design
2.2.1. Sorption before and after Biofouling

In the first stage, the experiments were performed on materials with biofilm formed by
the groundwater microbial community. The biofouling was performed in aerobic conditions
for 14 days in Adkins media inoculated with 10% of groundwater sample. The medium con-
tained NH4Cl—1.0; KH2PO4—0.75; K2HPO4—1.5; NaNO3—1.0; NaCl—0.8; Na2SO4—0.1;
MgSO4·7H2O—0.1; KCl—0.1, yeast extract—0.5; glucose—1.0; CH3COONa—1.0,
pH = 7. Glucose and sodium acetate Sigma Aldrich (Darmstadt, Germany) (https://
www.sigmaaldrich.com/ accessed on 1 March 2021.) in concentrations of 1 g/L were used
as carbon sources and electron donors. Filtration and freeze drying were used to separate
the biofilm-containing materials from the cultivation medium.

Sorption experiments were conducted in 100 mL flasks for 24 h at vigorous agitation
with the same groundwater. The solution volume was 50 mL, and the sorbent dosage was
0.5 g. Metals were added from nitrate solutions (Sigma Aldrich (Darmstadt, Germany)) at
a concentration of 10 mg /L (per metal). All experiments were conducted in triplicate, and
the average values were used for further calculations.

The metal uptake q (mg/g sorbent) was calculated using the following equation:

q =
V(Ci − C f )

m
(1)

http://www.zeolite.spb.ru/
https://zao-keramzit.com
https://www.sigmaaldrich.com/
https://www.sigmaaldrich.com/
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and sorption removal efficiency, R (%), from the equation:

R =
Ci − C f

Ci
∗ 100 (2)

where q is the amount of metal ions adsorbed on the sorbent in mg/g; V is the volume
of solution in ml; Ci is the initial concentration of a metal in mg/L, Cf is the final metal
concentration in the solution in mg/L, and m is the mass of sorbent in g.

Desorption was carried out with low mineralized model water (NaHCO3—25.2,
MgSO4×7H2O—36.6, CaCl2×6H2O—223.9, MgCO3—3.2, NaNO3—1000, pH 7.1) In vials,
the material was stirred at 120 rpm for 2 h at room temperature. All chemicals were high
purity grade from Sigma Aldrich (Darmstadt, Germany).

2.2.2. Metal Immobilization during Microbial Growth

In the second stage, an experiment on accumulation and biomineralization of mineral
carriers with simultaneous growth of microorganisms from the solution of underground
water was carried out. Sodium acetate and glucose high purity grade (Sigma Aldrich,
Darmstadt, Germany) at a concentration of 1 g/L were used as a carbon source and electron
donors. The experiment was carried out in hermetically sealed vials for one month to
achieve anaerobic mineralization of iron and sulfur. Metals at the same concentrations as in
the sorption experiment were added to the medium in the beginning of the experiment.

The medium in the first stage of the experiment contained phosphates from groundwa-
ter samples; in the second variant, phosphates at a concentration of 500 mg/L in the form of
potassium phosphate high purity grade (Sigma Aldrich, Darmstadt, Germany) were added.
Desorption was carried out according to the procedure described for sorption experiment.

2.3. Methods

The chemical composition of the water samples was analyzed immediately after
sample collection and filtration through a 0.45 µm glass filter by inductively coupled
plasma–mass spectrometry (ICP-MS) on mass spectrometer Xseries II ICP-MS (Thermo
Fisher Scientific, Waltham, MA, USA) and ICP-OES on ICP-OES CID Spectrometer); iCAP
6500 (Thermo Fisher Scientific, Waltham, MA, USA, https://www.fishersci.com/shop/
products/icap-6500duoview-icp-oes-spect/NC1982295 accessed on 19 January 2022).

The determination of Eh and pH values was carried out using an ANION-4100 pH
meter/ionomer (Russia) with an electrode combination. Anion and cation concentrations
were measured by a CGE capillary electrophoresis system (Capel-105M, LUMEX Instru-
ments, Saint Peterburg, Russia, https://www.lumexinstruments.com/catalog/capillary-
electrophoresis/capel-105m.php accessed on 10 January 2020).

Copper, Cd, and Pb concentrations in the solutions were determined by AAS (Thermo
Scientific iCE 3400 series, Waltham, MA, USA, https://www.thermofisher.com/order/
catalog/product/942350023411) (accessed on 6 December 2022) with electrothermal atom-
ization. Calibration solutions were prepared from a 1 g/L stock solution (AAS standard
solution; Merck, Darmstadt, Germany).

The mass fraction of other elements was determined using neutron activation analysis
at the pulsed fast reactor IBR-2 (Frank Laboratory of Neutron Physics, Joint Institute for
Nuclear Research, Dubna, Russia). The concentration of Mn was determined by irradiation
for 3 min at a thermal neutron flux of 1.2 × 1012 n cm–2 s–1, and measurement time was
15 min. To determine the mass fraction of elements with long-lived isotopes: Cr, Co, Zn,
Sr, Ba, and Hg samples were irradiated for 4 days at a neutron flux of 1.1 × 1011 cm−2 s−1.
Gamma spectra of induced activity were obtained after 4 and 20 days using three Canberra
HPGe detectors with an efficiency of 40–55% and resolution of 1.8–2.0 keV at 1332 keV 60Co
total-absorption peak. The analysis of the spectra was performed using the Genie2000 soft-
ware by Canberra (https://www.mirion.com/products/genie-2000-basic-spectroscopy-
software) (accessed on 6 December 2022), with peak fitting verification in interactive mode.

https://www.fishersci.com/shop/products/icap-6500duoview-icp-oes-spect/NC1982295
https://www.fishersci.com/shop/products/icap-6500duoview-icp-oes-spect/NC1982295
https://www.lumexinstruments.com/catalog/capillary-electrophoresis/capel-105m.php
https://www.lumexinstruments.com/catalog/capillary-electrophoresis/capel-105m.php
https://www.thermofisher.com/order/catalog/product/942350023411
https://www.thermofisher.com/order/catalog/product/942350023411
https://www.mirion.com/products/genie-2000-basic-spectroscopy-software
https://www.mirion.com/products/genie-2000-basic-spectroscopy-software
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The calculation of the concentrations was carried out using the software “Concentration”
developed in FLNP [30].

Biofilm development was detected using confocal scanning microscopy. The samples
were washed with distillate water to remove planktonic cells prior to storing in a 96%
alcohol solution for biofilm fixation. ConA (lectin conjugated with the fluorescent dye
Alexa Fluor 488 (C11252, ThermoFisher) in phosphate buffer at a dilution of 1:500) and SYBR
Green II (S7564, ThermoFisher), which binds to nucleic acids (primarily RNA), were used to
stain the samples. ConA binds to bacterial wall monosaccharides and EPS, SYBR Green II to
nucleic acid. Staining was performed in the dark for 30 min on a shaker at room temperature.
The samples were analyzed using a Zeiss LSM880 confocal microscope (Zeiss, Germany).
The images were acquired with x20 and x40 objectives and argon lasers with wavelengths
of 488 nm for detecting ConA fluorescence and 543 nm for detecting SYBR Green II. The
Nomarski contrast method was applied to detect uncolored particles (LECA and zeolite).
The obtained images were analyzed using the ImageJ software package with the plugin
BioFormats 5.8.2 (https://docs.openmicroscopy.org/bio-formats/5.8.2/about/index.html)
(accessed on 6 December 2022) and BioFilmAnalyzer v.1.0 [31].

Organic carbon was determined using a total organic carbon analyzer: Shimadzu
TOC-V CSN (Kyoto, Japan).

Respiration activity was determined using the MTT test under oxic and anoxic
conditions [32]. Before spectrophotometry of the oxidized formazan complex, the samples
were centrifuged at 7000 g to remove the clay suspension.

Materials surface analysis before and after sorption was performed using a S3400N
scanning electron microscope (Hitachi, Santa Clara, CA, USA). Analysis samples were
removed from the liquid medium by filtration and dried at room temperature in a nitrogen
glove box to a constant weight. For SEM analysis, the samples were placed on an aluminum
holder using electrically conductive tape, and vacuum carbon deposition (Q150T E Plus)
was carried out (vacuum 4–3, current 50 A). The samples were analyzed in two modes, SE
and BSE, at a voltage of 20 kV.

Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence
of the functional groups in the microbial samples. Infrared spectra were recorded in the
4000–550 cm–1 region using a Thermo Nicolet Nexus 4700 FT-IR Spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA).

The speciation of metals in solution was assessed by thermodynamic modeling in the
PhreeqC 2.1 software with the llnl.dat thermodynamic database [33]. The saturation indices
(SI) were determined as follows:

SI = logIAP − logKs (3)

where IAP is the product of activities of the relevant ions, and Ks is the equilibrium constant.
At SI > 0, formation of the studied phase is predicted.

3. Results
3.1. Zeolite and LECA Biofilm Characterization

The microbial biofilm formation and the accumulation of organic carbon on the ma-
terials occurred after a single stimulation with glucose. Organic carbon is predominantly
present as the biofilm exopolysaccharide matrix. The maximum carbon accumulation on
zeolite was observed on days 20–30, and on LECA on days 15–20 (Table 2). LECA had
a higher total carbon mass fraction, reaching 12.9 mg/g. A gradual biofilm degradation
on both materials was observed after 40 days. After 60 days, the carbon mass fraction on
zeolite decreased to the initial values of biofilm development; for LECA, the decrease was
15% from the maximum.

https://docs.openmicroscopy.org/bio-formats/5.8.2/about/index.html
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Table 2. Kinetics of total organic carbon accumulation on the studied materials (mg/g) *.

Sample Time, Days
0 5 7 15 20 30 40 50 60

Zeolite 0.12 ± 0.004 3.8 ± 0.13 4.6 ± 0.15 7.1 ± 0.22 8.5 ± 0.3 8.4 ± 0.3 4.5 ± 0.15 3.9 ± 0.13 3.5 ± 0.11
LECA 0.26 ± 0.01 4.5 ± 0.15 7.9 ± 0.3 12.8 ± 0.45 12.9 ± 0.4 12.4 ± 0.43 11.5 ± 0.38 11.0 ± 0.35 10.9 ± 0.33

* Uncertainty of the TOC result is less than 5%, according to the Shimadzu TOC Measurement Manual.

The morphology of the samples was visualized using confocal laser scanning mi-
croscopy (Figure 1). It was discovered that the LECA coverage by biofilm was more even
than biofouling on zeolite. On the 20th day, the total area of polysaccharides on LECA was
75 ± 3.8%, taking into account that the total area of fouling was 89 ± 4.3%. The area covered
by polysaccharides on zeolite was 54 ± 2.6%, the total fouling area being 59 ± 2.9%.
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Figure 1. Micrographs of materials on the 20th day: zeolite–bio (a), zeolite–biomineralization (b),
LECA–bio (c) and LECA–biomineralization (d). Red channel is polysaccharides, and green is nucleic acids.

The area covered by cells (according to nucleic acid staining) on LECA was on average
two times greater than that on zeolite (Table 3, which also contains data on the formation
of biofilms in the biomineralization experiment). A similar trend was observed with the
total covered area, in the case of zeolite, it was 53 ± 2.6% and for LECA, 84 ± 4.1%. The
high biofouling of LECA is primarily due to its porous structure and larger surface area
compared to zeolite.
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Table 3. Topological parameters of biofilm on analyzed materials (after 20 days of growth) studied
by confocal scanning laser microscopy.

Sample Nucleic Acid, % Polysaccharides, % Total Area of Fouling, %

Zeolite–bio 5 ± 0.2 54 ± 2.6 59 ± 2.9

LECA–bio 14 ± 0.7 75 ± 3.8 89 ± 4.3

Zeolite–biomineralization 8 ± 0.4 45 ± 2.2 53 ± 2.6

LECA–biomineralization 13 ± 0.6 71 ± 3.6 84 ± 4.1

3.2. Metal Immobilization on Materials before and after Biofouling (Sorption Experiment)

The results of metal accumulation on raw and biofilm-coated materials are presented in
Figure 2. The efficiency of metal sorption on LECA did not exceed 20%, with the exception
of mercury, when the sorption efficiency was slightly above 50%. Sorption efficiency on
zeolite was significantly higher. Thus, for cadmium, strontium, mercury, and manganese,
it was higher than 90%, and for nickel, zinc, copper, and lead, it was in the range of
80–90%. Formation of biofilm on the analyzed materials had a multidimensional effect on
the efficiency of sorption. For LECA, the efficiency of all metals’ immobilization increased.
The highest efficiency (60–80%) was observed for chromium, zinc, cadmium, and copper.
For nickel, cobalt, strontium, and barium, the increase in the efficiency of immobilization
was less pronounced. In the case of zeolite, the formation of biofilm resulted in the decrease
in manganese, cobalt, nickel, copper, zinc, strontium, cadmium and barium immobilization.
Moreover, for cobalt, copper, strontium and barium, the decrease in the sorption efficiency
was significant (20–50%). For lead and mercury, the efficiency of immobilization was
almost unaffected by the biofilm. Thus, the formation of biofilms on materials with high
immobilization characteristics inhibits metal accumulation.
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3.3. Metal Immobilization on Materials during Biofouling (Bioaccumulation and
Biomineralization Experiment)

The values of the efficiency of metal immobilization on the studied materials during
biomass growth with and without the addition of the excess of phosphates in the medium
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are presented in Table 4. Metal immobilization on materials, particularly for LECA, in-
creased in the biomineralization experiments. Immobilization on LECA was higher than
on zeolite, which can be attributed to the greater surface biofouling. The addition of phos-
phates contributed to the significant increase in strontium and barium immobilization and
resulted in 100% immobilization of mercury.

Table 4. Efficiency (%) of metal immobilization on materials in biomineralization experiments with
phosphates (bmp) and without phosphates (bm).

Metal LECA
(bio)

LECA
(bm)

LECA
(bmp)

Zeolite
(bio)

Zeolite
(bm)

Zeolite
(bmp)

Cr 29.3 ± 1.0 97.5 ± 4.4 98.7 ± 4.3 65.5 ± 1.6 90.7 ± 4.0 91.5 ± 3.9

Mn 26.7 ± 1.0 98.7 ± 4.2 99.4 ± 4.5 44.8 ± 0.9 89.4 ± 3.7 90.8 ± 3.7

Co 18.6 ± 0.8 99.1 ± 4.5 98.1 ± 4.3 56.1 ± 1.9 82.3 ± 3.9 84.7 ± 2.9

Ni 37.1 ± 1.7 99.6 ± 4.5 99.5 ± 4.4 67.4 ± 2.0 82.32.6 99.5 ± 3.9

Cu 34.6 ± 1.4 92.5 ± 4.0 89.1 ± 3.0 34.5 ± 0.8 85.4 ± 2.4 88.1 ± 2.6

Zn 68.4 ± 3.4 98.9 ± 4.4 99.8 ± 4.7 78.9 ± 3.6 92.1 ± 4.0 90.4 ± 3.7

Sr 14.7 ± 0.7 31.2 ± 1.2 100 ± 5.0 44.7 ± 1.2 57.9 ± 1.9 100 ± 4.5

Cd 75 ± 3.0 98.1 ± 4.7 99.2 ± 4.3 83 ± 3.0 98.4 ± 3.8 99.1 ± 4.4

Ba 13.4 ± 0.3 16.2 ± 0.7 89.7 ± 3.8 19.7 ± 0.7 31.2 ± 1.5 98.5 ± 4.2

Hg 68.9 ± 2.5 100 ± 4.4 100 ± 4.5 91.2 ± 2.6 100 ± 4.8 100 ± 4.5

Pb 49.1 ± 1.8 97.9 ± 4.2 98.6 ± 3.9 89.1 ± 2.4 99.8 ± 4.8 99.3 ± 4.3

3.4. Evaluation of the Binding Strength of Immobilized Forms of Metals on Analyzed Materials

Table 5 report the data related to the efficiency of metal desorption using groundwater
as a desorbing agent (2 h of mixing). According to the results, the strength of metal binding
on zeolite was higher despite its lower fouling. In the experiment with LECA coated with
biofilm, the highest efficiency of desorption was obtained for cobalt, chromium, copper,
barium, and manganese, while for cadmium and zinc, it was very low. On zeolite coated
with biofilms, the maximum desorption was observed for chromium and the minimum
for cadmium. Thus, in sorption experiments, the majority of metals was not strongly
immobilized on organic microbial biofilms.

Table 5. Efficiency of metal desorption from the LECA and zeolite using groundwater as a desorbing agent.

Metal LECA
(bio)

LECA
(bm)

LECA
(bmp)

Zeolite
(bio)

Zeolite
(bm)

Zeolite
(bmp)

Cr 64.9 ± 2.9 2.2 ± 0.1 2.11 ± 0.01 41.9 ± 2.1 2.1 ± 0.01 1.7 ± 0.03

Mn 72.8 ± 3.5 1.3 ± 0.07 2.11 ± 0.01 32.3 ± 1.5 1.5 ± 0.01 1.9 ± 0.03

Co 81.6 ± 3.9 3.9 ± 0.09 4.1 ± 0.1 30.4 ± 1.4 3.1 ± 0.02 2.9 ± 0.4

Ni 49.4 ± 2.5 1.1 ± 0.03 1.8 ± 0.01 39.4 ± 1.9 0.9 ± 0.01 1.3 ± 0.01

Cu 54.3 ± 2.8 1.5 ± 0.05 1.71 ± 0.01 39.8 ± 1.7 1.9 ± 0.2 1.8 ± 0.03

Zn 43.4 ± 2.1 1.2 ± 0.06 0.9 ± 0.003 27.4 ± 1.2 3.9 ± 0.1 1.5 ± 0.03

Sr 52.9 ± 2.7 34.1 ± 1.4 1.91 ± 0.03 38.9 ± 1.7 28.3 ± 0.08 0.9 ± 0.02

Cd 43.6 ± 2.0 1.6 ± 0.05 1.5 ± 0.02 17.4 ± 0.8 1.3 ± 0.01 1.7 ± 0.01

Ba 77.7 ± 3.1 42.4 ± 2.1 2.11 ± 0.5 29.2 ± 1.0 20.1 ± 1.0 1.1 ± 0.02

Hg 12.8 ± 0.6 4.5 ± 0.0 3.1 ± 0.7 5.8 ± 0.01 1.1 ± 0.05 0.3 ± 0.001

Pb 49.2 ± 2.2 1.5 ± 0.5 0.34 ± 0.01 23.7 ± 1.2 1.1 ± 0.05 0.84 ± 0.02
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The metal binding strength on both materials increased significantly during the biomin-
eralization experiment. The highest efficiency of desorption for both materials was observed
for Ba and Sr, and for other elements, it was less than 5%. At the addition of phosphates, the
efficiency of elements desorption on LECA was less than 5% and on zeolite less than 3%.

4. Discussion

The formation of biofilm on the studied materials occurred differently. The adhesion
of biofilms on LECA was strengthened due to the more developed surface macrostructure
and high roughness. However, since mesopores are inaccessible for microorganisms,
the zeolite surface was not affected by biofouling. As a result, it can be assumed that
biofouling and biofilm formation will influence metal immobilization only on LECA. Metal
binding on zeolite can be influenced by biofilms as well as by the material’s surface. The
experiments revealed that the surfaces of materials, biofilms, and mineral phases formed
during microorganism growth and contributed to metal immobilization. Furthermore,
biomineralization was mainly responsible for metal immobilization. The mechanisms of
metal fixation by microbial biofilms have been thoroughly investigated. They include
physical and physicochemical adsorption, such as ion exchange or formation of complexes
on biofilm sorption centers [34].

4.1. The Role of Biofouling in Metals Immobilization

It is known that bacterial biofilms consist of a matrix with up to 90–95% polysaccha-
rides based on β-glucuronic acid. The sorption sites of biofilms include hydroxyl (alcohols,
carbohydrates), carboxyl (fatty acids, proteins, organic acid residues), amino groups (pro-
teins and nucleic acids), esters (lipids), sulfhydryl groups (cysteine residues, proteins),
aldehyde groups (aldehydes and polysaccharides), internal carbonyl groups (ketones and
polysaccharides), and phosphate groups [35].

IR spectra recorded before and after the biofouling processes confirmed the materials’
biogenic fouling. The spectrum of LECA after biofilm formation differed significantly from
the spectrum of the raw material. Aluminosilicate-like bands were observed prior to biofilm
formation: 1035, 799, and 775 cm−1. Two maxima, 993 and 918 cm−1, which are indicative
of the stretching vibrations of the C-O and C-C groups, were identified on the band in the
range of 1200–900 cm−1 after biofouling (Figure 3a). The spectrum of the zeolite sample
showed the appearance of ν(OH) stretching vibrations in the range of 3600–3300 cm−1,
as well as the appearance of a band at 1414 cm−1, which can be attributed to the δ(COH)
vibration. In addition, the spectrum of the bio-treated zeolite contained water vibration
bands: ν(H2O) = 3528, 3381 cm−1 and δ(H2O) = 1640 cm−1, which along with the hydroxy
group, can be part of the polysaccharide matrix.
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According to the literature (Table A1), the most common complexing agents capable
of chelating almost all metals used in the current study are carboxyl, hydroxyl, and thiol
groups. Amino (and amide) groups are able to form compounds with Cr, Zn, Ni, Cu, Mn,
Cd, Sr, and Hg. Phosphoryl groups have the lowest affinity for Mn, Co, and Sr. Although
carbonyl groups can bind Cr, Ni, Cu, Hg, and Pb, their chelate formation is much less active.

Microbial biofilms can be considered as polyfunctional adsorbents for the majority of
metals. At the same time the overlapping of the material’s specific surface by the biological
matrix can lead to the decrease in the material sorption capacity. This may explain the
decrease in zeolite with biofilms sorption capacity toward Mn, Co, Ni, Cu, Sr, and Ba. It
can be concluded that functional groups of zeolite play a dominant role in the binding of
the mentioned metals.

4.2. The Role of Biomineralization in Metal Immobilization

Previously, a microbial community capable of reducing iron, sulfur, and nitrogen
compounds metabolically was discovered in water samples. In the present work, the effect
of a single addition of organic matter on physico-chemical conditions was investigated
experimentally (Figure 4). Significant shifts in the medium’s redox potential toward the
reduction region, as well as the reduction of nitrate ions, were observed up to day 30.
Following the establishment of strongly reducing conditions, the concentration of sulfate
ions decreased as a result of the sulfate reduction process, which led to sulfide reduction.
The microbial processes were more active in the presence of LECA.
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Optional conditions for the solid mineral phases formation were determined according
to calculation in PhreeqC code (the thermodynamic database llnl.dat was used) [33]. Sulfate-
reductive conditions, a shift in the redox potential to the reduction side, and an increase
in carbonate ion concentration are required. Carbonate mineral precipitation is primarily
caused by anoxic microbial respiration. Sulfide and phosphates were formed in the system
as a result of the sulfate reduction. Table 6 and Figure 5 show the results of the SI calculations
of solid mineral phases under sulfate reduction conditions. For zinc phosphate (Hopeite,
Zn3(PO4)2:4H2O), the SI was also greater than 0 (SI = 4.12).
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Table 6. Thermodynamic modeling (PhreeqC 2.1 software with the llnl.dat) of mineral phases
formation at saturation indices (SI) > 0.

Phase
Without

Additions,
pH 6.5

Sulfates
Addition

500 mg, pH 8

Sulfates Addition
500 mg, Phosphates

Addition, pH 8

Phosphates
Addition,

500 mg
Formula

Carbonates

Aragonite −0.8 1.7 1.6 1.6 CaCO3

Calcite −0.7 1.9 1.7 1.7 CaCO3

Cerussite 2.1 2.2 2.1 2.1 PbCO3

Dolomite −0.7 4.6 4.2 4.2 CaMg(CO3)2

Dolomite-dis −2.3 3.0 2.5 2.5 CaMg(CO3)2

Dolomite-ord −0.7 4.6 4.2 4.2 CaMg(CO3)2

Huntite −7.5 3.3 2.3 2.3 CaMg3(CO3)4

Hydrocerussite 3.5 3.7 3.4 3.4 Pb3(CO3)2(OH)2

Monohydrocalcite 3.5 3.7 3.4 3.4 CaCO3:H2O

Magnesite −1.6 1.0 0.7 0.7 MgCO3

Otavite 1.0 3.4 3.3 3.3 CdCO3

Rhodochrosite −0.4 1.6 1.4 1.4 MnCO3

Siderite −0.7 0.8 0.7 0.7 FeCO3

Smithsonite −1.2 1.1 0.5 0.5 ZnCO3

Strontianite −0.3 2.4 2.4 2.4 SrCO3

ZnCO3:H2O −0.6 1.7 1.1 1.1 ZnCO3:H2O

Sulfides

Alabandite −1.6 0.9 0.6 0.7 MnS

Bornite 84.1 96.5 96.4 90.8 Cu5FeS4

Cattierite 9.2 13.3 13.3 12.4 CoS2

CdS 14.4 17.3 17.2 15.8 CdS

Chalcocite 30.8 34.2 34.2 32.8 Cu2S

Chalcopyrite 22.1 27.7 27.6 24.8 CuFeS2

CoS 3.8 4.3 4.3 4.8 CoS

Covellite 14.2 17.7 17.7 16.3 CuS

Galena 13.0 13.6 13.4 12.1 PbS

Metacinnabar 18.8 22.2 22.2 20.8 HgS

Millerite 6.3 9.6 9.6 8.2 NiS

Pyrite 6.7 12.4 12.3 9.5 FeS2

Pyrrhotite 1.6 3.7 3.5 2.1 FeS

Troilite 1.7 3.8 3.6 2.3 FeS

Vaesite 9.1 16.1 16.0 13.2 NiS2

Wurtzite 7.4 10.3 9.76 8.3 ZnS

Phosphates

Hopeite 4.67 4.6 Zn3(PO4)2:4H2O

Pb4O(PO4)2 6.7 6.7 Pb4O(PO4)2

PbHPO4 5.0 5.0 Pb4O(PO4)2
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Table 6. Cont.

Phase
Without

Additions,
pH 6.5

Sulfates
Addition

500 mg, pH 8

Sulfates Addition
500 mg, Phosphates

Addition, pH 8

Phosphates
Addition,

500 mg
Formula

Oxyhydroxide

Delafossite 4.9 9.4 9.3 9.3 CuFeO2
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As a result of biogenic mineralization, according to BTC llnl.dat, the formation of the
following metal phases was predicted: Mn in the form of MnCO3 (Rhodochrosite) and
in the form of MnS phases (Akabandite), Co as CoS2 (Cattierite), Cd as CdCO3 (Otavite)
and CdS, Cu as Cu2S (Chalcocite) and CuS (Covellite), Hg as HgS (Cinnabar), Ni as NiS
(Mullerite) and NiS2 (Vaesite), Zn as ZnCO3 (Smithsonite) ZnS (Wurtzite), Pb in the form of
Pb3(CO3)2(OH)2 (Hydrocerussite) and PbCO3 (Cerussite), as well as PbS (Galena), Fe in the
form of FeCO3 (Siderite) and various sulfide phases such as FeS2 (Pyrite) and FeS (Troilite,
Pirrhotite). The addition of phosphates, as well as the production of biogenic carbonate
during decomposition of organic carbon, led to a significant decrease in the desorption
of strontium and barium, while for other metals, the effect was less pronounced. This
can be explained by the formation of calcium phosphate and biogenic calcite (the SI for
monohydrocalcite was 0.42, for aragonite > 1, calcite > 1.2, and dolomite > 4), which with
high probability, participated in the coprecipitation of strontium (including strontianite)
and barium. The addition of phosphates could also lead to the formation of zinc phosphates
of the Zn3(PO4)2:4H2O (Hopeite) type.

Iron phases under reducing conditions are the most valuable in the process of biogenic
minerals formation. Although the formation of iron oxyhydroxides +3 was not anticipated,
sulfide phases were predicted to form because of the highly reducing environment. The
elemental maps (S, Fe) acquired using electron microscopy provided further evidence
(Figure 6). The accumulation of sulfur and iron phases on LECA (L) and zeolite (Z)
after microbial transformation (2) was observed. No substantial iron sulfide crystals
were discovered by scanning electron microscopy since the experiment’s time period was
insufficient for their formation. The observed sulfide–iron formations were most likely
associated with a microbial biofilm.

It is known that ferriferous phases (siderite, pyrite, and other iron sulfides) are active
sorbents of metals. The resulting sulfide reacts with chalcophile metals [36] such as copper,
iron and zinc [37–39]. In a study by Jong et al. [40], it was found that biogenic iron sulfide
is a highly effective adsorbent for a wide range of metals and non-metals, including Pb(II),
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Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V). In addition to sorption, the formation of
sulfide phases can lead to reduction and stabilization of the reduced phases of metals with
varying degrees of oxidation, forming a reductive barrier on the material’s surface.
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5. Conclusions

The parameters of Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, Hg, and Pb immobilization on
LECA and zeolite were established taking as an example the permeable biogeochemical
barrier near the Siberian Chemical Plant multicomponent waste storage. The geochemical
modeling approach predicted the formation of solid mineral phases of iron sulfides and
other metals.

It has been established that microbial biofouling does not always promote metal
immobilization on the mineral base of the barrier. Mesoporous materials with a high
initial sorption capacity were affected by biofilm fouling, which reduced their sorption
efficiency. However, biofouling had a beneficial effect on materials with a high surface
area of macropores and a characteristically low capacity of metal sorption, significantly
increasing their sorption capacity.

The non-uniformity of biofouling on zeolite and LECA demonstrated in this study
suggested the feasibility of developing a permeable barrier for the purification of contam-
inated groundwater with specific functionality. The first component of the barrier can
be zeolite, which is less susceptible to fouling and effectively immobilizes metals. LECA
can be used as the second part of the barrier to remove metals, nitrates, and sulfates. It
was discovered that the biomineralization process on LECA effectively retained metals in
sulfide and phosphate forms. For metals of the non-chalcogen group, immobilization is
possible with the addition of phosphates. The formation of biogenic iron sulfide precipitate
during expanded clay loading is crucial, as it provides a sorption–precipitation phase for
the immobilization of the majority of metals.
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Appendix A

Table A1. The role of organic groups in metal immobilization according to literature data.

Carboxyl Carbonyl Hydroxyl Amino Phosphoryl Thiol (SH)

Cr [41,42] [43] [44,45] [44] [44] [41,45]
Mn [46] - [46,47] [46] - [46]
Co [48,49] [48] [49,50] [48] - [51]
Ni [52,53] [52,53] [53,54] [53] -
Cu [53,55,56] [53,57] [57] [57] [53,55,57] [55]
Zn [58–60] - [58] [58] [58,59] [51,58,61,62]
Sr [63] - [64] - [63]
Cd [65–67] - [53,57] [65,67] [41] [46]
Ba [63] - - - [68] [63]
Hg [69–71] [69] [70,71] [70,71] [71] [62,72–74]
Pb [53,75] [53] [76,77] - [53,75–78] [62,72–74]
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