Sea-Level Rise in Pakistan: Recommendations for Strengthening Evidence-Based Coastal Decision-Making
Abstract
:1. Introduction
2. Current Scientific Understanding
2.1. Drivers of Sea-Level Rise Globally, Regionally and Locally
2.2. Observed Local Relative Mean Sea Level along Pakistan’s Coastline
2.3. Projected Local Relative Mean Sea Level along Pakistan’s Coastline
2.4. Extreme Sea-Level Analysis
3. Coastal Risks in Pakistan and Ongoing Initiatives
3.1. Tectonic Instability
3.2. Upstream Water Management in the Indus Delta
3.3. Saltwater Intrusion
3.4. Deterioration of Ecosystems
3.5. Morphological Changes
3.6. Significant Infrastructure
3.7. Ongoing Initiatives
4. Recommendations to Strengthen Evidence-Based Coastal Planning and Resilience to Sea-Level Rise in Pakistan
4.1. Recommendation 1: Establish an Enabling Policy Environment by Integrating Coastal Climate Services into the National Adaptation Plan and Developing a National Framework for Climate Services
4.2. Recommendation 2: Improve Data Collection, Availability, and Quality through Sustained Funding and Investment in Coastal Monitoring and Observation Data
4.3. Recommendation 3: Improve the Provision and Communication of Coastal Risk Information to Match the Needs of Decision-Makers and Practitioners through Collaboration and Co-Production
4.4. Recommendation 4: Enhance the Use of Decision-Making Frameworks, including Adaptive Pathways, to Manage Coastal Risks and Address Uncertainties
4.5. Recommendation 5: Build and Sustain Resilience through Cross-Organisation Collaboration, Training, and Capacity Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noman, M.; Mohsin, M.; Memon, A.M. Constraint analysis of major problems facing the marine fisheries sector in accordance with the national fisheries policy of Pakistan. Indian J. Geo-Mar. Sci. 2022, 51, 94–103. [Google Scholar] [CrossRef]
- Pakistan Bureau of Statistics. Population Census; Pakistan Bureau of Statistics: Islamabad, Pakistan, 2017. [Google Scholar]
- World Wide Fund for Nature, “Delta diversity”. 2023. Available online: https://wwf.panda.org/discover/knowledge_hub/where_we_work/indus_delta/ (accessed on 14 July 2023).
- MFF Pakistan. A Handbook on Pakistan’s Coastal and Marine Resources; MFF Pakistan: Mardan, Pakistan, 2016; Available online: http://www.mangrovesforthefuture.org/assets/Repository/Documents/A-Handbook-on-Pakistan-Coastal-and-Marine-Resources.pdf (accessed on 14 July 2023).
- Khan, T.M.A.; Rabbani, M.M. Sea Level Monitoring and Study of Sea Level Variations Along Pakistan Coast: A Component of Integrated Coastal Zone Management; National Institute of Oceanography: Paris, France, 2005; Available online: https://gloss-sealevel.org/sites/gloss/files/publications/documents/ge9-meeting-report-pakistan.pdf (accessed on 17 October 2023).
- Fox-Kemper, B.; Hewitt, H.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.; Edwards, T.; Golledge, N.; Hemer, M.; Kopp, R.; Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 1211–1362. [Google Scholar] [CrossRef]
- Haasnoot, M.; Winter, G.; Brown, S.; Dawson, R.J.; Ward, P.J.; Eilander, D. Long-term sea-level rise necessitates a commitment to adaptation: A first order assessment. Clim. Risk Manag. 2021, 34, 100355. [Google Scholar] [CrossRef]
- Government of Pakistan. National Climate Change Policy; Government of Pakistan: Islamabad, Pakistan, 2021; Available online: https://faolex.fao.org/docs/pdf/pak211083.pdf (accessed on 14 July 2023).
- Government of Pakistan. Framework for Implementation of Climate Change Policy; Government of Pakistan: Islamabad, Pakistan, 2013. [Google Scholar]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Giosan, L.; Brakenridge, G.R.; Hannon, M.; Bilham, R. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 2013, 3, 24–35. [Google Scholar] [CrossRef]
- Inam, A.; Clift, P.D.; Giosan, L.; Tabrez, A.R.; Rabbani, M.M.; Tahir, M.; Danish, M. The Geographic, Geological, and Oceanographic setting of the Indus River (Chapter 16). In Large Rivers: Geomorphology and Management; Gupta, A., Ed.; John Wiley Publisher: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Inam, A.; Clift, P.D.; Giosan, L.; Alizai, A.; Kidwai, S.; Shahzad, M.I.; Zia, I.; Nazeer, M.; Khan, M.J.; Ali, S.S.; et al. The Geographic, Geological, and Oceanographic Setting of the Indus River–An Update. In Large Rivers: Geomorphology and Management, 2nd ed.; Gupta, A., Ed.; John Wiley & Sons, Ltd,: Hoboken, NJ, USA, 2022. [Google Scholar]
- Government of Sindh. Sindh Climate Change Policy. 2022. Available online: https://docc.sindh.gov.pk/files/DoCC/Documents/Sindh%20Climate%20Change%20Policy%202022%20(Final).pdf (accessed on 14 July 2023).
- Environment Agency; Office for Nuclear Regulation. Principles for Flood and Coastal Erosion Risk Management. Office for Nuclear Regulation and Environment Agency Joint Advice Note, no. July 2022–Revision 2. 2022, pp. 1–39. Available online: https://www.onr.org.uk/documents/2022/principles-for-flood-and-coastal-erosion-risk-management.pdf (accessed on 18 October 2023).
- Hewitt, C.; Mason, S.; Walland, D. The Global Framework for Climate Services. Nat. Clim. Chang. 2012, 2, 831–832. [Google Scholar] [CrossRef]
- World Meteorological Organization. Step-by-Step Guidelines for Establishing a National Framework for Climate Services. 2018. Available online: https://library.wmo.int/records/item/55867-step-by-step-guidelines-for-establishing-a-national-framework-for-climate-services (accessed on 18 October 2023).
- Le Cozannet, G.; Nicholls, R.J.; Hinkel, J.; Sweet, W.V.; McInnes, K.L.; Van de Wal, R.S.W.; Slangen, A.B.A.; Lowe, J.A.; White, K.D. Sea level change and coastal climate services: The way forward. J. Mar. Sci. Eng. 2017, 5, 49. [Google Scholar] [CrossRef]
- Ministry of Climate Change & Environmental Coordination. National Adaptation Plan Pakistan. 2023. Available online: https://unfccc.int/documents/631045 (accessed on 18 October 2023).
- Kidwai, S.; Ahmed, W.; Tabrez, S.M.; Zhang, J.; Giosan, L.; Clift, P.; Inam, A. The Indus Delta-Catchment, River, Coast, and People. In Coasts and Estuaries: The Future; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Chu, J.-H.; Sampson, C.R.; Levine, A.S.; Fukada, E. 2002: The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945–2000. Naval Research Laboratory Tech Rep. NRL/MR/7540-02-16. Available online: https://www.metoc.navy.mil/jtwc/products/best-tracks/tc-bt-report.html (accessed on 27 April 2020).
- Berberian, M. Active faulting and tectonics of Iran. Zagros Hindu Kush Himalaya Geodyn. Evol. 1981, 3, 33–69. [Google Scholar] [CrossRef]
- Bordet, P.; Colchen, M.; Le Fort, P.; Pêcher, A. The geodynamic evolution of the Himalayaten Years of research in central Nepal Himalaya and some other regions. Zagros Hindu Kush Himalaya Geodyn. Evol. 1981, 3, 149–168. [Google Scholar] [CrossRef]
- United Nations Development Programme. Scaling-up of Glacial Lake Outburst Flood (GLOF) Risk Reduction in Northern Pakistan United Nations Development Programme. 2022. Available online: https://www.undp.org/pakistan/projects/scaling-glacial-lake-outburst-flood-glof-risk-reduction-northern-pakistan (accessed on 14 July 2023).
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.L.; Fang, J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Chang. 2021, 11, 338–342. [Google Scholar] [CrossRef]
- Spencer, N.E.; Woodworth, P.L.; Pugh, D.T. Ancillary Time Series of Mean Sea Level Measurements. Permanent Service for Mean Sea Level, Bidston, Birkenhead. Appendices. 1988. Available online: https://psmsl.org/data/longrecords/ancill_rep.htm (accessed on 14 July 2023).
- Tennant, J.F. On Tidal Observations at Kurrachee in 1855. In Account of the Great Trigonometrical Survey of India; History and General Description of the Principal Triangulation and of its Reduction, Appendix 6; Walker, J.T., Ed.; Office of the Great Trigonometrical Survey: Dehra Dun, India, 1856; Volume 2, pp. 119–126. [Google Scholar]
- Quraishee, G.S. Global Warming and Rise in Sea Level in the South Asian Seas Region, in The Implication of Climatic Changes and the Impact of Rise in Sea Level in the South Asian Seas Region. Task Team Rep. 1988, 1–21. [Google Scholar]
- Rabbani, M.M.; Inam, A.; Tabrez, A.R.; Sayed, N.A.; Tabrez, S.M. The impact of sea level rise on Pakistan’s coastal zones—In a climate change scenario. In Proceedings of the 2nd International Maritime Conferenc, Karachi, Pakistan, 2–4 April 2008; pp. 25–27. [Google Scholar]
- Chaudhry, Q.U.Z. Climate Change Profile of Pakistan; Asian Development Bank: Manila, Philippines, 2017. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Relative Sea Level Trend 490-021 Karachi, Pakistan. 2022. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=490-021 (accessed on 14 July 2023).
- Khan, F.A.; Khan, T.M.A.; Ahmed, A.N.; Afan, H.A.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Complex extreme sea levels prediction analysis: Karachi coast case study. Entropy 2020, 22, 549. [Google Scholar] [CrossRef]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Woodworth, P.; Foden, P.; Pugh, J.; Mathews, A.; Aarup, T.; Aman, A.; Nkebi, E.; Odametey, J.; Facey, R.; Esmail, M.Y.A.; et al. Insight into Long Term Sea Level Change Based on New Tide Gauge Installations at Takoradi, Aden and Karachi. Int. Hydrogr. Rev. 2009, 1, 18–23. [Google Scholar]
- Hogarth, P. Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets: Supplementary note 4: Indian Ocean (updated 24/2/2016). J. Geophys. Res. Ocean. 2014, 119, 7645–7659. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Gregory, J.M.; Griffies, S.M.; Hughes, C.W.; Lowe, J.A.; Church, J.A.; Fukimori, I.; Gomez, N.; Kopp, R.E.; Landerer, F.; Le Cozannet, G.; et al. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surv. Geophys. 2019, 40, 1251–1289. [Google Scholar] [CrossRef]
- Naseer, T.; Vignudelli, S.; Zaidi, A. Study of Sea Surface Temperature (SST) and Sea Level Rise (SLR) Along Karachi Coast using Satellite Data, Pakistan. ECWS 2021. [Google Scholar] [CrossRef]
- Harrison, B.J. Sea Level Projections for South Asia: Report on Main Findings. 2020. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/business/international/report-on-regional-sea-level-projections-for-south-asia---arrcc-report---external-1.pdf (accessed on 18 October 2023).
- Harrison, B.J.; Daron, J.D.; Palmer, M.D.; Weeks, J.H. Future sea-level rise projections for tide gauge locations in South Asia. Environ. Res. Commun. 2021, 3, 115003. [Google Scholar] [CrossRef]
- Kopp, R.E.; Garner, G.G.; Hermans, T.H.J.; Jha, S.; Kumar, P.; Slangen, A.B.A.; Turilli, M.; Edwards, T.L.; Gregory, J.M.; Koubbe, G.; et al. The Framework for Assessing Changes to Sea-level (FACTS) v1.0-rc: A Platform for Characterizing Parametric and Structural Uncertainty in Future Global, Relative, and Extreme Sea-Level Change to Sea-Level (FACTS). EGUsphere 2023. preprint. [Google Scholar] [CrossRef]
- Garner, G.G.; Hermans, T.; Kopp, R.E.; Slangen, A.B.A.; Edwards, T.L.; Levermann, A.; Nowikci, S.; Palmer, M.D.; Smith, C.; Fox-Kemper, B.; et al. IPCC AR6 Sea Level Projections. Version 20. Available online: https://zenodo.org/record/6382554 (accessed on 17 July 2023).
- Palmer, M.; Howard, T.; Tinker, J.; Lowe, J.; Bricheno, L.; Calvert, D.; Edwards, T.; Gregory, J.; Harris, G.; Krijnen, J.; et al. UKCP18 Marine Report. 2018. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-marine-report-updated.pdf (accessed on 14 July 2023).
- Palmer, M.D.; Gregory, J.M.; Bagge, M.; Calvert, D.; Hagedoorn, J.M.; Howard, T.; Klemann, V.; Lowe, J.A.; Roberts, C.D.; Slangen, A.B.A.; et al. Exploring the Drivers of Global and Local Sea-Level Change Over the 21st Century and Beyond. Earth’s Future 2020, 8, e2019EF001413. [Google Scholar] [CrossRef]
- Slangen, A.B.A.; Palmer, M.D.; Camargo, C.M.L.; Church, J.A.; Edwards, T.L.; Hermans, T.H.J.; Hewitt, H.T.; Garner, G.G.; Gregory, J.M.; Kopp, R.E.; et al. The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond. Cambridge Prism. Coast. Future 2023, 1, E7. [Google Scholar] [CrossRef]
- Weeks, J.H.; Harrison, B.J.; Daron, J.D. A Comparison of Local Sea-Level Projections for South Asia. 2022. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/business/international/arrcc-wp3_summary_ar6_sea-level_projections_final.pdf (accessed on 14 July 2023).
- Weeks, J.H.; Fung, F.; Harrison, B.J.; Palmer, M.D. The evolution of UK sea-level projections. Environ. Res. Commun. 2023, 5, 032001. [Google Scholar] [CrossRef]
- Kopp, R.; Oppenheimer, M.; O’Reilly, J.L.; Drijfhout, S.S.; Edwards, T.L.; Fox-Kemper, B.; Garner, G.G.; Golledge, N.R.; Hermans, T.H.; Hewitt, H.T.; et al. Communicating Projection Uncertainty and Ambiguity in Sea-Level Assessment. (Unpublished). Available online: https://authorea.com/doi/full/10.1002/essoar.10511663.1 (accessed on 14 July 2023).
- Tay, C.; Lindsey, E.O.; Chin, S.T.; McCaughey, J.W.; Bekaert, D.; Nguyen, M.; Hua, H.; Manipon, G.; Karim, M.; Horton, B.P.; et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 2022, 5, 1049–1057. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 2013, 29, 493. [Google Scholar] [CrossRef]
- Legeais, J.F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Joana Fernandes, M.; Baltazar Andersen, O.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef]
- Kidwai, S.; Fanning, P.; Ahmed, W.; Tabrez, M.; Zhang, J.; Khan, M.W. Practicality of marine protected areas-Can there be solutions for the River Indus delta? Estuar. Coast. Shelf Sci. 2016, 183, 349–359. [Google Scholar] [CrossRef]
- Dasgupta, A. Arabian Sea emerging as a cyclone hotspot. Nat. India 2021. [Google Scholar] [CrossRef]
- Murakami, H.; Delworth, T.L.; Cooke, W.F.; Zhao, M.; Xiang, B.; Hsu, P.-C. Detected climatic change in global distribution of tropical cyclones. Proc. Natl. Acad. Sci. USA 2020, 117, 10706–10714. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Toumi, R. Recent migration of tropical cyclones toward coasts. Science 2021, 371, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021—The Physical Science Basis; Masson-Delmotte, B.Z., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Clim. Chang. 2017, 7, 885–889. [Google Scholar] [CrossRef]
- Murakami, H.; Sugi, M. Effect of Model Resolution on Tropical Cyclone Climate Projections. SOLA 2010, 6, 73–76. [Google Scholar] [CrossRef]
- Swapna, P.; Sreeraj, P.; Sandeep, N.; Jyoti, J.; Krishnan, R.; Prajeesh, A.G.; Ayantika, D.C.; Manmeet, S. Increasing Frequency of Extremely Severe Cyclonic Storms in the North Indian Ocean by Anthropogenic Warming and Southwest Monsoon Weakening. Geophys. Res. Lett. 2022, 49, e2021GL094650. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Bakhsh, H.A.; Rehman, H.U.; Shakir, A.S.; Khan, N.M. Flood inundation modeling under present and future scenarios of mean sea levels for the Hub River watershed. J. Chin. Inst. Eng. 2017, 40, 1–9. [Google Scholar] [CrossRef]
- Hawker, L.; Rougier, J.; Neal, J.; Bates, P.; Archer, L.; Yamazaki, D. Implications of Simulating Global Digital Elevation Models for Flood Inundation Studies. Water Resour. Res. 2018, 54, 7910–7928. [Google Scholar] [CrossRef]
- Young, S.S.; Wamburu, P. Comparing Drone-Derived Elevation Data with Air-Borne LiDAR to Analyze Coastal Sea Level Rise at the Local Level. Pap. Appl. Geogr. 2021, 7, 331–342. [Google Scholar] [CrossRef]
- Vernimmen, R.; Hooijer, A. New LiDAR-Based Elevation Model Shows Greatest Increase in Global Coastal Exposure to Flooding to Be Caused by Early-Stage Sea-Level Rise. Earth’s Future 2023, 11, e2022EF002880. [Google Scholar] [CrossRef]
- Weeks, J.H.; Harrison, B.J. Review of Sea Level Rise Science, Information and Services in Pakistan. 2020. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/business/international/review-of-sea-level-rise-literature-for-pakistan---arrcc-report---external.pdf (accessed on 14 July 2023).
- Lin, Y.N.; Jolivet, R.; Simons, M.; Agram, P.S.; Martens, H.R.; Li, Z.; Lodi, S.H. High interseismic coupling in the Eastern Makran (Pakistan) subduction zone. Earth Planet. Sci. Lett. 2015, 420, 116–126. [Google Scholar] [CrossRef]
- DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 1994, 21, 2191–2194. [Google Scholar] [CrossRef]
- Page, W.D.; Alt, J.N.; Cluff, L.S.; Plafker, G. Evidence for the recurrence of large-magnitude earthquakes along the Makran coast of Iran and Pakistan. Tectonophysics 1979, 52, 533–547. [Google Scholar] [CrossRef]
- Mokhtari, M.; Ala Amjadi, A.; Mahshadnia, L.; Rafizadeh, M. A review of the seismotectonics of the Makran Subduction Zone as a baseline for Tsunami Hazard Assessments. Geosci. Lett. 2019, 6, 13. [Google Scholar] [CrossRef]
- Naeem, G. Dealing with Local Tsunami on Pakistan Coast. In Tsunami-Damage Assessment and Medical Triage; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Lodhi, H.A.; Ahmed, S.; Hasan, H. Tsunami heights and limits in 1945 along the Makran coast estimated from testimony gathered 7 decades later in Gwadar, Pasni and Ormara. Nat. Hazards Earth Syst. Sci. 2021, 21, 3085–3096. [Google Scholar] [CrossRef]
- Adams, L.M.; Atwater, B.F.; Hasan, H. Karachi tides during the 1945 Makran tsunami. Geosci. Lett. 2018, 5, 25. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Robert Brakenridge, G. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today 2013, 23, 4–10. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Zia, I.; Zafar, H.; Shahzad I, M.; Meraj, M.; Kazmi, J.H. Assessment of Sea Water Inundation Along Daboo Creek Area in Indus Delta Region, Pakistan. J. Ocean Univ. China 2017, 16, 1055–1060. [Google Scholar] [CrossRef]
- Rendle, E.J.; Rive, N.A.; Zafar, A.A. COASTAL Resilience in the Indus Delta; Upscaling Nature-Based Solutions. Coast. Eng. Proc. 2020, 36, 39. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; Van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; Deconto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 321–445. [Google Scholar] [CrossRef]
- Ruiz-Fernández, A.C.; Carnero-Bravo, V.; Sanchez-Cabeza, J.A.; Pérez-Bernal, L.H.; Amaya-Monterrosa, O.A.; Bojórquez-Sánchez, S.; López-Mendoza, P.G.; Cardoso-Mohedano, J.G.; Dunbar, R.B.; Mucciarone, D.A.; et al. Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Sci. Total Environ. 2018, 630, 1628–1640. [Google Scholar] [CrossRef] [PubMed]
- Salik, K.M.; Jahangir, S.; Zahdi, W.U.Z.; Hasson, S.U. Climate change vulnerability and adaptation options for the coastal communities of Pakistan. Ocean Coast. Manag. 2015, 112, 61–73. [Google Scholar] [CrossRef]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of mangrove survival under rapid sea level rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef]
- Khan, T.M.A.; Aftab, J. Sea Level Rise along Pakistan Coast and possible Impacts on the Indus Deltaic Mangroves Ecosystem—A Review. In Proceedings of the Conference on Marine Environment: The Past, Present and Future, Kaohsiung, Taiwan; 2002; pp. 473–483. [Google Scholar]
- Rabbani, M.M.; Khan, T.M.A.; Tabrez, S.M.; Inam, A. Status of mangroves in the coastalbelt of Pakistan: A major protection from tsunami waves and storm surges. In Proceedings of the International Workshop on The Protection of Coastal and Environment, Izmir, Turkey, 9–11 November 2005; pp. 9–14. [Google Scholar]
- Rafique, M. A review on the status, ecological importance, vulnerabilities, and conservation strategies for the mangrove ecosystems of Pakistan. Pak. J. Bot. 2018, 50, 1645–1659. [Google Scholar]
- World Wide Fund for Nature. Indus River Dolphin. 2023. Available online: https://www.worldwildlife.org/species/indus-river-dolphin (accessed on 14 July 2023).
- IUCN. Astola Island–Pakistan’s First ever Marine Protected Area. 2017. Available online: https://www.iucn.org/news/pakistan/201706/astola-island-–-pakistan’s-first-ever-marine-protected-area (accessed on 14 July 2023).
- Gilani, H.; Naz, H.I.; Arshad, M.; Nazim, K.; Akram, U.; Abrar, A.; Asif, M. Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuar. Coast. Shelf Sci. 2021, 249, 107128. [Google Scholar] [CrossRef]
- Global Mangrove Alliance, Global Mangrove Watch. 2023. Available online: https://www.globalmangrovewatch.org/ (accessed on 22 August 2023).
- Todd, V.L.G.; Todd, I.B.; Gardiner, J.C.; Morrin, E.C.N.; MacPherson, N.A.; DiMarzio, N.A.; Thomsen, F. A review of impacts of marine dredging activities on marine mammals. ICES J. Mar. Sci. 2014, 72, 328–340. [Google Scholar] [CrossRef]
- Alamgir, A.; Fatima, N.; Khan, M.A.; Rehman, M.; Shaukat, S.S. A preliminary pollution appraisal of western backwater at Karachi Coastal area. Appl. Water Sci. 2019, 9, 167. [Google Scholar] [CrossRef]
- MFF Pakistan. Coastal Erosion in Pakistan: A National Assessment Report. Pakistan. 2014. Available online: https://www.scribd.com/document/323949016/Coastal-Erosion-in-Pakistan# (accessed on 18 October 2023).
- Ahsanullah; Khan, S.H.; Ahmed, R.; Luqman, M. Morphological change detection along the shoreline of Karachi, Pakistan using 50 year time series satellite remote sensing data and GIS techniques. Geomat. Nat. Hazards Risk 2021, 12, 3358–3380. [Google Scholar] [CrossRef]
- Din Hashmi, S.G.M.; Ahmad, S.R. GIS-Based Analysis and Modeling of Coastline Erosion and Accretion along the Coast of Sindh Pakistan. J. Coast. Zone Manag. 2018, 21, 6–9. [Google Scholar] [CrossRef]
- Kanwal, S.; Ding, X.; Sajjad, M.; Abbas, S. Three Decades of Coastal Changes in Sindh, Pakistan (1989–2018): A Geospatial Assessment. Remote Sens. 2019, 12, 8. [Google Scholar] [CrossRef]
- Nazeer, M.; Waqas, M.; Shahzad, M.I.; Zia, I.; Wu, W. Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City. Remote Sens. 2020, 12, 749. [Google Scholar] [CrossRef]
- Hewitt, C.D.; Stone, R. Climate services for managing societal risks and opportunities. Clim. Serv. 2021, 23, 100240. [Google Scholar] [CrossRef]
- Micallef, S.; Micallef, A.; Galdies, C. Application of the Coastal Hazard Wheel to assess erosion on the Maltese coast. Ocean. Coast. Manag. 2018, 156, 209–222. [Google Scholar] [CrossRef]
- Saleem Khan, A.; Sabuj Kumar, M.; Sudhir Chella, R.; Devdyuti, B. BASIEC: A coastal climate service framework for community-based adaptation to rising sea-levels. In Climate Change Management; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Saleem Khan, A.; Chen, R.S.; de Sherbinin, A. COREDAR: A coastal climate service framework on sea-level rise risk communication for adaptation policy planning. In Climate Change Management; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Peng, D.; Feng, L.; Larson, K.M.; Hill, E.M. Measuring coastal absolute sea-level changes using GNSS interferometric reflectometry. Remote Sens. 2021, 13, 209–222. [Google Scholar] [CrossRef]
- Rising, J.; Tedesco, M.; Piontek, F.; Stainforth, D.A. The missing risks of climate change. Nature 2022, 610, 643–651. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [Google Scholar] [CrossRef]
- Ranger, N.; Reeder, T.; Lowe, J. Addressing ‘deep’ uncertainty over long-term climate in major infrastructure projects: Four innovations of the Thames Estuary 2100 Project. EURO J. Decis. Process. 2013, 1, 233–262. [Google Scholar] [CrossRef]
- Lawrence, J.; Bell, R.; Stroombergen, A. A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand Application. Sustainability 2019, 11, 406. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weeks, J.H.; Ahmed, S.N.; Daron, J.D.; Harrison, B.J.; Hogarth, P.; Ibrahim, T.; Inam, A.; Khan, A.; Khan, F.A.; Khan, T.M.A.; et al. Sea-Level Rise in Pakistan: Recommendations for Strengthening Evidence-Based Coastal Decision-Making. Hydrology 2023, 10, 205. https://doi.org/10.3390/hydrology10110205
Weeks JH, Ahmed SN, Daron JD, Harrison BJ, Hogarth P, Ibrahim T, Inam A, Khan A, Khan FA, Khan TMA, et al. Sea-Level Rise in Pakistan: Recommendations for Strengthening Evidence-Based Coastal Decision-Making. Hydrology. 2023; 10(11):205. https://doi.org/10.3390/hydrology10110205
Chicago/Turabian StyleWeeks, Jennifer H., Syeda Nadra Ahmed, Joseph D. Daron, Benjamin J. Harrison, Peter Hogarth, Tariq Ibrahim, Asif Inam, Arshi Khan, Faisal Ahmed Khan, Tariq Masood Ali Khan, and et al. 2023. "Sea-Level Rise in Pakistan: Recommendations for Strengthening Evidence-Based Coastal Decision-Making" Hydrology 10, no. 11: 205. https://doi.org/10.3390/hydrology10110205
APA StyleWeeks, J. H., Ahmed, S. N., Daron, J. D., Harrison, B. J., Hogarth, P., Ibrahim, T., Inam, A., Khan, A., Khan, F. A., Khan, T. M. A., Rasul, G., Rehman, N., Qureshi, A. A., & Sarfaraz, S. (2023). Sea-Level Rise in Pakistan: Recommendations for Strengthening Evidence-Based Coastal Decision-Making. Hydrology, 10(11), 205. https://doi.org/10.3390/hydrology10110205