Achieving Real-World Saturated Hydraulic Conductivity: Practical and Theoretical Findings from Using an Exponential One-Phase Decay Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation Sites
2.2. Double-Ring Infiltrometer
2.3. Measured Variables
2.4. Processed Variables
3. Results and Discussion
3.1. How False Saturated Infiltration Values Are Measured with Various Soil Types
3.2. What Field Investigations Reveal about Saturated Hydraulic Conductivity
3.2.1. Tracking the Real-World Ksat Value
3.2.2. The Best Saturated Hydraulic Conductivity Results
3.3. Searching for the Equation That Yields more Accurate Saturated Hydraulic Conductivity
3.4. A Protocol for Accurate In Situ Measurement of Soil Saturated Hydraulic Conductivity Ksat
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, P.; Zhang, G.; Zhang, B. Soil Saturated Hydraulic Conductivity of Typical Revegetated Plants on Steep Gully Slopes of Chinese Loess Plateau. Geoderma 2022, 412, 115717. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, J.; Meng, M.; Chen, H.Y.H.; Guo, X.; Liu, S.; Ye, L. Impacts of Changes in Vegetation on Saturated Hydraulic Conductivity of Soil in Subtropical Forests. Sci. Rep. 2019, 9, 8372. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Amoozegar, A.; McLaughlin, R.A.; Heitman, J.L. Comparison of Cornell Sprinkle Infiltrometer and Double-Ring Infiltrometer Methods for Measuring Steady Infiltration Rate. Soil Sci. Soc. Am. J. 2021, 85, 1977–1984. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Ponded Infiltration From a Single Ring: I. Analysis of Steady Flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Fueki, N.; Lipiec, J.; Kuś, J.; Kotowska, U.; Nosalewicz, A. Difference in Infiltration and Macropore between Organic and Conventional Soil Management. Soil Sci. Plant Nutr. 2012, 58, 65–69. [Google Scholar] [CrossRef]
- Ikazaki, K.; Nagumo, F.; Simporé, S.; Barro, A. Are All Three Components of Conservation Agriculture Necessary for Soil Conservation in the Sudan Savanna? Soil Sci. Plant Nutr. 2018, 64, 230–237. [Google Scholar] [CrossRef]
- Gülser, C.; Candemir, F. Effects of Agricultural Wastes on the Hydraulic Properties of a Loamy Sand Cropland in Turkey. Soil Sci. Plant Nutr. 2015, 61, 384–391. [Google Scholar] [CrossRef]
- Singh, N.T.; Jaswal, S.S. Effect of Test Solution Composition on the Hydraulic Conductivity of Normal and Saline-Sodic Soils. Soil Sci. Plant Nutr. 1973, 19, 195–200. [Google Scholar] [CrossRef]
- Lai, J.; Ren, L. Assessing the Size Dependency of Measured Hydraulic Conductivity Using Double-Ring Infiltrometers and Numerical Simulation. Soil Sci. Soc. Am. J. 2007, 71, 1667–1675. [Google Scholar] [CrossRef]
- Lai, J.; Luo, Y.; Ren, L. Numerical Evaluation of Depth Effects of Double-Ring Infiltrometers on Soil Saturated Hydraulic Conductivity Measurements. Soil Sci. Soc. Am. J. 2012, 76, 867–875. [Google Scholar] [CrossRef]
- Wu, L.; Pan, L.; Roberson, M.J.; Shouse, P.J. Numerical Evaluation of Ring Infiltrometers under Various Soil Conditions. Soil Sci. 1997, 162, 771. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments—Eigth Edition, 8th ed.; John Wiley & Sons: Phoenix, AZ, USA, 2013; ISBN 978-1-118-14692-7. [Google Scholar]
- Clancy, K.; Alba, V.M. Temperature and Time of Day Influence on Double-Ring Infiltrometer Steady-State Infiltration Rates. Soil Sci. Soc. Am. J. 2011, 75, 241–245. [Google Scholar] [CrossRef]
- Traore, O.; Wei, C.; Rehman, A. Investigating the Performance of Agricultural Sector on Well-Being: New Evidence from Burkina Faso. J. Saudi Soc. Agric. Sci. 2022, 21, 232–241. [Google Scholar] [CrossRef]
- Singbo, A.; Njuguna-Mungai, E.; Yila, J.O.; Sissoko, K.; Tabo, R. Examining the Gender Productivity Gap among Farm Households in Mali. J. Afr. Econ. 2021, 30, 251–284. [Google Scholar] [CrossRef]
- Golou Gizèle, Z.; Kouassi Bruno, K.; Yao Sadaiou Sabas, B.; Jan, B. Migration and Agricultural Practices in the Peripheral Areas of Côte d’Ivoire State-Owned Forests. Sustainability 2019, 11, 6378. [Google Scholar] [CrossRef]
- FAO; IUSS. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps—Update 2015; World Soil Resources Reports; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7.
- Nachtergaele, F.; van Velthuizen, H.; Verest, L.; Wiberg, D. Harmonized World Soil Databaze—Version 1.2; FAO: Rome, Ital, 2012. [Google Scholar]
- Keïta, A.; Koïta, M.; Niang, D.; Lidon, B. WASO: An Innovative Device to Uncover Independent Converging Opinions of Irrigation System Farmers. Irrig. Drain. 2019, 68, 496–506. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, T.; Qu, L.; Chen, P.; Gao, X.; Chen, C.; Yuan, L.; Zhang, M.; Su, G. Method to Measure Soil Matrix Infiltration in Forest Soil. J. Hydrol. 2017, 552, 241–248. [Google Scholar] [CrossRef]
- Mashayekhi, P.; Ghorbani-Dashtaki, S.; Mosaddeghi, M.R.; Shirani, H.; Nodoushan, A.R.M. Different Scenarios for Inverse Estimation of Soil Hydraulic Parameters from Double-Ring Infiltrometer Data Using HYDRUS-2D/3D. Int. Agrophysics 2016, 30, 203–210. [Google Scholar] [CrossRef]
- Tecca, N.P.; Nieber, J.; Gulliver, J. Bias of Stormwater Infiltration Measurement Methods Evaluated Using Numerical Experiments. Vadose Zone J. 2022, 21, e20210. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Kornecki, T.S.; Balkcom, K.S.; Raper, R.L. A Method for Automating Data Collection from a Double-Ring Infiltrometer under Falling Head Conditions. Soil Use Manag. 2010, 26, 61–67. [Google Scholar] [CrossRef]
- Boivin, P. Caractérisation de L’infiltrabilité D’un Sol Par La Méthode Muntz: Variabilité de La Mesure. French. Characterization of soil infiltration using the Muntz method: Variability of the measurements. Bull. Réseau Eros. 1990, 10, 14–24. [Google Scholar]
- Lucchetti, R.; Cottrell, A.; Cottrell, A.F. Gretl—Gnu Regression, Econometrics and... Book by Riccardo Lucchetti. Available online: https://www.thriftbooks.com/w/gretl---gnu-regression-econometrics-and-time-series-library_allin-cottrell_riccardo-lucchetti/10838909/ (accessed on 4 July 2023).
- Keïta, A.; Yacouba, H.; Hayde, L.G.; Schultz, B. Comparative Non-Linear Regression—A Case of Infiltration Rate Increase from Upstream in Valley. Int. Agrophysics 2014, 28, 303–310. [Google Scholar] [CrossRef]
- Gardner, D.G.; Gardner, J.C.; Laush, G.; Meinke, W.W. Meinke Method for the Analysis of Multicomponent Exponential Decay Curves. J. Chem. Phys. 1959, 31, 978–986. [Google Scholar] [CrossRef]
- Varani, G.-F.; Meikle, W.P.S.; Spyromilio, J.; Allen, D.A. Direct Observation of Radioactive Decay in Supernova 1987A. Mon. Not. R. Astron. Soc. 1990, 245, 570–576. [Google Scholar]
- Ho, D.D.; Neumann, A.U.; Perelson, A.S.; Chen, W.; Leonard, J.M.; Markowitz, M. Rapid Turnover of Plasma Virions and CD4 Lymphocites in HIVE-1 Infection. Nature 1995, 373, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y.; Hopkins, I.; Guo, L.; Lin, H. Dynamics of Infiltration Rate and Field-Saturated Soil Hydraulic Conductivity in a Wastewater-Irrigated Cropland. Water 2019, 11, 1632. [Google Scholar] [CrossRef]
- Parady, G.; Ory, D.; Walker, J. The Overreliance on Statistical Goodness-of-Fit and under-Reliance on Model Validation in Discrete Choice Models: A Review of Validation Practices in the Transportation Academic Literature. J. Choice Model. 2021, 38, 100257. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear Regression Models and Applications in Agricultural Research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef]
- Lassabatère, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Saxton, K.; Rawls, W.; Romberger, J.; Papendick, R. Estimating Generalized Soil-Water Characteristics from Texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Krzysztof, P.; Jarosław, K.; Witold, W.; Michał, S.; Jerzy, B.; Dorota, K. Soil Grain Size Analysis by the Dynamometer Method—A Comparison to the Pipette and Hydrometer Method. Soil Sci. Annu. 2018, 69, 17–27. [Google Scholar] [CrossRef]
- Girsang, S.S.; Quilty, J.R.; Correa, T.Q.; Sanchez, P.B.; Buresh, R.J. Rice Yield and Relationships to Soil Properties for Production Using Overhead Sprinkler Irrigation without Soil Submergence. Geoderma 2019, 352, 277–288. [Google Scholar] [CrossRef]
- Boslaugh, S.; Watters, P.A. Statistics in a Nutshell; OReilly: Sebastopol, CA, USA, 2008. [Google Scholar]
- Montgomery, D.; Runger, G. Applied Statistics and Probability for Engineers, 6th ed.; Wiley and Sons Inc.: Phoenix, AZ, USA, 2014; ISBN 13 9781118539712. [Google Scholar]
- Lipowsky, F.; Rakoczy, K.; Pauli, C.; Drollinger-Vetter, B.; Klieme, E.; Reusser, K. Quality of Geometry Instruction and Its Short-Term Impact on Students’ Understanding of the Pythagorean Theorem. Learn. Instr. 2009, 19, 527–537. [Google Scholar] [CrossRef]
- Aristarhov, S. Heisenberg’s Uncertainty Principle and Particle Trajectories. Found. Phys. 2022, 53, 7. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Jennings, C.L.; Murat, K. Introduction to Time Series Analysis and Forecasting; Wiley Series in Probability and Statistics; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008; ISBN 978-0-471-65397-4. [Google Scholar]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Shamway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications, with R Examples, 3rd ed.; Cassela, G., Fienberg, S., Olkin, I., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- West, L.T.; Abreu, M.A.; Bishop, J.P. Saturated Hydraulic Conductivity of Soils in the Southern Piedmont of Georgia, USA: Field Evaluation and Relation to Horizon and Landscape Properties. CATENA 2008, 73, 174–179. [Google Scholar] [CrossRef]
- D 5093–02; Standard Test Method for Field Measurement of Infiltration Rate Using a Double-Ring Infiltrometer with a Sealed-Inner Ring. ASTM International: West Conshohocken, PA, USA, 2002.
- Mathews, P.G. Design of Experiments with Minitab; ASQ Quality Press: Madison, WI, USA, 2005. [Google Scholar]
- Bal, B.C. Xlstat; Cede Publishing: Washington, DC, USA, 2012; ISBN 978-620-0-49109-1. [Google Scholar]
Country | Sites | Long (DD) | Lat (DD) | Project Area A (ha) | Nbr of Meas. Locations | HWSD/USDA-Soil Texture (30 cm Top Soil) | Dominant Soil Drainage Class (Slope 0.0–0.5%) | |
---|---|---|---|---|---|---|---|---|
(Total: 106) | Dominant | Occurrence | ||||||
Burkina Faso | Kamboinsé | −1.54856 | 12.46087 | 1 | 2 | sandy loam | sandy clay loam | Poor to moderately well |
Goupana | −1.58650 | 12.61785 | 1 | 1 | sandy loam | sandy clay loam | Poor to moderately well | |
Rakaye | −1.58912 | 11.82085 | 5 | 20 | sandy loam | sandy clay loam | Poor to moderately well | |
Mali | Baguineda Up | −7.77955 | 12.63260 | 1347 | 25 | sandy clay loam | loam | Imperf. to moderat. well |
Baguineda Dwn | −7.71999 | 12.65166 | 1733 | 24 | sandy clay loam | loam | Imperf. to moderat. well | |
Moria (Badoumbe) | −10.16961 | 13.64926 | 60 | 12 | loam | sandy clay loam | Imperf. to moderat. well | |
Cote d’Ivoire | Sema | −8.07688 | 7.83360 | 100 | 22 | sandy clay loam | loam | Moderat. well |
Kamb-1-Burkina Faso |
BaguinedaUp-Mali |
Sema-P1-Cote d’Ivoire |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
Nb | Model | Site | Nb Obs | Time (h) | R2 | SSE | MSE | Ksat (mm h−1) | Avrg3 [(Δh/Δt)] (mm h−1) | GapKsat (Ksat vs. Avrg3) |
1a | Reghcum | Kamb-1-BF | 36 | 48.50 | 0.998 | 919.94 | 27.88 | 6.2 | 4.7 | 33.3% |
1b | Regi-inst | 0.530 | 2227.75 | 67.51 | 11.1 | 138% | ||||
1c | Regi-avg | 0.844 | 627.54 | 19.02 | 12.2 | 162% | ||||
2a | Reghcum | Kamb-2-BF | 28 | 58.67 | 0.999 | 169.87 | 6.79 | 5.8 | 5.7 | 2.9% |
2b | Regi-inst | 0.850 | 98.84 | 3.95 | 6.2 | 10.3% | ||||
2c | Regi-avg | 0.957 | 27.57 | 1.10 | 7.4 | 29.9% | ||||
3a | Reghcum | Goupa-1-BF | 46 | 82.10 | 0.999 | 1260.05 | 29.30 | 5.9 | 7.1 | −16.4% |
3b | Regi-inst | 0.522 | 2457.98 | 57.16 | 10.0 | 40.0% | ||||
3c | Regi-avg | 0.849 | 733.01 | 17.05 | 10.4 | 45.5% | ||||
4a | Reghcum | Rakaye-1-BF | 12 | 5.00 | 1.000 | 38.88 | 4.32 | 53.3 | 54.5 | −2.2% |
4b | Regi-inst | 0.851 | 1225.04 | 136.12 | 51.1 | −6.3% | ||||
4c | Regi-avg | 0.952 | 219.78 | 24.42 | 58.2 | 6.8% | ||||
5a | Reghcum | BaguiUp-1-MLi | 9 | 6.42 | 0.989 | 3.91 | 0.65 | 3.1 | 2.9 | 9.2% |
5b | Regi-inst | 0.908 | 6.67 | 1.11 | 3.2 | 9.9% | ||||
5c | Regi-avg | 0.977 | 1.50 | 0.25 | 3.8 | 33.5% | ||||
6a | Reghcum | BaguiDwn-2-MLi | 7 | 4.50 | 0.999 | 0.06 | 0.01 | 1.9 | 2.0 | −3.3% |
6b | Regi-inst | 0.990 | 0.15 | 0.04 | 1.9 | −4.2% | ||||
6c | Regi-avg | 0.998 | 0.02 | 0.01 | 2.5 | 25.5% | ||||
7a | Reghcum | Moria-P01-MLi | 24 | 17.75 | 0.995 | 561.49 | 26.74 | 7.7 | 5.7 | 34.6% |
7b | Regi-inst | 0.953 | 3773.87 | 188.69 | 14.2 | 148.6% | ||||
7c | Regi-avg | 0.949 | 4643.88 | 232.19 | 24.2 | 324.4% | ||||
8a | Reghcum | Moria-P02-MLi | 22 | 14.50 | 0.995 | 393.31 | 20.70 | 8.4 | 6.4 | 32.6% |
8b | Regi-inst | 0.954 | 3605.94 | 200.33 | 15.3 | 140.1% | ||||
8c | Regi-avg | 0.950 | 4300.50 | 238.92 | 26.1 | 309.4% | ||||
9a | Reghcum | Moria-P07-MLi | 18 | 10.75 | 0.997 | 135.11 | 9.01 | 8.2 | 6.8 | 21.4% |
9b | Regi-inst | 0.963 | 798.38 | 57.03 | 12.4 | 83.1% | ||||
9c | Regi-avg | 0.959 | 941.30 | 67.24 | 18.7 | 176.1% | ||||
10a | Reghcum | Moria-P09-MLi | 18 | 8.50 | 0.999 | 18.48 | 1.23 | 9.4 | 8.3 | 12.6% |
10b | Regi-inst | 0.963 | 798.38 | 57.03 | 12.4 | 48.5% | ||||
10c | Regi-avg | 0.959 | 941.30 | 67.24 | 18.7 | 123.9% | ||||
11a | Reghcum | Sema-P01-RCI | 16 | 7.50 | 0.998 | 10.09 | 0.78 | 2.4 | 1.5 | 58.8% |
11b | Regi-inst | 0.976 | 69.32 | 5.78 | 2.4 | 63.3% | ||||
11c | Regi-avg | 0.994 | 11.50 | 0.96 | 8.1 | 446.4% | ||||
12a | Reghcum | Sema-P05-RCI | 16 | 7.50 | 0.996 | 8.93 | 0.69 | 1.8 | 1.5 | 19.4% |
12b | Regi-inst | 0.972 | 56.48 | 4.71 | 2.0 | 31.2% | ||||
12c | Regi-avg | 0.992 | 13.13 | 1.09 | 6.3 | 314.6% |
Steps | Operation |
---|---|
Step 1 | Wet the floor for at least 2–3 h and 24 h in advance |
Step 2 | Set up two concentric rings by driving them 5–10 cm on wet ground and keeping them horizontal at a mason’s level. Water must not be able to circulate from one ring to another or leak outside the guard ring. |
Step 3 | Tracing with an indelible marker, mark the place where all the water-level descent measurements Δh will be made with a small line. |
Step 4 | Fill the two rings with water to the brim |
Step 5 | Start the stopwatch and make the first measurement of the series I by stopping the stopwatch after Δt = 10 min and reporting the corresponding Δh (mm) |
Step 6 | Immediately refill the two rings to the brim (to reduce the dead time error between two measurements to almost zero) |
Step 7 | Repeat sequences 5–6 for the second then the third 10 min of series I |
Step 8 | Apply sequences 5–7 for series II (with Δt = 20 min), then for series III (with Δt = 30 min), and so on until series VI, VII, and VIII. One can increase the number of measurements in a series or skip a series depending on the rate at which the water infiltrates. For example, one can repeat 20 min four times in series II, or go from series I to series III |
Step 9 | The tests are stopped when a quick calculation shows that three successive values of the ratio Δh (mm)/Δt (h) are equal or constant. This means that the permeability Ksat-real-world has been reached, which must be confirmed by the non-linear regression curve. |
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Name of the Series | Cumul. Time (min) | Time Interval Δt (min) | Cumul. Experiment Time T(h) since the Beginning of the Δt Measurements | Infiltrated Water Head Increment Δh (mm) | Cumul. Water Head h (mm) or Sum of the Δh since the Beginning |
I | 10 | 10 | 0.17 | 8 | 8 |
20 | 10 | 0.33 | 4 | 12 | |
30 | 10 | 0.50 | 7 | 19 | |
II | 50 | 20 | 0.83 | 4 | 23 |
70 | 20 | 1.17 | 3 | 26 | |
90 | 20 | 1.50 | 2 | 28 | |
III | 120 | 30 | 2.00 | 1 | 29 |
150 | 30 | 2.50 | 0.8 | 29.8 | |
180 | 30 | 3.00 | 0.5 | 30.3 | |
IV | 220 | 40 | 3.67 | 0.4 | 30.7 |
260 | 40 | 4.33 | 0.3 | 31 | |
300 | 40 | 5.00 | 0.2 | 31.2 | |
V | 350 | 50 | 5.83 | 0.10 | 31.3 |
400 | 50 | 6.67 | 0.08 | 31.38 | |
450 | 50 | 7.50 | 0.05 | 31.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keïta, A.; Zorom, M.; Faye, M.D.; Damba, D.D.; Konaté, Y.; Hayde, L.G.; Lidon, B. Achieving Real-World Saturated Hydraulic Conductivity: Practical and Theoretical Findings from Using an Exponential One-Phase Decay Model. Hydrology 2023, 10, 235. https://doi.org/10.3390/hydrology10120235
Keïta A, Zorom M, Faye MD, Damba DD, Konaté Y, Hayde LG, Lidon B. Achieving Real-World Saturated Hydraulic Conductivity: Practical and Theoretical Findings from Using an Exponential One-Phase Decay Model. Hydrology. 2023; 10(12):235. https://doi.org/10.3390/hydrology10120235
Chicago/Turabian StyleKeïta, Amadou, Malicki Zorom, Moussa Diagne Faye, Djim Doumbe Damba, Yacouba Konaté, László G. Hayde, and Bruno Lidon. 2023. "Achieving Real-World Saturated Hydraulic Conductivity: Practical and Theoretical Findings from Using an Exponential One-Phase Decay Model" Hydrology 10, no. 12: 235. https://doi.org/10.3390/hydrology10120235
APA StyleKeïta, A., Zorom, M., Faye, M. D., Damba, D. D., Konaté, Y., Hayde, L. G., & Lidon, B. (2023). Achieving Real-World Saturated Hydraulic Conductivity: Practical and Theoretical Findings from Using an Exponential One-Phase Decay Model. Hydrology, 10(12), 235. https://doi.org/10.3390/hydrology10120235