Flood Risk Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment
Abstract
:1. Introduction
1.1. Floods as a Natural Hazard
1.2. Flood Risk Assessment
1.2.1. Risk Assessment
1.2.2. Flood Risk Assessment Methods
1.2.3. Flood Risk Assessment in Australia
2. Data and Methodology
2.1. Study Area
2.2. Flood Risk Assessment Methodology
2.2.1. Scope
2.2.2. Indicators and Data Collection
Flood Hazard Indicators and Data Collection
Flood Exposure Indicators and Data Collection
Flood Vulnerability Indicators and Data Collection
2.2.3. Data Standardisation and Index Creation
2.2.4. Index Validation
3. Results
3.1. Flood Risk Index
3.1.1. Indicator Maps
3.1.2. Index Map
3.2. Index Validation
4. Discussion
4.1. Flood Risk
4.1.1. Indicators
4.1.2. Flood Risk Index
4.2. Index Validation
4.3. Future Research Opportunities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Reclassification | Value | Rating |
---|---|---|
Other | 0.1 | Very low |
Water bodies | 0.1 | Very low |
Nature conservation | 0.5 | Moderate |
Forestry | 0.5 | Moderate |
Cropping | 0.7 | High |
Grazing | 0.7 | High |
Horticulture | 0.7 | High |
Infrastructure | 0.9 | Very high |
Appendix B
Indicator | Membership Type | Midpoint Value | Spread Value |
---|---|---|---|
Flood Hazard Indicators | |||
Maximum 3-Day Precipitation | Fuzzy Large | 27.5 | 1.5 |
Distance to River (Elevation-Weighted) | Fuzzy Small | 0.15 | 2 |
Soil Moisture | Fuzzy Large | 0.49 | 2 |
Flood Exposure Indicators | |||
Population Density | Fuzzy Large | 500 | 2 |
Land Use Type | Fuzzy Large | 50 | 5 |
Critical Infrastructure Density | Fuzzy Large | 0.2 | 2 |
Flood Vulnerability Indicators | |||
Index of Relative Socio-economic Disadvantage (IRSD) | Fuzzy Small | 835.5 | 5 |
Slope | Fuzzy Small | 38.48 | 5 |
Elevation | Fuzzy Small | 679.97 | 5 |
Hydrologic Soil Groups | Fuzzy Large | 0.5 | 5 |
Appendix C
Appendix D
References
- Jongman, B. The fraction of the global population at risk of floods is growing. Nature 2021, 596, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Pinos, J.; Quesada-Román, A. Flood Risk-Related Research Trends in Latin America and the Caribbean. Water 2022, 14, 10. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Campos-Durán, D.A. Natural disaster risk inequalities in Central America. Pap. Appl. Geogr. 2022, accepted. [Google Scholar] [CrossRef]
- Australian Bureau of Meteorology (BoM). Understanding Floods; Australian Government Bureau of Meteorology: Melbourne, Australia, 2022. Available online: https://www.bom.gov.au/australia/flood/knowledge-centre/understanding.html (accessed on 13 January 2023).
- Bates, P.D.; Quinn, N.; Sampson, C.; Smith, A.; Wing, O.; Sosa, J.; Savage, J.; Olcese, G.; Neal, J.; Schumann, G.; et al. Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates. Water Resour. Res. 2021, 57, e2020WR028673. [Google Scholar] [CrossRef]
- Davidson, C. The floods are rising and so are we. Guardian (Sydney) 2022, 1, 4. [Google Scholar] [CrossRef]
- McMahon, G.M.; Kiem, A.S. Large floods in South East Queensland, Australia: Is it valid to assume they occur randomly? Australas. J. Water Resour. 2018, 22, 4–14. [Google Scholar] [CrossRef]
- Suchara, I. The Impact of Floods on the Structure and Functional Processes of Floodplain Ecosystems. JSPB 2019, 1, 44–60. [Google Scholar] [CrossRef]
- O’Mara, K.; Olley, J.M.; Fry, B.; Burford, M. Catchment soils supply ammonium to the coastal zone—Flood impacts on nutrient flux in estuaries. Sci. Total Environ. 2019, 654, 583–592. [Google Scholar] [CrossRef]
- Warner, R.F. The impacts of flood-mitigation structures on floodplain ecosystems: A review of three case studies from Australia and France. Aust. Geogr. 2022, 53, 265–295. [Google Scholar] [CrossRef]
- FitzGerald, G.; Du, W.; Jamal, A.; Clark, M.; Hou, X.-Y. Flood fatalities in contemporary Australia (1997–2008). Emerg. Med. Australas. 2010, 22, 180–186. [Google Scholar] [CrossRef]
- Insurance Council Australia (ICA). Climate Change Impact Series: Flooding and Future Risks; Insurance Council of Australia: Sydney, Australia, 2022; p. 12. [Google Scholar]
- Deloitte. Special Report: Update to the Economic Costs of Natural Disasters in Australia; Deloitte Access Economics: Sydney, Australia, 2021. [Google Scholar]
- Evans, J.P.; Boyer-Souchet, I. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett. 2012, 39, p.1–3. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Wasko, C.; Lettenmaier, D.P. If Precipitation Extremes Are Increasing, Why Aren’t Floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Guimarães Nobre, G.; Muis, S.; Veldkamp, T.I.E.; Ward, P.J. Achieving the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Prog. Disaster Sci. 2019, 2, 100022. [Google Scholar] [CrossRef]
- Dey, R.; Lewis, S.C.; Arblaster, J.M.; Abram, N.J. A review of past and projected changes in Australia’s rainfall. WIREs Clim. Change 2019, 10, e577. [Google Scholar] [CrossRef]
- Giorgi, F.; Im, E.-S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher Hydroclimatic Intensity with Global Warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [Green Version]
- Crichton, D. The Risk Triangle; CGU Insurance: London, UK, 1999. [Google Scholar]
- Lyu, H.-M.; Shen, J.S.; Arulrajah, A. Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Climate Change 2022, Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Díez-Herrero, A.; Garrote, J. Flood Risk Assessments: Applications and Uncertainties. Water 2020, 12, 2096. [Google Scholar] [CrossRef]
- Ali, K.; Bajracharya, R.M.; Koirala, H.L. A Review of Flood Risk Assessment. Int. J. Environ. Agric. Biotechnol. 2016, 1, 238636. [Google Scholar] [CrossRef]
- Tiepolo, M.; Belcore, E.; Braccio, S.; Issa, S.; Massazza, G.; Rosso, M.; Tarchiani, V. Method for fluvial and pluvial flood risk assessment in rural settlements. MethodsX 2021, 8, 101463. [Google Scholar] [CrossRef]
- Zhang, K.; Shalehy, M.H.; Ezaz, G.T.; Chakraborty, A.; Mohib, K.M.; Liu, L. An integrated flood risk assessment approach based on coupled hydrological-hydraulic modelling and bottom-up hazard vulnerability analysis. Environ. Model. Softw. 2022, 148, 105279. [Google Scholar] [CrossRef]
- Australian Institute for Disaster Resilience (AIDR). Australian Disaster Resilience Guideline 7-3 Flood Hazard; AIDR: East Melbourne, Australia, 2017. [Google Scholar]
- Hasanzadeh Nafari, R.; Ngo, T.; Lehman, W. Calibration and validation of FLFArs—A new flood loss function for Australian residential structures. Nat. Hazards Earth Syst. Sci. 2016, 16, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Zischg, A.P.; Felder, G.; Mosimann, M.; Röthlisberger, V.; Weingartner, R. Extending coupled hydrological-hydraulic model chains with a surrogate model for the estimation of flood losses. Environ. Model. Softw. 2018, 108, 174–185. [Google Scholar] [CrossRef]
- Trinh, M.X.; Molkenthin, F. Flood hazard mapping for data-scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal-spatial resolution remote sensing precipitation data, and satellite imageries. Nat. Hazards 2021, 109, 441–469. [Google Scholar] [CrossRef]
- Luu, C.; Von Meding, J. A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis. Water 2018, 10, 461. [Google Scholar] [CrossRef]
- Cai, S.; Fan, J.; Yang, W. Flooding Risk Assessment and Analysis Based on GIS and the TFN-AHP Method: A Case Study of Chongqing, China. Atmosphere 2021, 12, 623. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y. Flood disaster risk assessment based on random forest algorithm. Neural Comput. Appl. 2022, 34, 3443–3455. [Google Scholar] [CrossRef]
- Rashetnia, S.; Jahanbani, H. Flood vulnerability assessment using a fuzzy rule-based index in Melbourne, Australia. Sustain. Water Resour. Manag. 2021, 7, 13. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Santos, P.P. An Integrated Approach for Assessing Flood Risk in Historic City Centres. Water 2020, 12, 1648. [Google Scholar] [CrossRef]
- McGregor, J.; Parsons, M.; Glavac, S. Local Government Capacity and Land Use Planning for Natural Hazards: A Comparative Evaluation of Australian Local Government Areas. Plan. Pract. Res. 2022, 37, 248–268. [Google Scholar] [CrossRef]
- de Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Espada, R., Jr.; Apan, A.; McDougall, K. Understanding the January 2011 Queensland flood: The role of geographic interdependency in flood risk assessment for urban community. In Proceedings of the Australian and New Zealand Disaster and Emergency Management Conference (ANZDMC 2013), Brisbane, Australia, 28–30 May 2013; AST Management Pty Ltd.: Gold Coast, Australia, 2013; pp. 68–88. [Google Scholar]
- New South Wales (NSW) Government NSW Flood Inquiry; Volume One: Summary Report; NSW Government: Sydney, Australia, 2022.
- Vorogushyn, S.; Bates, P.D.; de Bruijn, K.; Castellarin, A.; Kreibich, H.; Priest, S.; Schröter, K.; Bagli, S.; Blöschl, G.; Domeneghetti, A.; et al. Evolutionary leap in large-scale flood risk assessment needed. WIREs Water 2018, 5, e1266. [Google Scholar] [CrossRef] [Green Version]
- Gusyev, M.; Gädeke, A.; Cullmann, J.; Magome, J.; Sugiura, A.; Sawano, H.; Takeuchi, K. Connecting global- and local-scale flood risk assessment: A case study of the Rhine River basin flood hazard. J. Flood Risk Manag. 2016, 9, 343–354. [Google Scholar] [CrossRef]
- Infrastructure New South Wales (NSW). Flooding in the Hawkesbury Nepean Valley; NSW Government: Sydney, Australia, 2018.
- Australian Bureau of Meteorology (BoM). Special Climate Statement 74—Extreme Rainfall and Flooding in Eastern and Central Australia in March 2021; The Australian Bureau of Meteorology: Melbourne, Australia, 2021.
- Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, X.; Xu, H.; Jing, Q.; Pan, X.; Liu, T.; Wang, H.; Hou, H. A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environ. Impact Assess. Rev. 2020, 83, 106397. [Google Scholar] [CrossRef]
- Kuleshov, Y.T.; Kurino, T.; Kubota, T.; Tashima; Xie, P. WMO Space-based Weather and Climate Extremes Monitoring Demonstration Project (SEMDP): First Outcomes of Regional Cooperation on Drought and Heavy Precipitation Monitoring for Australia and Southeast Asia, Chapter 4. In Rainfall—Extremes, Distribution and Properties; Abbot, J., Hammond, A., Eds.; IntechOpen: London, UK, 2019; pp. 51–70. ISBN 978-1-78984-735-2. [Google Scholar] [CrossRef] [Green Version]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A. Evaluation of Satellite Precipitation Estimates over Australia. Remote Sens. 2020, 12, 678. [Google Scholar] [CrossRef] [Green Version]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A.B.; Choy, S.; Sun, C. A Two-Step Approach to Blending GSMaP Satellite Rainfall Estimates with Gauge Observations over Australia. Remote Sens. 2022, 14, 1903. [Google Scholar] [CrossRef]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A.B.; Choy, S.; Sun, C. A Comparison of Various Correction and Blending Techniques for Creating an Improved Satellite-Gauge Rainfall Dataset over Australia. Remote Sens. 2022, 14, 261. [Google Scholar] [CrossRef]
- Wild, A.; Chua, Z.-W.; Kuleshov, Y. Triple Collocation Analysis of Satellite Precipitation Estimates over Australia. Remote Sens. 2022, 14, 2724. [Google Scholar] [CrossRef]
- Chua, Z.-W.; Kuleshov, Y.; Watkins, A.B. Drought Detection over Papua New Guinea Using Satellite-Derived Products. Remote Sens. 2020, 12, 3859. [Google Scholar] [CrossRef]
- Chua, Z.-W.; Evans, A.; Kuleshov, Y.; Watkins, A.B.; Choy, S.; Sun, C. Enhancing the Australian Gridded Climate Dataset rainfall analysis using satellite data. Sci. Rep. 2022, 12, 20691. [Google Scholar] [CrossRef] [PubMed]
- Wild, A.; Chua, Z.-W.; Kuleshov, Y. Evaluating accuracy of satellite precipitation estimates over the South West Pacific. Remote Sens. 2021, 13, 3929. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Kuleshov, Y.; Chua, Z.-W.; Watkins, A.B.; Choy, S.; Sun, Q. Evaluating Satellite Soil Moisture Datasets for Drought Monitoring in Australia and the South-West Pacific. Remote Sens. 2022, 14, 3971. [Google Scholar] [CrossRef]
- Tashima, T.; Kubota, T.; Mega, T.; Ushio, T.; Oki, R. Precipitation Extremes Monitoring Using the Near-Real-Time GSMaP Product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5640–5651. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era. In Satellite Precipitation Measurement; Advances in Global Change Research; Springer: Cham, Switzerland, 2020; pp. 355–373. [Google Scholar]
- Ahmed, N.; Hoque, M.A.-A.; Howlader, N.; Pradhan, B. Flood risk assessment: Role of mitigation capacity in spatial flood risk mapping. Geocarto Int. 2021, 1, 1–23. [Google Scholar] [CrossRef]
- Ramkar, P.; Yadav, S.M. Flood risk index in data-scarce river basins using the AHP and GIS approach. Nat. Hazards 2021, 109, 1119–1140. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Peel, M.C. Changes in antecedent soil moisture modulate flood seasonality in a changing climate. Water Resour. Res. 2020, 56, e2019WR026300. [Google Scholar] [CrossRef]
- Hettiarachchi, S.; Wasko, C.; Sharma, A. Can antecedent moisture conditions modulate the increase in flood risk due to climate change in urban catchments? J. Hydrol. 2019, 571, 11–20. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441. [Google Scholar] [CrossRef]
- Luo, H.; Bhardwaj, J.; Choy, S.; Kuleshov, Y. Applying Machine Learning for Threshold Selection in Drought Early Warning Systems. Climate 2022, 10, 97. [Google Scholar] [CrossRef]
- Frost, A.; Shokri, A. The Australian Landscape Water Balance model (AWRA-L v7). Technical Description of the Australian Water Resources Assessment Landscape model version 7. In Bureau of Meteorology Technical Report; The Australian Bureau of Meteorology: Melbourne, Australia, 2021. [Google Scholar]
- Cremen, G.; Galasso, C.; McCloskey, J. Modelling and quantifying tomorrow’s risks from natural hazards. Sci. Total Environ. 2022, 817, 152552. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Liang, Q.; Dawson, R.; Xia, X.; Hou, J. A quantitative multi-hazard risk assessment framework for compound flooding considering hazard inter-dependencies and interactions. J. Hydrol. 2022, 607, 127477. [Google Scholar] [CrossRef]
- Junger, L.; Hohensinner, S.; Schroll, K.; Wagner, K.; Seher, W. Land Use in Flood-Prone Areas and Its Significance for Flood Risk Management—A Case Study of Alpine Regions in Austria. Land 2022, 11, 392. [Google Scholar] [CrossRef]
- Doganay, E.; Magaziner, J. Flash Flooding and Green Stormwater Infrastructure in Philadelphia: Areas for Further Improvement. Turk. J. Water Sci. Manag. 2017, 1, 18. [Google Scholar] [CrossRef]
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Mengie, M.A. Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl. Water Sci. 2022, 12, 148. [Google Scholar] [CrossRef]
- Pant, R.; Thacker, S.; Hall, J.; Alderson, D.; Barr, S. Critical infrastructure impact assessment due to flood exposure. J. Flood Risk Manag. 2016, 11, 22–33. [Google Scholar] [CrossRef]
- New South Wales (NSW) Government. NSW Critical Infrastructure Resilience Strategy; New South Wales (NSW) Government: Sydney, Australia, 2018.
- Fereshtehpour, M.; Karamouz, M. DEM Resolution Effects on Coastal Flood Vulnerability Assessment: Deterministic and Probabilistic Approach. Water Resour. Res. 2018, 54, 4965–4982. [Google Scholar] [CrossRef]
- Nasiri, H.; Mohd Yusof, M.J.; Mohammad Ali, T.A. An overview to flood vulnerability assessment methods. Sustain. Water Resour Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef]
- Warren, S.D.; Hohmann, M.G.; Auerswald, K.; Mitasova, H. An evaluation of methods to determine slope using digital elevation data. CATENA 2004, 58, 215–233. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric, AHP. and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Desalegn, H.; Mulu, A. Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon 2021, 7, e05865. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Jaffrés, J.B.D.; Cuff, B.; Cuff, C.; Faichney, I.; Knott, M.; Rasmussen, C. Hydrological characteristics of Australia: Relationship between surface flow, climate and intrinsic catchment properties. J. Hydrol. 2021, 603, 126911. [Google Scholar] [CrossRef]
- Zeng, Z.; Tang, G.; Hong, Y.; Zeng, C.; Yang, Y. Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications. Remote Sens. Lett. 2017, 8, 528–536. [Google Scholar] [CrossRef]
- Aitkenhead, I.; Kuleshov, Y.; Watkins, A.B.; Bhardwaj, J.; Asghari, A. Assessing Agricultural Drought Management Strategies in the Northern Murray-Darling Basin. Nat. Hazards 2021, 109, 1425–1455. [Google Scholar] [CrossRef]
- Dunne, A.; Kuleshov, Y. Drought Risk Assessment and Mapping for the Murray-Darling Basin, Australia. Nat. Hazards 2022, 115, 839–863. [Google Scholar] [CrossRef]
- Kelly, M.; Kuleshov, Y. Flood Hazard Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Sensors 2022, 22, 6251. [Google Scholar] [CrossRef]
- Schwarz, I.; Kuleshov, Y. Flood Vulnerability Assessment and Mapping: A Case Study for Australia’s Hawkesbury-Nepean Catchment. Remote Sens. 2022, 14, 4894. [Google Scholar] [CrossRef]
- Ziegelaar, M.; Kuleshov, Y. Flood Exposure Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Hydrology 2022, 9, 193. [Google Scholar] [CrossRef]
- Farhadi, H.; Najafzadeh, M. Flood Risk Mapping by Remote Sensing Data and Random Forest Technique. Water 2021, 13, 3115. [Google Scholar] [CrossRef]
- Molinari, D.; De Bruijn, K.M.; Castillo-Rodríguez, J.T.; Aronica, G.T.; Bouwer, L.M. Validation of flood risk models: Current practice and possible improvements. Int. J. Disaster Risk Reduct. 2019, 33, 441–448. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- Sarkar, D.; Saha, S.; Mondal, P. GIS-based frequency ratio and Shannon’s entropy techniques for flood vulnerability assessment in Patna district, Central Bihar, India. Int. J. Environ. Sci. Technol. 2021, 19, 8911–8932. [Google Scholar] [CrossRef]
- Goleiji, E.; Hosseini, S.M.; Khorasani, N.; Monavari, S.M. Forest fire risk assessment-an integrated approach based on multicriteria evaluation. Environ. Monit. Assess. 2017, 189, 612. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kariminejad, N.; Amiri, M.; Edalat, M.; Zarafshar, M.; Blaschke, T.; Cerda, A. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci. Rep. 2020, 10, 3203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copernicus. Emergency Management Service—Mapping. EMSR504: Floods, Australia, 2021. Available online: https://emergency.copernicus.eu/mapping/list-of-components/EMSR504 (accessed on 13 January 2023).
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic Classifiers for Flood-Prone Areas Delineation for Data-Scarce Environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Manfreda, S.; Samela, C. A Digital Elevation Model-Based Method for a Rapid Estimation of Flood Inundation Depth. J. Flood Risk Manag. 2019, 12, e12541. [Google Scholar] [CrossRef] [Green Version]
- Pathan, A.I.; Girish Agnihotri, P.; Said, S.; Patel, D. AHP and TOPSIS based flood risk assessment—A case study of the Navsari City, Gujarat, India. Environ. Monit. Assess. 2022, 194, 509. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Román, A. Flood risk index development at the municipal level in Costa Rica: A methodological framework. Environ. Sci. Policy 2022, 133, 98–106. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Granados-Bolaños, S.; Birkel, C.; Stoffel, M. Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology 2022, 396, 108000. [Google Scholar] [CrossRef]
- Ikirri, M.; Faik, F.; Echogdali, F.Z.; Antunes, I.M.H.R.; Abioui, M.; Abdelrahman, K.; Fnais, M.S.; Wanaim, A.; Id-Belqas, M.; Boutaleb, S.; et al. Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco. Land 2022, 11, 1178. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M. Flood risk public perception in flash flood-prone areas of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 53691–53703. [Google Scholar] [CrossRef]
- Löschner, L.; Eder, M.; Herrnegger, M.; Hogl, K.; Nordbeck, R.; Scherhaufer, P.; Schober, B.; Seher, W.; Wesemann, J.; Zahnt, N.; et al. RegioFEM–Informing future-oriented flood risk management at the regional scale (Part I). J. Flood Risk Manag. 2022, 15, e12754. [Google Scholar] [CrossRef]
- Cea, L.; Costabile, P. Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Infrastructure NSW. Hawkesbury-Nepean Valley Flood Risk Management Strategy; Infrastructure NSW: Sydney, Australia, 2017.
- Munawar, H.S.; Mojtahedi, M.; Hammad, A.W.A.; Ostwald, M.J.; Waller, S.T. An AI/ML-Based Strategy for Disaster Response and Evacuation of Victims in Aged Care Facilities in the Hawkesbury-Nepean Valley: A Perspective. Buildings 2022, 12, 80. [Google Scholar] [CrossRef]
- Do, C.; Saunders, G.E.; Kuleshov, Y. Assessment of Tropical Cyclone Risk to Coral Reefs: Case Study for Australia. Remote Sens. 2022, 14, 6150. [Google Scholar] [CrossRef]
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Pamučar, D.; Gigović, L.; Drobnjak, S.; Tien Bui, D.; Duan, H. A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [Google Scholar] [CrossRef]
Hydrological Soil Class | Infiltration Behaviour | Runoff Potential |
---|---|---|
A | High infiltration rates | Low |
B | Moderate infiltration rates | Moderate |
C | Low infiltration rates | High |
D | Very low infiltration rates | Very high |
Indicator | Data Used | Original Resolution | Source | Date |
---|---|---|---|---|
Flood Hazard Indicators | ||||
Maximum 3-Day Precipitation | GSMaP precipitation data | 0.1° | World Meteorological Organisation’s Space-based Weather and Climate Extremes Monitoring (SWCEM) | 2021 |
Distance to River (Elevation-Weighted) | Custom HNC Rivers layer via Bureau of Meteorology Geofabric | 30 m | Bureau of Meteorology Geofabric | 2020 |
Soil Moisture | AWRA-L model Soil Moisture data | 0.05° | Bureau of Meteorology | 2021 |
Flood Exposure Indicators | ||||
Population Density | Australian Bureau of Statistics Regional Population Estimate | Statistical Area 2 | Australian Bureau of Statistics | 2021 |
Land Use Type | NSW 2017 Landuse v1.2 | 50 m | NSW Government | 2017 |
Critical Infrastructure Density | ||||
Broadcast transmission towers | Broadcast Transmitter Data—AM/FM Radio, Digital TV and Radio, and temporary stations | Point data | The Australian Communications and Media Authority (Australian Government) | 2017 |
Electrical transmission lines | Foundation Electricity Infrastructure dataset | Polyline data | Geoscience Australia | 2021 |
Hospitals | MyHospitals database | Point data | The Australian Institute of Health and Welfare (Australian Government) | 2022 |
Police stations | ArcGIS Online database | Point data | ArcGIS Online | 2021 |
Power stations | Foundation Electricity Infrastructure dataset | Point data | Geoscience Australia | 2021 |
Power substations | Foundation Electricity Infrastructure dataset | Point data | Geoscience Australia | 2021 |
Roads | GEODATA TOPO 250K Series 3 dataset | Polyline data | Geoscience Australia | 2006 |
SES headquarters | ArcGIS Online database | Point data | ArcGIS Online | 2019 |
Flood Vulnerability Risk | ||||
Index of Relative Socio-economic Disadvantage (IRSD) | Socio-Economic Indexes for Areas 2016 | Statistical Area 2 | ABS | 2016 |
Slope | Degree of Slope v0.1 | 30 m | Australian Government (data.gov.au) | 2021 |
Elevation | Hydrologically Enforced Digital Elevation Model | 5 m | Australian Government (data.gov.au) | 2017 |
Hydrologic Soil Groups | Hydrologic Soil Groups of NSW | 50 m | Sharing and Enabling Environmental Data—NSW Government | 2021 |
Break | Fuzzified Values |
---|---|
Very low | 0–0.2 |
Low | 0.2–0.4 |
Moderate | 0.4–0.6 |
Severe | 0.6–0.8 |
Extreme | 0.8–1 |
Flood Risk Category | Area (Kilometres Squared) | Percentage of Total |
---|---|---|
Very Low (0 ≤ 0.2) | 3.42 | 0.015 |
Low (0.2 ≤ 0.4) | 57.01 | 3.81 |
Moderate (0.4 ≤ 0.6) | 4979.50 | 22.91 |
Severe (0.6 ≤ 0.8) | 10,674.64 | 49.11 |
Extreme (0.8 ≤ 1) | 5238.61 | 24.10 |
Total | 21,735 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, M.; Schwarz, I.; Ziegelaar, M.; Watkins, A.B.; Kuleshov, Y. Flood Risk Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Hydrology 2023, 10, 26. https://doi.org/10.3390/hydrology10020026
Kelly M, Schwarz I, Ziegelaar M, Watkins AB, Kuleshov Y. Flood Risk Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Hydrology. 2023; 10(2):26. https://doi.org/10.3390/hydrology10020026
Chicago/Turabian StyleKelly, Matthew, Imogen Schwarz, Mark Ziegelaar, Andrew B. Watkins, and Yuriy Kuleshov. 2023. "Flood Risk Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment" Hydrology 10, no. 2: 26. https://doi.org/10.3390/hydrology10020026
APA StyleKelly, M., Schwarz, I., Ziegelaar, M., Watkins, A. B., & Kuleshov, Y. (2023). Flood Risk Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Hydrology, 10(2), 26. https://doi.org/10.3390/hydrology10020026