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Abstract: Soil’s physical and hydrological properties influence the proper modeling, planning, and
management of water resources and soil conservation. In areas of vertic soils subjected to wetting
and drying cycles, the soil–water–atmosphere interaction is complex and understudied at the field
scale, especially in dry tropical regions. This work quantifies and analyzes crack development under
field conditions in an expansive soil in a semiarid region for both the dry and rainy seasons. Six 1 m2

plots in an experimental 2.8 ha watershed were photographed and direct measurements were taken
of the soil moisture and crack area, depth and volume once a week and after a rainfall event from
July 2019 to June 2020. The rainfall was monitored for the entire period and showed a unimodal
distribution from December to May after five months without precipitation. The cracks were first
sealed in the plots with a predominance of sand and when the soil moisture was above 23% and had
an accumulated precipitation of 102 mm. The other plots sealed their cracks when the soil moisture
was above 32% and with an accumulated precipitation in the rainy season above 222 mm. The cracks
redeveloped after sealing upon a reduction of 4% in the soil moisture. The depth of the cracks showed
a better response to climatic variations (total precipitation, soil moisture and continuous dry and
wet days). The higher clay content and the higher plasticity index plots developed more cracks with
greater depth and volume.

Keywords: vertic soils; crack dynamics; tropical dry regions; semiarid

1. Introduction

Arid and semiarid ecosystems account for approximately 29.8% of the Earth’s sur-
face [1]. Global warming and associated climate changes may increase the risk of extreme
phenomena—droughts and heavy rains, which directly affect hydrological processes [1,2].
Forecasts of more extreme climate regimes will make arid and semiarid ecosystems become
more vulnerable, with the possibility of increasing the total area of dry land globally [3].

Soil’s physical, chemical and biological characteristics [1,4–7] influence runoff, infiltra-
tion and evapotranspiration [2,6,7], and some expansive clays (e.g., montmorillonite) swell
and shrink during the wetting and drying processes [2,8], affecting the hydrologic processes.

Changes in the water content in expansive soils can significantly alter the hydrome-
chanical behavior of a soil. These effects mainly include: (1) voluminous change due
to swelling and shrinkage, and (2) variation in mechanical behavior, such as strength (or
stress) and compression [8]. Soils and clay minerals absorb water and expand upon wetting,
and they shrink and form desiccation cracks as they dry. Cracks modify the processes of
infiltration, flow, evapotranspiration, and redistribution of water in the soil profile [4,6,9],
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and they also form preferential flow channels with faster transport of water and nutrients
(solutes) that negatively affect irrigation and soil fertilization for agricultural use [5,10].

The expansion/contraction characteristic of these soils has implications for distinct
fields—in geotechnical engineering, where the formation of crack networks can destroy
the integrity of the soil structure, damaging road structures and other civil construction
infrastructures [7,11]; and in agriculture, where soil cracks may impose limitations on crop
production [12], promote physical damage to plant roots, encourage the vertical movement
and leaching of dissolved nutrients beyond the root zone, provide extra surface for moisture
loss, and even promote rill erosion.

Drought-induced cracks in the soil are usually complex network structures. The
accurate acquisition of cracks’ morphometric data is not only a prerequisite for obtaining
the relevant crack networks’ geometric parameters, but also a basis for better understanding
the cracks’ development mechanism and defining procedures to promote or minimize soil
cracks [13,14].

Research on cracks in expansive soils has been mostly conducted in controlled en-
vironments for the quantification of the geometry of a single crack and the morphology
of crack networks [1,2,5,15,16], and not so much in field-scale studies to understand the
dynamics of the cracks through in situ observations of the soil surface [2,8,16]. Changes in
the hydraulic properties of expansive soils (e.g., soil moisture) under field conditions may
help explain the response of soil cracks’ properties to climate dynamics in time [2,5].

The objectives of this study were to (a) assess and quantify the soil characteristics and
dynamics that govern the crack formation and healing processes under natural conditions;
and (b) quantify the soil moisture limits on the response of soil swelling and shrinking in
the wet and dry seasons in a vertic soil in a semiarid region under natural conditions.

2. Materials and Methods
2.1. Study Area

The experimental area is a 2.8 ha first-order catchment with a 5.6% slope. The soil has
a depth of 2.0 m and is classified as vertisol, with a predominance of expansive 2:1 clay
minerals from the montmorillonite group [17]. It is located in a representative fragment
of a seasonally dry tropical dry forest in northeastern Brazil (Figure 1) under vegetation
regeneration after clearing, burning and planting pasture in 2010.
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Figure 1. Study area location.

The climate is classified as a subtropical steppe (BSh—low-latitude semiarid or dry),
according to Köppen’s classification. With an aridity index of 0.48, it has a mean an-
nual potential evapotranspiration of 2113 mm year−1 and a mean annual precipitation of
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997 ± 300 mm. Some 89% percent of the annual rainfall is concentrated in the wet semester
of December to May (Figure 2) [18,19].
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Figure 2. Mean rainfall; potential evapotranspiration; minimum, maximum and average tempera-
tures; and average number of dry days for the wet and dry seasons in the study area from 1980 to 2020.
PPT is the average monthly rainfall (mm); PET is the average monthly potential evapotranspiration
(mm); Tmin, Tmax, and Tmed are the average monthly minimum, maximum, and mean temperatures
(◦C), respectively, for the study period; and NDD is the seasonal average number of dry days from
1980 to 2020.

Soil samples were collected with a sampling probe for textural classification and
determination of the physical characteristics at each plot. A cluster analysis was performed
on the soil characteristics to explore the naturally occurring groups using the software IBM
SPSS Statistics 27.

2.2. Monitoring

Rainfall was assessed using a Ville de Paris rain gauge. The soil moisture content
was determined weekly and after a rainfall event by means of the gravimetric method
in triplicate. Soil samples were collected outside the border of each plot, as this border
sampling pattern better estimates the soil moisture of the plot without compromising its
soil structure.

The soil cracks were monitored at six 1 m2 (1 m × 1 m) randomly located experimental
plots (Figure 1) for one year—1 July 2019 to 30 June 2020 (Figure 3). All the vegetation
inside and around the plots was removed before the field measurements (at least weekly),
keeping the plots free of vegetation for the entire period of study to minimize the soil
structure changes.

The crack monitoring consisted of the in situ location of the cracks and the measure-
ment of their respective depth. Cracks were identified with the aid of a 0.05 m × 0.05 m
net placed over the 1 m2 experimental plots, totaling a mesh of 400 points (Figure 4). The
crack depth was measured using a 4 mm diameter rod and a ruler at the intersection of
each crack and the 0.05 m × 0.05 m net (Figure 4).
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Figure 4. Crack monitoring in situ.

2.3. Crack Morphology and Dynamics

The recognition of individual cracks and the assessment of the respective surface area,
average width, and length was performed using the software Crack Image Analysis System
Version 2.32 (CIAS) [20] based on the in situ acquired images (Figure 5). A Sony® DSC-H9
camera placed on a tripod always at the same location collected the plot images. Photogra
hic images were taken at the best light hours (between 12:00 and 1:00 p.m.), except on rainy
days, when photos were taken after the end of the event or on the next morning.
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Figure 5. Methodology for image collection, correction and parameter calculation.

The volume of the cracks was computed using the crack average depth obtained via
the in situ monitoring and the area was assessed using the CIAS software Version 2.32, as
proposed by [21]. The soil crack area density (Dc) (Equation (1)) was evaluated using the
method proposed also by [21]. The level of development (Table 1) was based on [16]:

Dc =
ac

At
∗ 100 (1)

where ac is the crack area (m2) and At is the total area (1 m2).
The crack area velocity represents the rate of development of the crack area in both the

swelling and the shrinking stages. The assessment of the temporal and spatial variability of
the cracks’ swelling and shrinking included the crack area formation velocity and associated
correlations with climate factors, soil moisture and soil characteristics. We assumed the
linear variation of the parameters (Dc, depth, and soil moisture) with time between field
monitoring visits. All the analyses were based on the average depth, total area and total
volume of the cracks at each plot.
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Table 1. Soil cracks’ level of development based on the crack area density.

Dc Intervals Levels of Development

Dc ≤ 5% Feeble
5 < Dc ≤ 10 Light
10 < Dc ≤ 22 Medium
22 < Dc ≤ 27 Intensive

Dc > 27 Extremely intensive

3. Results
3.1. Field Data

A total rainfall of 869 mm distributed in 54 events (Figure 6) was recorded during the
study period (19 July–20 June). Only three rainfall events occurred in the dry season, with a
total of 9 mm that led to no runoff. The wet season had seven runoff events in both February
and March and one runoff event in May. February showed 23% of the rainfall of the wet
season (12 events), and March concentrated 33% of that rainfall (17 events). The cracks were
sealed for 16 days in March and opened after 2 consecutive days without precipitation.
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Figure 6. Rainfall and runoff events in the study period.

The total sealing of the cracks occurred on 18 February 2020, with an accumulated
rainfall of 236 mm, of which 75% of the rainfall events were less than 10 mm and 52% less
than 5 mm. During the first surface runoff event of the year (5 February 2020), the cracks
were not totally sealed, although there were no surface cracks upon the occurrence of the
other runoff events.

The spatial variability of the soils in the catchment was highlighted by the plots’
physical soil properties (Table 2). Plots P3 and P6 stood out for the sand content (above
40%), classifying them as sandy clay loams—SCL (Table 2). The plasticity index (PI) and
liquid limit (LL) in both plots showed the lowest values, as well as the base saturation
(percentage of cation exchange capacity occupied by base cations) due to the sand content
of these soils.

A cluster analysis of the soil properties of the experimental plots revealed two groups:
one formed by the clay loam plots (CL) and the other formed by the sandy clay loam plots
(SCL). This was confirmed by the significant difference (p-value < 0.05) in the physical
parameters between the soils in plots P3 and P6 and the others (Figure 7). The P3 and P6
plots were more distant from the stream (Figure 1), suggesting that there was transport of
finer particles to the lower zone (i.e., stream).
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Table 2. Soil properties of the experimental plots.

Soil Properties
Experimental Plots

P1 P2 P3 P4 P5 P6

Grain size analysis
Sand (%) 21 26 41 22 27 44
Silt (%) 43 46 33 41 41 36
Clay (%) 36 28 26 37 32 20
Organic matter (%) 0.8 1.5 1.3 1.4 1.9 2.2
Base saturation (%) 92 95 84 95 92 89
pH 6.6 7.1 6 6.8 6.6 6.7
Specific gravity 2.79 2.57 2.53 2.53 2.48 2.52
Liquid limit (%) 43 38 28 42 40 33
Plastic limit (%) 14 27 21 32 26 27
Plasticity index 30 12 7 10 14 7
Textural
classification Clay loam Clay loam Sandy clay loam Clay loam Clay loam Sandy clay loam
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3.2. Crack Morphology

The crack depth in the clay loam plots varied from zero (no surface cracks) to a
maximum depth of 0.12 m to 0.22 m (Figures 8 and 9). The maximum values were observed
in P1, closer to the outlet, where the soil showed greater plasticity (Table 1).
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On the sandy clay loam plots, the cracks’ depth varied from zero (no surface cracks)
to 0.06 m (P3), as evidenced by Figure 10. The cracks showed an approximately constant
value of 0.04 m after confirmation of the dry season in July–August and remained constant
until the beginning of the rainy season in December. The plots with the least Dc and crack
volume variability were the sandy clay loam plots—P3 and P6 (Figure 10), which also
showed a lower fine particle percentage (<60%), a lower plasticity index (7.0), and a liquid
limit below 33% (Table 2).

Based on the number of soil cracks and the respective morphometric characteristics, we
observed a greater number, depth, and volume at the end of the dry season (Figures 8–10),
as expected. The deepest cracks and higher Dc and crack volume were recorded in the
CL group plots (P1—downstream and P5—upstream), as well as the greatest variability in
these parameters. The smallest variability in the depth of the cracks, Dc and crack volume
occurred in the sandy clay loam plots, with the lowest fine particle contents (P3 and P6).
The lowest monthly mean values were recorded in the P6 plot—0.035 m and 0.0013 m3 for
the crack depth and crack volume, respectively (in the dry period).
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In the dry period, the crack depth varied from 0.034 m to 0.225 m (both in plot P1) in
the clay loam plots (Figures 8 and 9), whereas in the sandy clay loam plots, the variation
was smaller—0.026 m to 0.066 m (both in plot P6) (Figure 10). For a small variation in the
soil moisture content, there was a quick response from the crack depth in the clay loam
plots when compared to the sandy clay loam plots, which showed little response.

The rainfall accumulation until February was 87.1 mm, which was not enough to
totally close the cracks—the crack depth was higher in the clay loam plots than in the sandy
loam plots. Even though there was precipitation in the wet season after March, the wettest
month of the year, the monthly rainfall decreased, with an increasing response from the Dc
at all the plots (Figures 8–10).
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3.3. Crack Dynamics

The Dc showed a significant logarithmic correlation with the soil moisture content
(p < 0.001) in all the plots of the CL group (Figure 11). The SCL group (Figure 12) did not
show a significant correlation (p < 0.001) in either plot.

The SCL cluster plots showed an initial crack sealing process (Dc = 0) 70 days after the
beginning of the rainy season, with a cumulative rainfall of 102 mm and a soil moisture
content above 23% (Figures 10 and 12). As for the CL group (Figures 8 and 9), the sealing
only occurred 87 days after the beginning of the rainy season, with a total cumulative
rainfall of 222 mm, a soil moisture content above 32% (Figure 11), and after a rainfall event
of 52.4 mm. There seemed to be no pattern in the response of the soil crack area to a soil
moisture content of up to 7% in the SCL and 13% in the CL plots, respectively.
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A closer look at the swelling and shrinking behavior of the soil highlighted a remark-
able difference between the CL plots and the SCL plots—a maximum value of the soil crack
area density of 0.37 m2 in the CL plots against 0.10 m2 in the SCL plots, and crack occurrence
up to a soil moisture content of 43% in the CL against 27% in the SCL (Figure 13a,b).

The limit to the crack opening and sealing on the drying and wetting cycles showed a
difference of 6% in the soil moisture content—when drying, the CL plots started opening
cracks at a soil moisture below 43%, whereas as it reached a soil moisture content of 37%
upon wetting, the cracks were sealed. Similar behavior was observed in the SCL plots,
with a smaller difference of 3% in the soil moisture content, which began the crack opening
process at a soil moisture content below 27% when drying and a soil moisture content
below 24% when wetting (Figure 13c,d).
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The crack area opening/closing response velocity (Figure 14) in the CL was below
0.1 m2 day−1 and in the SCL below 0.06 m2 day−1 (just above half the response velocity of
the CL). The fastest response time of the crack opening/sealing to the soil moisture was
below 45% in the CL and below 28% in the SCL. There was a remarkable difference in the
crack response in the soils with finer particles above 70% (CL) relative to the soil moisture
despite the clay content, both upon the drying and wetting cycles.
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4. Discussion
4.1. Crack Morphology

The swelling and shrinking processes in expansive clay soils showed sensitivity to the
fine particle content. The limits of the soil moisture content on the soil crack formation and
sealing were significantly different for the clay loams and sandy clay loams, as were the
crack area density limits [22].

The shrinking of expansive clays during dry periods and swelling with the occurrence
of wet days [23] promote an increase/decrease in the depth, intensity, and volume of
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cracks (Figures 6 and 8–10). After a rainfall event, both in the wet and dry seasons, the
clay swelling process began in the surface layers as the hydrostatic forces increased [2],
promoting the sealing of micro cracks even before the surface runoff process began. At
the onset of the surface runoff, the cracks were not all sealed (Figures 6 and 8–10), and the
deeper cracks acted as preferential flow paths [4,15], which influenced solute transport—the
faster water and dissolved solutes flowed through the preferential paths with reduced
soil sorption opportunities by the clay particles, promoting considerable water loss and
groundwater pollution, as suggested by [24].

The smaller pores in the soils with higher clay contents promoted the development
of high soil suction pressure [25] and cohesion [26], which led to crack formation. Water
sorption by the clay particles at the deepest parts of the cracks promoted their closure in
an upward movement and the reduction of the depth of the cracks throughout the rainy
season (Figures 8–10).

The clay content in itself did not explain the different behavior of the crack area forma-
tion as a function of the soil moisture in this study—all the plots had a montmorillonite
clay content above 30%. However, the behavior of the Dc as a function of the soil moisture
(Figures 11 and 12) was different for both the sandy loam and the clay plots, which differed
due to the fine particles content, liquid limit and plasticity. Such evidence resulted in the
different volume of cracks between plot P1, with a higher volume and greater plasticity,
and P4 and P5 (Figures 8–10), with lower volumes and lower plasticity indexes, although
these plots, P1, P4 and P5, presented similar texture [2].

The process of crack sealing occurred gradually and inversely to the soil moisture
content (Figures 8–10). From the beginning of the rainy season and until the total closure of
the cracks, they generated preferential flow paths [4], depending mostly on the cumulative
rainfall and depth of the event.

The expansion/contraction of the cracks in the soil was more sensitive in the wetting
than in the drying process (Figure 13a,b). The SCL plots showed little response to crack
formation for soil moisture contents between 5% and 25%, and no defined pattern relative
to soil moisture contents below 5%. The CL plots showed a higher crack formation/sealing
sensitivity for soil moisture contents between 13% and 42%, and no defined pattern relative
to soil moisture contents below 13%. The expansion/shrinkage processes may respond
differently to different climatic conditions due to the intrinsic soil characteristics, such as
the granulometry and plasticity [2,27,28].

4.2. Crack Dynamics

The reduction of 4% in the soil moisture (Figures 8–10) was enough for the emergence
of cracks. As cracks formed, soil water evaporated in two dimensions—vertically via
the soil surface and horizontally through the walls of the cracks [2], provided there was
available water. As the water availability decreased, the velocity of the crack formation
remained constant for both the clay loams and sandy clay loams, although it was faster in
the clay loam plots (Figure 14). The swelling and shrinking processes occurred at a faster
pace in the clay loam plots [1,26], as stressed by the different soil sealing time (Figures 8–10),
suggesting correlation with their higher plasticity index (Table 1).

The degree of development of the cracks in the CL plots recorded a medium level of
development for the Dc (Table 1), evidencing that the reduction of moisture in soils with
higher rates of plasticity resulted in initially mild and then pronounced deformations when
compared with the less plastic soils (SCL) [2,8]. The lower fine particle content in plots P3
and P6 (Table 2) reduced the degree of self-healing, as governed by the soil plasticity, which
determines the potential for soil expansion and contraction [26].

It is known that the Dc decreases with the addition of water to the soil. During the
dry season in this region, the possible sources of water entry into the soil are the processes
of capillary rise and/or condensation of water vapor during the early morning hours [29].
The process of capillary rise was discarded, since there was no reduction in the depth of
the cracks (Figures 8–10), evidencing a surface phenomenon.
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Although there were no records of isolated precipitation events during the dry season
(July to December) (except for three events > 10 mm, Figure 6), in August and September
there was a reduction in the value of the Dc (Figures 8–10). The increase in the soil
surface moisture content was believed to be the result of dew formation in other semiarid
regions [1,30,31]. The process of increasing the soil moisture via the condensation process in
the months with the lowest minimum temperatures is supported by [29] in an area adjacent
to the studied watershed, raising the soil moisture at night by as much as 5%, which may
be responsible for the reduction of the Dc (Figures 8–10).

The CL group presented an extremely intensive level of development (Figures 8 and 9),
suggesting a need for greater initial abstractions to seal the surface cracks (Figures 6 and 8–10).
There seemed to be a greater risk of soil and aquifer contamination during the drying
process as the total crack area and depth were greater, offering preferential flow paths and
a reduced opportunity for the adsorption of fertilizers by plants [24].

The sealing and formation of cracks in the SCL plots occurred at soil moisture contents
above 25% and 27% in the wetting and drying processes, respectively. In the CL plots, these
values were 38% and 43%, respectively. These results highlighted the hysteresis of these
processes in both soil types, which may have occurred due to the fact that there was no
increase in the soil moisture in the drying process and an increase and decrease in the soil
moisture in the wetting processes. The soil moisture losses were mainly due to evaporation
that occurred in two dimensions: horizontally via the soil surface and vertically from the
walls of the cracks [4] and the rainfall events (Figure 6).

5. Conclusions

The intensity of the occurrence, maximum depth and volume of cracks vary according
to the texture, limits of plasticity and soil liquidity. A lower fine particle content reduces
the cracks’ healing process, which is governed mostly by the soil plasticity. Higher fine
particle contents lead to larger occurrence, depth and volume despite the clay content if
associated with greater plasticity.

Cracks form after two consecutive dry days even during the wet season. The expan-
sion/contraction of cracks in the soil is more sensitive in the wetting than in the drying
process. Clay loams and sandy clay loams show different limits on the soil moisture content
to start the opening and the sealing processes of crack formation.

There is no pattern in the response of crack formation to soil moisture contents below
5% and 13% for sandy clay loams and clay loams, respectively. The process of capillary
rise impact on crack healing may be discarded, evidencing it being a surface phenomenon.
There is a greater risk of soil and aquifer contamination during the drying process.
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