Are the Regional Precipitation and Temperature Series Correlated? Case Study from Dobrogea, Romania
Abstract
:1. Introduction
2. Study Area and Data Series
3. Methodology
- Determine the change points (breakpoints) of the data series.Remember that a change point (breakpoint) is a point where there is a change in the mean, variance, or both, or, alternatively, there is a change in the probability law followed by the time series. To test the null hypothesis where the time series has no breakpoint against the existence of a breakpoint, the Pettitt [41], Buishand [42], and Lee and Heghinian [43] tests were used. These were implemented in Khronostat [44]. The first test works for any series, while for the last two, series normality is required. The reader may see [41,42,43,44] for details on these procedures.
- Determine the RTS of the minimum, maximum, and total precipitation series, denoted by RTSPmin, RTSPmax, and RTSPtot, respectively.
- Determine the RTS of the minimum, maximum, and average temperature series, denoted by RTSTmin, RTSTmax, and RTSTav, respectively.
- Test hypothesis H0 that RTS does not present a monotonic trend against H1 and that such a trend exists for the RTSs of precipitations.
- Test H0 that RTS does not present a monotonic trend against H1 and that such a trend exists for the RTSs of temperatures.
- -
- () (t = ) the series collected at jth station (j = ),
- -
- X = () (t = , j = ) the matrix whose line t is formed by the values recorded at the moment t in all stations.
- RTS can then be built by computing the average values from each row of XCl. Thus, the RTS value at the moment t is the average of the tth row of XCl (t =
- The modeling errors for each station can then be estimated by computing the difference between the recorded values and those of RTS.
- The fitting quality of RTS can then be evaluated by calculating the mean absolute error (MAE) and mean standard error (MSE) from the errors determined in the previous step.
- The RTS chart can be drawn.
4. Results and Discussion
- (a)
- Only a set of initial data series had missing values (for example, only two missing values were found in the average temperature series recorded at Adamclisi),
- (b)
- Both sets of data series had missing values that were not recorded in the same station or period (for example, there were missing values for the minimum temperature series at Adamclisi in 1970 and 1981 and missing values for the minimum precipitation series at Corugea in 1969, 1992, and 2003),
- (c)
- Both sets of data series had missing values recorded at the same time at the same station (for example, there are missing values of the minimum temperature and precipitation series recorded at Constanta in 1971, 1983, and 1994).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN Climate Change Conference of the Parties (COP26). Available online: https://ukcop26.org/ (accessed on 10 March 2023).
- The Intergovernmental Panel on Climate Change. AR6 Synthesis Report: Climate Change 2023. Available online: https://www.ipcc.ch/ (accessed on 10 March 2023).
- Bărbulescu, A. On the Regional Temperature Series Evolution in the South-Eastern Part of Romania. Appl. Sci. 2023, 13, 3904. [Google Scholar] [CrossRef]
- Schultz, P.A.; Halpert, M.S. Global correlation of temperature, NDVI and precipitation. Adv. Space Res. 1993, 13, 277–280. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef]
- Wazneh, H.; Altaf Arain, M.; Coulibaly, P.; Gachon, P. Evaluating the Dependence between Temperature and Precipitation to Better Estimate the Risks of Concurrent Extreme Weather Events. Adv. Meteorol. 2020, 2020, 8763631. [Google Scholar] [CrossRef]
- Giorgi, F.; Anyah, R.O. The Road towards RegCM4. Clim. Res. 2012, 52, 3–6. [Google Scholar] [CrossRef]
- Huang, M.; Lin, Q.; Pan, N.; Fan, N.; Jiang, T.; He, Q.; Huang, L. Short-Term Precipitation Forecasting Rolling Update Correction Technology Based on Optimal Fusion Correction. J. Geosci. Environ. Prot. 2019, 7, 145–159. [Google Scholar] [CrossRef]
- Margaritidis, A. Site and Regional Trend Analysis of Precipitation in Central Macedonia, Greece. Comput. Water Energy Environ. Eng. 2019, 10, 49–70. [Google Scholar] [CrossRef]
- Sam, M.; Nwaogazie, I.; Ikebude, C. Non-Stationary Trend Change Point Pattern Using 24-Hourly Annual Maximum Series (AMS) Precipitation Data. J. Water Res. Prot. 2022, 14, 592–609. [Google Scholar] [CrossRef]
- Garcia-Aristizabal, A.; Bucchignani, E.; Palazzi, E.; D’Onofrio, D.; Gasparini, P.; Marzocchi, W. Analysis of non-stationary climate-related extreme events considering climate change scenarios: An application for multi-hazard assessment in the Dar es Salaam region, Tanzania. Nat. Hazards 2015, 75, 289–320. [Google Scholar] [CrossRef]
- Mishra, V.; Wallace, J.M.; Lettenmaier, D.P. Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys. Res. Lett. 2012, 39, 16403. [Google Scholar] [CrossRef]
- Van Aalst, M.K. The impacts of climate change on the risk of natural disasters. Disasters 2006, 30, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Ricketts, J.H. Reconciling the signal and noise of atmospheric warming on decadal timescales. Earth Syst. Dynam. 2016, 8, 177–210. [Google Scholar] [CrossRef]
- Utsumi, N.; Seto, S.; Kanae, S.; Maeda, E.E.; Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 2011, 38, 074031. [Google Scholar] [CrossRef]
- Nicholls, N.; Della-Marta, P.; Collins, D. 20th century changes in temperature and rainfall in New South Wales. Aust. Meteorol. Mag. 2004, 53, 263–268. [Google Scholar]
- Ferrari, E.; Coscarelli, R.; Sirangelo, B. Correlation Analysis of Seasonal Temperature and Precipitation in a Region of Southern Italy. Geosciences 2018, 8, 160. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. Precipitation–temperature relationships over Europe in CORDEX regional climate models. Int. J. Climatol. 2022, 42, 4868–4880. [Google Scholar] [CrossRef]
- Issac, G.A.; Stuart, R.A. Temperature-precipitation relationships for Canadian stations. J. Clim. 1992, 5, 822–830. [Google Scholar] [CrossRef]
- Vrac, M.; Thao, S.; Yiou, P. Changes in temperature–precipitation correlations over Europe: Are climate models reliable? Clim. Dyn. 2022, 60, 2713–2733. [Google Scholar] [CrossRef]
- Rajeevan, M.; Pai, D.S.; Thapliyal, V. Spatial and temporal relationships between global land surface air temperature anomalies and Indian summer monsoon rainfall. Meteorol. Atmosph. Phys. 1998, 66, 157–171. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, J.; Yin, H.; Cai, M. Correlation of precipitation to temperature variation in the Huanghe River (Yellow River) basin during 1957–2006. J. Hydrol. 2009, 372, 1–8. [Google Scholar] [CrossRef]
- Hafez, Y. On the Relationship between Heat Waves over the Western and Central Europe and NAO, SOI, El-Nino 3.4 in Summer 2015. J. Geosci. Environ. Prot. 2017, 5, 31–45. [Google Scholar] [CrossRef]
- Turoğlu, H. Detection of Changes on Temperature and Precipitation Features in Istanbul (Turkey). Atmosph. Clim. Sci. 2014, 4, 549–562. [Google Scholar] [CrossRef]
- Lenderink, G. Exploring Metrics of Extreme Daily Precipitation in a Large Ensemble of Regional Climate Model Simulations. Clim. Res. 2010, 44, 151–166. [Google Scholar] [CrossRef]
- Bărbulescu, A. A new method for estimation the regional precipitation. Water Resour. Manag. 2016, 30, 33–42. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Nazzal, Y.; Howari, F. Statistical analysis and estimation of the regional trend of aerosol size over the Arabian Gulf Region during 2002–2016. Sci. Rep. 2018, 8, 9571. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Postolache, F. New approaches for modeling the regional pollution in Europe. Sci. Total Environ. 2021, 753, 141993. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Postolache, F.; Dumitriu, C.Ș. Estimating the precipitation amount at regional scale using a new tool, Climate Analyzer. Hidrology 2021, 8, 125. [Google Scholar] [CrossRef]
- Ielenicz, M. Climate, Waters, Vegetation, Soils, Environment. In Physical Geography of Romania; Editura Universitară: Bucharest, Romania, 2007; Volume II. (In Romanian) [Google Scholar]
- Telteu, C.E.; Stan, F.I.; Oprea, O. Runoff characteristics in Dobrogea. In Air and Water Environmental Components; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2013; pp. 301–308. [Google Scholar]
- Ielenicz, M.; Săndulache, I. Romania—Plateaus and Hills (I); Editura Universitară: Bucharest, Romania, 2008. (In Romanian) [Google Scholar]
- Păsculescu (Telteu), C.E. Consideration regarding the mean runoff of the main rivers from the South Dobrogea. In Air and Water—Components of the Environment; Pandi, G., Moldovan, F., Eds.; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2011; pp. 379–386. [Google Scholar]
- Posea, G.; Bogdan, O.; Zăvoianu, I. (Eds.) Geography of Romania. In The Romanian Plain, Danube, Dobrogea Plateau, The Romanian Black Sea Seaside and the Continental Platform; Romanian Academy Printing House: Bucharest, Romania, 2005; Volume V. (In Romanian) [Google Scholar]
- Bărbulescu, A.; Maftei, C. Statistical approach of the behavior of Hamcearca River (Romania). Rom. Rep. Phys. 2021, 73, 703. [Google Scholar]
- Maftei, C.; Bărbulescu, A.; Cârsteanu, A.A. Long-range dependence in the time series of Taiţa River discharges. Hydrol. Sci. J. 2016, 61, 1740–1747. [Google Scholar] [CrossRef]
- Șerban, C.; Maftei, C.; Dobrică, G. Surface Water Change Detection via Water Indices and Predictive Modeling Using Remote Sensing Imagery: A Case Study of Nuntasi-Tuzla Lake, Romania. Water 2022, 14, 556. [Google Scholar] [CrossRef]
- Angearu, C.; Irimescu, A.; Mihailescu, D.; Ana, V. Evaluation of Droughts and Fires in the Dobrogea Region, Using Modis Satellite Data. Available online: https://www.researchgate.net/publication/327598538_Evaluation_of_Droughts_and_Fires_in_the_Dobrogea_Region_Using_Modis_Satellite_Data#fullTextFileContent (accessed on 16 March 2023).
- Busuioc, A.; Caian, M.; Cheval, S.; Bojariu, R.; Boroneanţ, C.; Baciu, M.; Dumitrescu, A. Variability and Climate Change in Romania; ProUniversitaria Press: Bucharest, Romania, 2010. (In Romanian) [Google Scholar]
- Maftei, C.; Bărbulescu, A.; Rugină, S.; Nastac, C.D.; Dumitru, I.M. Analysis of the arbovirosis potential occurrence in Dobrogea, Romania. Water 2021, 13, 374. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non—Parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Tests for Detecting a Shift in the Mean of Hydrological Time Series. J. Hydrol. 1984, 73, 51–69. [Google Scholar] [CrossRef]
- Lee, A.F.; Heghinian, S.M. A Shift of The Mean Level in A Sequence Of Independent Normal Random Variables—A Bayesian Approach. Technometrics 1977, 19, 503–506. [Google Scholar]
- Khronostat. Available online: http://www.hydrosciences.org/index.php/2020/09/04/khronostat/ (accessed on 19 March 2023).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Statist. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Kendall, M. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–89. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Friedman, H.P.; Rubin, J. On Some Invariant Criteria for Grouping Data. J. Am. Stat. Assoc. 1967, 62, 1159–1178. [Google Scholar] [CrossRef]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Hartigan, J.A. Clustering Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 1975. [Google Scholar]
- Hubert, L.J.; Arabie, P. Comparing Partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
- Scott, A.J.; Symons, M.J. Clustering Methods Based on Likelihood Ratio Criteria. Biometrics 1971, 27, 387–397. [Google Scholar] [CrossRef]
- Rousseeuw, P. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Soetewey, A. Stats and R. The Complete Guide to Clustering Analysis: K-Means and Hierarchical Clustering by Hand and in R. Available online: https://statsandr.com/blog/clustering-analysis-k-means-and-hierarchical-clustering-by-hand-and-in-r/ (accessed on 20 May 2022).
- Șerban, C.; Bărbulescu, A.; Dumitriu, C.S. Maximum precipitation interpolation using an evolutionary optimized IDW algorithm. IOP Conf. Ser. Earth Environ. Sci. 2022, 958, 012006. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Băutu, A.; Băutu, E. Optimizing Inverse Distance Weighting with Particle Swarm Optimization. Appl. Sci. 2020, 10, 2054. [Google Scholar] [CrossRef]
- Gholipour, Y.; Shahbazi, M.M.; Behnia, A.R.A.S.H. An improved version of Inverse Distance Weighting metamodel assisted Harmony Search algorithm for truss design optimization. Latin Am. J. Solids Struct. 2013, 10, 283–300. [Google Scholar] [CrossRef]
- Golkhatmi, N.S.; Sanaeinejad, S.H.; Ghahraman, B.; Pazhand, H.R. Extended modified inverse distance method for interpolation rainfall. Int. J. Eng. Invent. 2012, 1, 57–65. [Google Scholar]
- Kumari, M.; Ashoke, B.; Oinam, B.; Singh, C.K. Comparison of Spatial Interpolation Methods for Mapping Rainfall in Indian Himalayas of Uttarakhand Region. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment; Janardhana Raju, N., Ed.; Springer: Cham, Switzerland, 2016; pp. 159–168. [Google Scholar]
- Noori, M.J.; Hassan, H.; Mustafa, Y.T. Spatial estimation of rainfall distribution and its classification in Duhok governorate using GIS. J. Water Res. Protect. 2014, 6, 75–82. [Google Scholar] [CrossRef]
PrecTot | PrecMin | PrecMax | |||||||
---|---|---|---|---|---|---|---|---|---|
Series | Buishand | Pettitt | Lee and Heghinian | Buishand | Pettitt | Lee and Heghinian | Buishand | Pettitt | Lee and Heghinian |
Adamclisi | - | - | 1994 | - | - | 2004 | - | - | 1972 |
Cernavoda | - | - | 2004 | - | - | 2004 | - | - | 1972 |
Constanta | - | 1994 | 2001 | - | - | 1982 | - | - | 2003 |
Corugea | - | - | 2003 | - | - | 2004 | - | - | 2004 |
Harsova | - | - | 2003 | - | - | 2004 | - | - | 1966 |
Jurilovca | - | 1994 | 1994 | - | - | 2004 | reject | - | 1973 |
Mangalia | - | 1997 | 1997 | - | - | 2004 | - | - | 2004 |
Medgidia | - | - | 1998 | - | - | 2004 | - | - | 2001 |
Sulina | reject | 1994 | 1996 | - | - | 1966 | - | - | 1980 |
Tulcea | - | - | 2004 | - | - | 1995 | - | - | 1995 |
TempAv | TempMin | TempMax | |||||||
---|---|---|---|---|---|---|---|---|---|
Series | Buishand | Pettitt | Lee and Heghinian | Buishand | Pettitt | Lee and Heghinian | Buishand | Pettitt | Lee and Heghinian |
Adamclisi | rejected | 1988 | 1988 | reject | 1988 | 1997 | reject | - | 1997 |
Cernavoda | - | - | 1972 | reject | 1988 | 1988 | - | - | 1997 |
Constanta | - | - | 2003 | reject | 1988 | 1998 | reject | - | 1997 |
Corugea | - | - | 1972 | reject | 1988 | 1998 | reject | - | 1997 |
Harsova | - | - | 1972 | reject | 1988 | 1988 | - | - | 1998 |
Jurilovca | rejected | 1979 | 1979 | not run | 1988 | not run | - | - | 1998 |
Mangalia | - | - | 2004 | reject | 1988 | 1993 | reject | - | 1997 |
Medgidia | - | - | 2001 | reject | 1988 | 1987 | reject | - | 1997 |
Sulina | - | 1970 | 1969 | - | - | 1998 | - | - | 1997 |
Tulcea | - | - | 1995 | - | - | 1971 | - | - | 1988 |
Adamclisi | Cernavoda | Constanta | Corugea | Harsova | Jurilovca | Mangalia | Medgidia | Sulina | Tulcea | |
---|---|---|---|---|---|---|---|---|---|---|
Tmin | + | *** | * | *** | *** | *** | * | * | + | |
Tmax | * | * | ** | * | * | |||||
Tav | + | + | + | |||||||
PrecMin | ||||||||||
PrecMax | *** | |||||||||
PrecTot | *** |
Min | Max | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MSE | MAE | MSE | MAE | MSE | |||||||
Site No. | RTS | IDW | RTS | IDW | RTS | IDW | RTS | IDW | RTS | IDW | RTS | IDW |
Adamclisi | 2.1 | 3.5 | 2.6 | 3.4 | 23.8 | 24.5 | 31.1 | 31.9 | 67.9 | 60.1 | 83.5 | 70.2 |
Cernavoda | 2.3 | 2.2 | 3.7 | 3.3 | 14.0 | 18.5 | 19.1 | 23.3 | 64.3 | 53.8 | 76.8 | 71.0 |
Constanta | 1.7 | 2.1 | 2.4 | 3.1 | 17.1 | 20.0 | 26.4 | 30.5 | 37.1 | 48.2 | 45.8 | 57.9 |
Corugea | 1.5 | 1.7 | 2.2 | 2.4 | 14.6 | 16.7 | 19.3 | 22.4 | 42.2 | 49.2 | 55.4 | 62.4 |
Harsova | 2.7 | 2 | 3.2 | 3.4 | 24.5 | 26.1 | 37.1 | 35.6 | 99.2 | 61.7 | 147.2 | 84.3 |
Jurilovca | 2.2 | 2.4 | 2.8 | 3.1 | 17.7 | 19.9 | 21.1 | 24.8 | 64.3 | 69.9 | 86.1 | 88.1 |
Mangalia | 2.0 | 2.6 | 3.4 | 3.6 | 24.7 | 26.9 | 32.6 | 42.2 | 53.2 | 56.9 | 72.7 | 72.6 |
Medgidia | 1.8 | 2.2 | 2.8 | 3.1 | 19.3 | 18.9 | 23.8 | 22.4 | 48.0 | 47.2 | 55.6 | 57.1 |
Sulina | 2.1 | 2.8 | 4.0 | 3.9 | 37.0 | 36.2 | 45.2 | 43.5 | 116.7 | 92.9 | 131.4 | 111.5 |
Tulcea | 2.8 | 2.6 | 3.6 | 3.8 | 22.4 | 26.3 | 29.3 | 33.3 | 58.2 | 171.2 | 74.5 | 182.9 |
Average | 2.6 | 3.4 | 3.1 | 3.3 | 21.5 | 23.3 | 28.5 | 31.0 | 65.1 | 71.1 | 82.9 | 85.81 |
Min | Average | Max | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | MSE | MAE | MSE | MAE | MSE | |||||||
Site no. | RTS | IDW | RTS | IDW | RTS | IDW | RTS | IDW | RTS | IDW | RTS | IDW |
Adamclisi | 0.84 | 0.58 | 1.00 | 0.68 | 0.19 | 0.27 | 0.22 | 0.29 | 0.31 | 0.37 | 0.44 | 0.40 |
Cernavoda | 0.50 | 1.00 | 0.58 | 1.25 | 0.13 | 0.16 | 0.16 | 0.20 | 0.53 | 0.95 | 0.60 | 1.04 |
Constanta | 2.61 | 2.06 | 2.65 | 2.10 | 0.71 | 0.71 | 0.74 | 0.73 | 1.07 | 0.75 | 1.13 | 0.80 |
Corugea | 1.34 | 1.62 | 1.40 | 1.66 | 1.10 | 1.18 | 1.11 | 1.19 | 0.98 | 0.91 | 1.03 | 0.95 |
Harsova | 2.32 | 2.62 | 2.38 | 2.69 | 0.53 | 0.78 | 0.60 | 0.71 | 1.28 | 1.39 | 1.33 | 1.54 |
Jurilovca | 0.69 | 0.91 | 0.83 | 1.10 | 0.08 | 0.18 | 0.10 | 0.33 | 0.32 | 0.55 | 0.42 | 0.67 |
Mangalia | 0.70 | 1.31 | 0.81 | 1.35 | 0.11 | 0.83 | 0.12 | 0.87 | 0.55 | 0.85 | 0.63 | 0.91 |
Medgidia | 0.56 | 0.35 | 0.64 | 0.41 | 0.17 | 0.12 | 0.27 | 0.14 | 0.63 | 0.29 | 0.76 | 0.39 |
Sulina | 3.42 | 3.00 | 3.47 | 3.04 | 0.46 | 0.47 | 0.51 | 0.50 | 2.46 | 2.11 | 2.51 | 2.14 |
Tulcea | 0.94 | 0.80 | 1.18 | 0.89 | 0.19 | 0.23 | 0.22 | 0.26 | 0.31 | 0.52 | 0.44 | 0.58 |
Average | 1.39 | 1.42 | 1.49 | 1.52 | 0.37 | 0.49 | 0.41 | 0.52 | 0.84 | 0.87 | 0.93 | 0.94 |
Spearman | RTSTav | RTSTmax | RTSTmin |
RTSPtot | 0.7468 | 0.5341 | 0.5353 |
RTSPmax | 0.7215 | 0.7793 | 0.6431 |
RTSPmin | 0.4697 | 0.0537 | 0.7488 |
Kendall tau | RTSTav | RTSTmax | RTSTmin |
RTSPtot | 0.6613 | 0.4651 | 0.5293 |
RTSPmax | 0.7109 | 0.6131 | 0.6531 |
RTSPmin | 0.4252 | 0.0420 | 0.7531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Postolache, F. Are the Regional Precipitation and Temperature Series Correlated? Case Study from Dobrogea, Romania. Hydrology 2023, 10, 109. https://doi.org/10.3390/hydrology10050109
Bărbulescu A, Postolache F. Are the Regional Precipitation and Temperature Series Correlated? Case Study from Dobrogea, Romania. Hydrology. 2023; 10(5):109. https://doi.org/10.3390/hydrology10050109
Chicago/Turabian StyleBărbulescu, Alina, and Florin Postolache. 2023. "Are the Regional Precipitation and Temperature Series Correlated? Case Study from Dobrogea, Romania" Hydrology 10, no. 5: 109. https://doi.org/10.3390/hydrology10050109
APA StyleBărbulescu, A., & Postolache, F. (2023). Are the Regional Precipitation and Temperature Series Correlated? Case Study from Dobrogea, Romania. Hydrology, 10(5), 109. https://doi.org/10.3390/hydrology10050109