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Abstract: Evapotranspiration (ET) is a critical component of the water cycle, and an accurate pre-
diction of ET is essential for water resource management, irrigation scheduling, and agricultural
productivity. Traditionally, ET has been estimated using satellite-based remote sensing, which pro-
vides synoptic coverage but can be limited in spatial resolution and accuracy. Unmanned aerial
vehicles (UAVs) offer improved ET prediction by providing high-resolution imagery of the Earth’s
surface but are limited to a small area. Therefore, UAV and satellite images provide complementary
data, but the integration of these two data for ET prediction has received limited attention. This paper
presents a method that integrates UAV and satellite imagery for improved ET prediction and applies it
to five crops (corn, rye grass, wheat, and alfalfa) from agricultural fields in the Walla Walla of eastern
Washington State. We collected UAV and satellite data for five crops and used the combination of
remote sensing models and statistical techniques to estimate ET. We show that UAV-based ET can be
integrated with the Landsat-based ET with the application of integration factors. Our result shows
that the Root Mean Square Error (RMSE) of daily ET for corn (Zea mays), rye grass (Lolium perenne),
wheat (Triticum aestivum), peas (Pisum sativum), and alfalfa (Medicago sativa) can be improved by the
application of the integration factor to the Landsat based ET in the range of (35.75–65.52%). We also
explore the variability and effect of partial cloud on UAV-based ET estimation. Our findings have
implications for the use of UAVs in water resource management and highlight the importance of
considering multiple sources of data in ET prediction.

Keywords: UAV; consumptive use; remote sensing; METRIC model; partial cloud; water resources
management

1. Introduction

The allocation of water resources at the watershed scale is being challenged globally
by decreasing supplies and increasing demands [1–4]. Efficient water management is
critical for balancing the needs of sustainable irrigated agriculture, ecosystem services, and
water for future development. Effective resource management requires reliable information
on water availability and demands, especially for irrigated crops that account for nearly
80% of consumptive use in agricultural basins [5–7]. In these basins, understanding water
balances requires accurate estimation of consumptive use at the watershed scale. However,
measurement and prediction of evapotranspiration (ET) at a regional or watershed scale is
challenging due to its spatial and temporal complexity.

Remote sensing images have provided a promising source of data for mapping ET
over large areas in cost-effective ways [8–12] and have been increasingly used for mapping
ET [13–15]. One advantage of remote sensing images is that they do not require knowledge
of the crop growth stage, as they establish a direct link between surface radiances and
energy balance components. The critical surface and atmospheric variables necessary for
simulating surface fluxes and ET, such as land surface temperature, vegetation indices, and
atmospheric temperature, can be retrieved from visible, near infrared, and thermal infrared
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bands of sensors. However, the resolution of ET products derived from satellite images,
such as those from Moderate Resolution Imaging Spectroradiometer (MODIS), may not
be sufficient to capture the spatial variability of ET due to their lower resolution (~500 m
ground pixel resolution). Other open-source satellite imagery, such as Landsat and Sentinel,
have higher resolution (Landsat visible, NIR, SWIR—30 m, thermal—100 m; Sentinel: 10 m)
but have long revisit cycles (e.g., 16 days for Landsat 8). As a result, we may miss important
crop growth stages and potentially underestimate seasonal consumptive use. This gap can
be reduced with the availability of Landsat 9 having anoverpass of 8 days with Landsat 8.
Nevertheless, satellite images can also be obscured by cloud cover, therefore, we may
still not have a single image even in a month. Additionally, there is a tradeoff between
scanning swath and pixel size, therefore, none of the existing satellite sensors can provide
images with both high temporal and spatial resolution [16,17]. There is a high demand for
spatially explicit ET information at a higher spatial resolution, for example in precision
agriculture [18,19]. With the possibility of frequent flights and higher spatial resolution, the
Unmanned Aerial Vehicle (UAV) stands out as a promising technology for filling this gap
of satellite imagery.

UAVs equipped with multispectral and thermal sensors have become powerful tools
for mapping ET from agricultural fields as they can produce flights on demand and provide
images with higher resolution. The ground pixel resolutions for these systems are in
the order of 0.02–0.10 m for multispectral and 0.4–1.0 m for thermal sensors [20,21]. The
development of software, for example, Pix4D and Agisoft Metashape, for post-processing
has helped in the wide application of UAV technology including assessing olive tree crown
parameters, estimating energy balance components over orchards, corn field testing, and
mapping surface and direct-root-zone water use [19,22–25]. However, UAV capabilities are
limited by their ability to cover only small areas due to their limited flying time because
of the batteries’ endurance and low consumer-grade cameras [26]. Most consumer-grade
UAVs are not equipped with a thermal sensor which is indispensable for ET estimation
using a surface energy balance algorithm [27,28]. Even so, they can still collect a large
block of images with a centimeter-scale spatial resolution and can be useful for mapping
important growth stage of crops.

Therefore, UAV and satellite remote sensing data complement each other. The advan-
tages of satellite remote sensing data appear to compensate for the disadvantage of the
UAV, and vice versa with an opportunity for synergies of these two sources. There are
some recent studies that have applied the synergy of these two remote sensing information
sources. For example, Backes and Teferle [21] used UAV imagery with satellite imagery
for mapping a high accuracy digital elevation model, and Gray, et al. [29] used UAV im-
agery in combination with satellite imagery to assess estuarine environments. Similarly,
Bhatnagar, et al. [30] used a nested UAV-satellite approach to monitor the ecological wet-
lands. Although there are recent studies that attempted to combine Landsat and UAV
imagery for better ET estimation [20], they did not examine how Landsat ET compares with
UAV ET estimations across different crops and whether correction is needed for watershed-
scale prediction. Since UAV-based mapping costs sizeable investment for mapping ET, we
need to examine whether UAV-based mapping warrants the further investment in it.

While UAV-based mapping is good for precision agriculture providing the spatially
explicit information, watershed-scale application needs the information of whether there is
a difference in the ET mapped using the two sensors at spatial resolution of satellite imagery.
Before investing time and resource into developing an algorithm for joint analysis of data
from these two sources, we need information about how these two sources perform in terms
of mapping ET. Similarly, a lot of literature asserts that UAV’s flexibility to fly on cloudy
days and the possibility of capturing higher variability of ET is the added advantage over
similar other remote sensing techniques [31,32]. The effects of the cloud-based illumination
impact on the ET mapping from agricultural fields are not yet well understood. UAV can
be flown under the cloud, but the changing weather can affect how the sensor interprets
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data from the ground. Therefore, for mapping ET and subsequent integration, understating
the effect of clouds on UAV-based ET estimation is essential.

The objective of this research is to improve the watershed scale ET estimation using
UAV images in conjunction with Landsat images. To achieve this objective, we estimated,
compared and developed a method for successful integration of ET over agricultural field
using Landsat images with the image collected by Mica Sense Altum sensor mounted on DJI
Matrice 210 Quadcopter. The differences in ET across sensors are used for calculation of the
integration factor, which is applied for ET estimation at places when and where UAV is not
flown. We also assess the effect of cloud on UAV-based ET prediction by comparing ET under
partial cloud and cloud free conditions. We specifically address the following questions: (1) Is
there a sizeable difference in ET mapped at field scale using UAV-based and satellite-based
imagery? (2) Is there a time to be careful for taking UAV based imagery (effect of partial
cloud)? (3) Is there a way to integrate these two sources either spatially or temporally using
an integration factor? We show that there is a sizeable difference in ET creating a ground for
further investment in drone-based imagery acquisition and potential for integration of two
sensors for watershed scale prediction by applying a integration factor.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Walla Walla River basin, located in the Pacific North-
western U.S. It is a bi-state watershed in the southeast Washington and northeast Oregon
(Figure 1). In Walla Walla, the summers are hot and dry (average July maximum tempera-
ture of 34 ◦C and rainfall of ~10 mm) while the winters are cold and snowy (average Decem-
ber minimum temperature of 0 ◦C and snowfall of ~68 mm) with variable precipitations in
the region ranging from 1143 mm/year in mountainous headwaters to 254 mm/year near
its confluence with the Columbia River. The major crops in the region include alfalfa, corn,
peas, rye grass, and wheat.

Hydrology 2023, 10, x FOR PEER REVIEW  4  of  26 
 

 

 

Figure 1. Map of the Walla Walla River basin with color ramp for elevation. Blue pinpoints indicate 

the locations of the study area while pink pinpoint represents the weather station. Sites 1–5 are lo-

cated in valley Chapel, sites 6 and 7 are located in old highway, and sites 8–10 are located in hood 

road. 

Table 1 presents the details of experimental field sites along with types of crops, irri-

gation systems, acquisition  time of UAV  images, Landsat overpass, and geolocation of 

each site. A total of 10 sites were used, mainly located in the three regions of Walla Walla 

that are designated as “old highway”, “valley chapel”, and “hood road” (Figure 1, Table 

1). We selected five different types of crops (corn, rye grass, wheat, and alfalfa) with three 

irrigation types (center pivot, hand line, and wheel line). 

Table 1. Details of the experimental field sites used for mapping UAV imagery with types of crops, 

irrigation system, acquisition time of UAV images, Landsat overpass, and location. The acquisition 

time of UAV images and Landsat overpass are reported in 24-h format Pacific Daylight Saving Time 

(PDT). Sites 1–5 are located in valley Chapel, sites 6 and 7 are located in old highway, and sites 8–

10 are located in hood road areas in Walla Walla, WA. Two UAV acquisitions were performed on 

Site 3 on 20 June 2022. 

Crop  Day Month Year  Sites 
Time of UAV 

Acquisition 

Time of Landsat 

Overpass 
Location  Irrigation System 

Alfalfa 

11 July 2021  Site 8  10:07  11:43  Hood Road  Hand Line 

11 May 2022  Site 4  09:47  11:43  Valley Chapel  Center Pivot 

11 May 2022  Site 8  12:15  11:43  Hood Road  Hand Line 

Figure 1. Map of the Walla Walla River basin with color ramp for elevation. Blue pinpoints indicate the
locations of the study area while pink pinpoint represents the weather station. Sites 1–5 are located in
valley Chapel, sites 6 and 7 are located in old highway, and sites 8–10 are located in hood road.
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Table 1 presents the details of experimental field sites along with types of crops,
irrigation systems, acquisition time of UAV images, Landsat overpass, and geolocation of
each site. A total of 10 sites were used, mainly located in the three regions of Walla Walla
that are designated as “old highway”, “valley chapel”, and “hood road” (Figure 1, Table 1).
We selected five different types of crops (corn, rye grass, wheat, and alfalfa) with three
irrigation types (center pivot, hand line, and wheel line).

Table 1. Details of the experimental field sites used for mapping UAV imagery with types of crops,
irrigation system, acquisition time of UAV images, Landsat overpass, and location. The acquisition time
of UAV images and Landsat overpass are reported in 24-h format Pacific Daylight Saving Time (PDT).
Sites 1–5 are located in valley Chapel, sites 6 and 7 are located in old highway, and sites 8–10 are located
in hood road areas in Walla Walla, WA. Two UAV acquisitions were performed on Site 3 on 20 June 2022.

Crop Day Month Year Sites Time of UAV
Acquisition

Time of Landsat
Overpass Location Irrigation System

Alfalfa

11 July 2021 Site 8 10:07 11:43 Hood Road Hand Line
11 May 2022 Site 4 09:47 11:43 Valley Chapel Center Pivot
11 May 2022 Site 8 12:15 11:43 Hood Road Hand Line
12 May 2022 Site 5 11:18 11:37 Valley Chapel Center Pivot
21 June 2022 Site 8 13:10 11:37 Hood Road Hand Line

Wheat
11 July 2021 Site 10 13:45 11:43 Hood Road Hand Line
21 June 2022 Site 6 10:07 11:37 Old Highway Wheel Line
21 June 2022 Site 7 10:40 11:37 Old Highway Wheel Line

Rye grass
11 May 2022 Site 1 10:12 11:43 Valley Chapel Center Pivot
11 May 2022 Site 2 10:35 11:43 Valley Chapel Center Pivot
12 May 2022 Site 2 12:43 11:37 Valley Chapel Center Pivot
21 June 2022 Site 2 12:10 11:37 Valley Chapel Center Pivot

Peas
11 May 2022 Site 9 13:02 11:43 Hood Road Center Pivot
11 May 2022 Site 10 13:30 11:43 Hood Road Hand Line
21 June 2022 Site 10 13:42 11:37 Hood Road Hand Line

Corn

11 July 2021 Site 1 12:25 11:43 Valley Chapel Center Pivot
11 July 2021 Site 4 11:37 11:43 Valley Chapel Center Pivot
11 July 2021 Site 9 11:07 11:43 Old Highway Center Pivot
20 June 2022 Site 3 10:45 11:27 Valley Chapel Center Pivot

2.2. Data
2.2.1. Satellite Imagery

Table 2 provides detail information about the satellite images used with their path
and row. We used three Landsat 8 and one Landsat 9 images, which were extracted from
earth explorer.

Table 2. Details of Landsat used in this study with their types, path and row ids and selected area
cloud cover.

Day Month Year Landsat Types PathID RowID Cloud Cover (%)

11 July 2021 Landsat 8 44 28 0
11 May 2022 Landsat 8 44 28 5
12 May 2022 Landsat 9 43 28 7.5
21 June 2022 Landsat 8 43 28 3

2.2.2. UAV Imagery

Three field trips were made to Walla Walla covering two growing seasons for five
crop fields: alfalfa, corn, peas, rye grass, and wheat. We collected images of these fields,
flying UAV (DJI Matrice 210) equipped with a high-resolution multispectral and thermal
sensor (MicaSense Altum) on the same days and approximate times as the Landsat passes.
However, UAV acquired images of 20 June 2022 were discarded for comparison and
integration as the Landsat image on that day was obscured by clouds. The spatial resolution
of the UAV-based imagery is variable depending upon flying altitude and the spectral
bands. For consistency, the UAV was flown at an altitude of 70 m resulting in a thermal
band resolution of ~0.6 m and multispectral band resolution ~0.03 m. Raw images were
preprocessed using Agisoft Metashape software Version 1.8.3. The detailed processes are
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depicted in Figure 2. The images were ortho-rectified and layerstacked to achieve a single
TIFF file containing blue, green, red, red-edge, infrared, and thermal bands. A separate
TIFF file was created for the DEM at the same resolution as that of the orthomosaic. An
orthomosaic image from the Agisoft Metashpae was exported at a 0.6-m thermal band
resolution aggregating (taking the average) of the multispectral values by a factor of 20.
Further processing was performed in R, a statistical programming language [33]. The
orthomosaic image extracted from the Agisoft Metashape did not provide the direct surface
reflectance values which were converted to the surface reflectance by dividing each band
by 32,768 [34]. Similarly, the orthomosaic thermal data retrieved from Agisoft Metashape
was converted to kelvin by dividing the orthomosaic thermal band by 100 as instructed in
the user guide [35].
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Figure 2. Flowchart showing the process for obtaining layerstacked (blue, green, red, near infrared,
and thermal bands) UAV imagery.

2.2.3. Weather Data

Instantaneous (every 15 min) weather data from the Agweathernet station at College
Place Walla Walla were extracted for the days of the UAV flights and satellite overpasses.
Table 3 provides the summary of weather data for the study period.

Table 3. Average daily weather data (minimum temperature, maximum temperature, average relative
humidity, wind speed, precipitation, and solar radiation) on the days of UAV acquisitions used in
this study.

Day Month Year Min Temp (◦C) Max Temp (◦C) Avg RH% Wind Speed
(m/s)

Precipitation
(mm)

Solar Radiation
(MJ/m2)

11 July 2021 16.6 36.2 35.2 1.9 0 29.7
11 May 2022 1.4 17.8 66.2 1.7 0 28.4
12 May 2022 3.9 17.7 80.0 2.1 9.4 15.2
20 June 2022 12.2 24.8 71.8 1.9 0 26.0
21 June 2022 8.7 28.8 72.4 1.3 0 29.7
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2.2.4. Elevation Data

Digital Elevation Model (DEM) data at 30-m resolution was obtained from the USGS
National Elevation Dataset. We also used the DEM created at 0.6 m resolution for the UAV
based model.

2.2.5. Land Cover Data

Land cover data were extracted from USGS National Land Cover Database 2016 to
identify the agricultural land use pixels and pasture land use pixels required for this study.

2.3. Co-Registration of the Images

Table 4 provides the wavelengths of the four spectral bands and thermal band across
the UAV (MicaSense Altum), and Landsat (OLI) sensors. Table 4 shows similar wavelengths
for all the bands (blue, green, red, near infrared, and thermal) in the case of both UAV and
Landsat sensors, allowing us to combine the data. The pixels of the UAV images may not
be exactly lined up with the satellite imagery. To line up the UAV-based pixel imagery
with Landsat, co-registration of the images is required. Thus, the 30-m resolution Landsat
images were cropped by the field extent and were downscaled (i.e., upsampled) to 0.6-m
resolution using a factor of 50. Finally, orthomosaic UAV images at ~0.6-m resolution were
resampled to the resolution and extent of downscaled Landsat images.

Table 4. Wavelength across the sensors for multispectral (blue, green, red, and near infrared) and
thermal band used in this study. UAV represent the MicaSense Altum sensor and Landsat represent
the Operational Landsat Imager.

Band Name
Wavelength (nm)

UAV Landsat

Blue 459–491 450–510
Green 546.5–573.5 533–590
Red 661–675 640–670
NIR 813.5–870.5 850–880

Thermal 800–1400 1060–1251

2.4. METRIC Model

We applied widely used evapoTranspiration mapping at high Resolution with Internal-
ized Calibration (METRIC) model to quantify ET [36–38]. METRIC is an image processing
tool for mapping ET as a residual of the energy balance at the Earth’s surface. In this model,
instantaneous ET is computed by dividing the difference of the available energy (Rn − G)
and sensible heat flux (H) by latent heat of vaporization (λ) as below (Equation (1)).

ET =
Rn − G − H

λ
(1)

where Rn is the net radiation (W·m−2), and G is the soil heat flux (W·m−2).
METRIC requires identification of two anchor pixels (hot and cold) to establish a rela-

tion between land surface temperature and the difference between radiant temperature by
fixing the boundary condition for internal calibration. Typically, cold conditions correspond
to well irrigated fields and hot conditions correspond to bare agricultural fields. These
two pixels are used as boundary conditions to find temperature gradients (dT) at each
pixel. Then, dT is used to determine the coefficients (i.e., slope and intercept) of a linear
relationship between dT and land surface temperature (Ts) across the entire image as below
(Equation (2)).

dT = aTs + b (2)
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where a and b are empirical constants and are determined using extreme end conditions,
i.e., with cold pixel (representing maximum Latent Energy) and hot pixel (representing
zero Latent Energy). For more details, we refer to Allen, et al. [39].

The process of mapping actual ET is almost the same for both Landsat and UAV images
with the only different equation being the one used for albedo calculations. Since detailed
processes have been explained in many literatures, only the difference in albedo calculations
is explained here. UAV data obtained with a MicaSense sensor lacks the shortwave band
necessary for surface albedo estimation, thus we employed Equations (3) and (4) to estimate
the surface albedo (∝) using narrow band data as suggested by Brest and Goward [40]. The
surface albedo for satellite images is expressed as (Equation (3)),

∝= ∑(wb ×
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where, VIS is the reflectance corresponding to the visible bands, NIR is the reflectance of
the Near Infrared band of the UAV, and NDVI is the Normalized Difference Vegetation
Index computed as (Equation (5)).

NDVI =
NIR − R
NIR + R

(5)

where, NIR is the Near Infrared band and R is the Red band.

Implementation of the METRIC Model

The METRIC model for this research was developed using the “Water” package available
in R [41], a statistical programming language [33]. The Water package was initially developed
for estimating the ET using Landsat 7 imagery and was modified by the developer to estimate
Landsat-8 ET. For our work we used this package to estimate the ET using Landsat 8 and
Landsat 9 imagery. The original package was then modified for ET calculation using UAV
imagery. Since ET estimation using METRIC model is reliant on identification of anchor pixels
within an image, we captured the images of agricultural fields including boundaries like road
and bare lands in each flight in order to include anchor pixels within a layerstacked image.
The anchor pixels were chosen using the Water package’s implementation of detecting hot and
cold pixels. The package values were then manually checked for their locations in expected
well-watered plant land and barren ground for cold and hot pixels, respectively, using visual
inspection as suggested in Molaei, et al. [42].

2.5. Comparison of ET

The comparisons between Landsat estimated ET and UAV estimated ET were per-
formed for each day of satellite overpass to determine the similarity or dissimilarity in
daily ET estimation between the sensors. First, ET was estimated separately for both UAV
and Landsat imagery for the same field on the same day using METRIC. Then, Landsat
estimated ET was cropped by the extent of the field, using the UAV imagery for comparison
purposes. Similarly, ET for UAV imagery was estimated at a thermal resolution of 0.6 m,
which was upscaled to a Landsat resolution of 30 m by aggregating (taking the mean value)
the UAV ET with factor of 50. The pixel-by-pixel comparisons between the ET estimated
using two sensors were performed at the Landsat resolution of 30 m. The variations in the
patterns were tested by plotting the two raster images side by side using the same color
scale for five samples (one for each crop). The statistical comparison between the ET were
tested using the five statistical measures; the coefficient of determination (R2), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), bias, and median.
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2.6. Partial Cloud Effect on UAV-ET

To understand the potential impact of partial cloud on UAV-based ET prediction,
we estimated and compared the ET prediction under partial cloud cover and clear sky
conditions over site 3 on 20 June 2022. UAV acquisitions were conducted over the same
field at a different time of the day with partial cloudy and clear sky conditions over
irrigated agricultural field. Thus, collected images were used to estimate ET using the
METRIC model and variations in ET at areas superimposed under cloud and cloud free
areas are assessed.

2.7. Integration of ET

In this study, we propose a method for fusing satellite and UAV ET estimates towards
the better prediction of watershed-scale ET estimates. The method employs both temporal
and spatial fusion techniques to combine data from the satellite sensor and the UAV using
the integration factor. The detailed process used for integration of sensors and model
evaluations is shown in Figure 3.
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Figure 3. Flowchart for the comparison and integration of ET. Integrated model ET is the combination
of the Landsat and UAV ET.

2.7.1. Temporal Integration

We used the temporal integration method for correcting the Landsat ET estimate on
day T2 for the same place/crop using the integration factor calculated on day T1. The
pixel-by-pixel integration factor (IF) was calculated by taking the ratio of UAV-based ET to
Landsat-based ET at day T1 (training day) (Equation (6)).

IFtemporal =
(UAVET)T1

(LandsatET)T1
(6)

where (UAVET)T1 is the UAV estimated ET on day T1 and (LandsatET)T1 is the Landsat
estimated ET on day T1. Then the calculated integration factor was multiplied with Landsat
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ET on day T2 to get the assumed corrected ET (Integrated ET) values on T2 (testing day)
(Equation (7)).

IntegratedET = (LandsatET)T2 × IFtemporal (7)

where IntegratedET is the corrected combination of Landsat and UAV ET on day T2, and
(LandsatET)T2 is Landsat estimated ET on day T2.

For temporal integration, the mapping of the same place with the same crop within a
growing season was needed to see how it performed with the correction factor at different
times of the year. Since we have these two sets of images only for three crops (alfalfa, peas,
and rye grass), the temporal integration is performed only on these crops as farmers rotated
corn and wheat with other crops. The details of the sites and days used for integration
factor computation and evaluation are provided in Table 5. Evaluation of the temporal
integration factor application was done using the four statistical measures R2, RMSE, MAE,
and bias.

Table 5. Details of the sites used (three crops) for temporal integration factor computation and the
testing. Temporal integration factor was calculated using the estimated ET on Training day (T1).
Integration and evaluation was done on Testing day (T2).

S.N. Crop Site Training Day Month Year Testing Day Month Year

1 Peas Site 10 11 May 2022 21 June 2022
2 Alfalfa Site 8 11 May 2022 21 June 2022
3 Rye grass Site 2 12 May 2022 21 June 2022

2.7.2. Spatial Integration

We used the spatial integration method for correcting the Landsat ET estimate at the
different place but on same day/crop using the integration factor. The mean value of the
pixel-by-pixel integration factor was calculated dividing the UAV ET by the Landsat ET
(Equation (8)).

IFspatial = mean
(

(UAVET)P1
(LandsatET)P1

)
(8)

where (UAVET)P1 is the UAV estimated ET at site P1, (LandsatET)P1 is Landsat estimated
ET at site P1, and IFspatial is the spatial integration factor. Then the calculated mean value of
the spatial integration factor was multiplied with Landsat ET at the other site (P2) to get the
assumed corrected Landsat ET (Integrated ET) on same day at P2 (testing site) (Equation (9)).

IntegratedET = (LandsatET)P2 × IFspatial (9)

where IntegratedET is the corrected combination of Landsat and UAV ET at site P2, and
(LandsatET)P1 is Landsat estimated ET at site P2.

Table 6 details the crop, sites, and days used for the integration factor computation and
evaluation. Since R2 values do not alter with the division or multiplication by a constant,
we evaluated the performance after the application of the spatial integration factor using
the RMSE, MAE, and bias statistical measures only.

Table 6. Details of the sites (five crops) used for spatial correction factor computation (training) and
the testing. Spatial integration factor was calculated using the estimated ET at Training site (P1).
Integration and evaluation was done on Testing site (P2).

S.N. Crop Day Month Year Training Site Testing Site

1 Corn 11 July 2021 Site 1 Site 4
2 Rye grass 11 May 2022 Site 1 Site 2
3 Alfalfa 11 May 2022 Site 4 Site 8
4 Peas 11 May 2022 Site 10 Site 9
5 Wheat 21 June 2022 Site 6 Site 7



Hydrology 2023, 10, 120 10 of 23

3. Results
3.1. UAV and Landst Based ET Comparison

Figure 4 shows the sample mapping of the 24 h ET on five different crops. In line
with results from previous studies [43,44], we found an overall similar pattern for ET
mapped using both types of imagery. However, detail comparison shows significant spatial
variations between barren and highly vegetated areas (Table 7). We found that Landsat
consistently overpredicted ET in areas that were relatively bare and underpredicted ET
in areas that were covered in vegetation (Figure 4). Overprediction of Landsat ET in bare
areas are most noticeable in peas, rye grass, and alfalfa, and underprediction in vegetation
areas are most noticeable in wheat. One of the reasons for this variation might be because
of varying temperature as the various landscapes exhibit varying temperature differences
due to pixel resolution and differing in sensing times. Therefore, we checked the difference
between the temperature by plotting the corresponding normalized thermal histogram
(Figure 5). Despite the fact that the thermal distribution of both UAV and Landsat is
similar (right skewed) for all crops, the median value of UAV-based temperature is lower
compared to Landsat. The variation in median value of temperature is due to the differing
time of acquisition of UAV and Landsat overpass time (Table 1) as land surface temperature
fluctuates significantly during the day, reaching its highest point in the middle of the
afternoon, which might have led to the some noticeable variation in ET [45].
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crops: (a) corn (area: 18.72 hectares) on 11 July 2021, (b) peas (area: 11.7 hectares) on 21 June 2022,
(c) rye grass (area: 5.67 hectares) on 11 May 2022, (d) wheat (area: 36.45 hectares) on 21 June 2022,
and (e) alfalfa (area: 12.96 hectares) on 12 May 2022.
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Table 7. Summary statistics of ET on sample five crops across UAV and Landsat sensor at Landsat
scale. Min, Max, Mean, Sd represents the minimum, maximum, average, and standard deviation of
ET on the corresponding field.

Crop Day Month Year
UAV (mm/day) Landsat (mm/day)

Min Max Mean Sd Min Max Mean Sd

Corn 11 July 2021 4.73 8.40 7.21 1.02 3.25 9.61 6.97 1.49
Peas 21 June 2022 1.21 6.19 5.33 1.26 2.96 5.66 4.94 0.63

Rye grass 11 May 2022 0.37 5.29 3.40 1.37 2.47 4.96 3.83 0.55
Wheat 21 June 2022 0.1 7.27 5.67 1.25 2.52 6.81 5.35 0.76
Alfalfa 12 May 2022 0.11 2.71 1.99 0.76 1.77 2.88 2.60 0.27
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on 21 June 2022 (c) rye grass on 11 May 2022, (d) wheat on 21 June 2022 and (e) alfalfa on 12 May
2022. The green and pink lines are the curves for kernel density distribution for UAV and Landsat
temperature respectively.

3.2. Statistical Comparison of Fractional Evapotranspiration (ETrF)

While comparison of daily evapotranspiration shows how crop ET varies on a particu-
lar day, the comparison of fractional evapotranspiration (ETrF), which is the ratio of actual
ET to reference ET, is easier for evaluating how it performs across different crops within the
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same scale. Figure 6 shows scatterplots between sample aggregated UAV and Landsat ETrF
(one for each crop) whereas Table 8 shows the statistical comparison at each overpass date
at a 30 m resolution. Overall, we found the R2 values in the range of 0.27 to 0.84 comparable
with the aggregated aerial temperature and Landsat temperature comparison [44]. RMSE
and MAE ranged from 0.1 to 0.27 and 0.06 to 0.22, respectively. Similarly, the bias ranges
from −0.21 to 0.2, where the positive bias imply that the ETrF obtained from the Landsat
images were overestimated, whereas negative bias suggests that the ETrF values were
underestimated from those obtained from UAV images.
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Table 8. Statistical measure of the relationship between fractional evapotranspiration mapped using
the Landsat and UAV imagery at 30 m resolution for each day of Landsat overpass on five crops.

Crop Day Month Year R2 RMSE MAE Bias

Alfalfa

11 July 2021 0.64 0.15 0.06 0.04
11 May 2022 0.64 0.24 0.22 −0.21
12 May 2022 0.84 0.27 0.20 −0.20
21 June 2022 0.69 0.12 0.10 0.03

Wheat 11 July 2021 0.68 0.10 0.12 0.10
21 June 2022 0.27 0.17 0.13 0.05

Rye grass
11 May 2022 0.40 0.23 0.19 −0.08
12 May 2022 0.40 0.20 0.19 −0.21
21 June 2022 0.46 0.12 0.10 −0.09

Peas 11 May 2022 0.49 0.19 0.18 −0.17
21 June 2022 0.62 0.15 0.13 0.06

Corn 11 July 2021 0.58 0.10 0.08 0.02

Evaluated by crop, alfalfa (0.64–0.84), peas (0.49–0.62), corn (0.58), rye grass
(0.4–0.46), and wheat (0.27–0.68) showed an excellent R2 (0.4) with the exception of wheat
on 21 June 2022. A major factor responsible for low R2 values for wheat on 21 June 2022 is
the concentration of most of the ETrF values in the range of 0.8 to 1.1, with few below 0.8,
as it was the peak stage of water consumption for wheat, giving higher ET values. This can
be further verified from the RMSE values, which is just 0.17 in the case of wheat whereas
RMSE is 0.27 in the case of alfalfa which has the good R2 value of 0.84. Although good
correlation was found, there is a significant bias (alfalfa: −0.21 to 0.03, wheat: 0.05 to 0.1,
rye grass: −0.21 to −0.08, peas: −0.17, 0.06, corn: 0.02) in the ETrF mapped using UAV and
Landsat imagery. The positive biases for wheat on 11 July 2021 and 21 June 2022 implies the
EtrF values obtained from the Landsat images were overestimated, whereas negative biases
for rye grass on 11 May, 12 May, and 21 June 2022 suggests that the temperature values
were slightly deviating from those obtained from UAV images. We also found that if the
UAV technique is employed as benchmark, Landsat data exhibit a propensity to exaggerate
low values and underestimate high values. While the exact cause of this error needs to
be further investigated, it may be due to the Landsat thermal band’s inferior resolution at
100 m. Although this data is processed and reduced to 30 m, the averaging may result in
ET estimates that were different than the UAV estimates, as land surface temperature is a
key element in determining ET using METRIC method. For successful integration of ET
obtained from UAV and Landsat images we need estimation of the integration factors. As
seen from the Figure 6 (slope and intercept), there are unique relationships between the
ET mapped using UAV imagery for each crop and the ET mapped using Landsat imagery.
These findings hint that each crop has a distinct connection, and that the integration of the
ET mapped using these sensors requires distinct integration factors.

3.3. Variability of ETrF

The spatial variability of ETrF captured by the UAV and Landsat modeling approaches
on sample sites are shown in Figure 7. As pixel sizes are small for the UAV compared
to Landsat, more variability is captured. The information regarding variability of water
demand is crucial for the better management of water in precision agriculture including
the application of variable irrigation [46–48]. From Figure 8 we can infer that the median
values of fractional ETrF do not show any trend of ET variation. Alfalfa and wheat have
greater median ETrF values for Landsat, while peas have lower values. On maize and rye
grass, the median ETrF values predicted by both sensors are comparable. The Figure 8
shows much more variability across the field on two crops of alfalfa and on rye whereas
show less variability in the case of peas and wheat. This is because there were constant
applications of irrigation on alfalfa and rye with some part remaining to irrigate whereas,
irrigation was just turned off after complete application on wheat and peas.
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Figure 7. Raster plot showing the variability of ETrF being captured by UAV and Landsat on five
crops: (a) corn (area: 18.72 hectares) on 11 July 2021, (b) peas (11.7 hectares) on 21 June 2022, (c) rye
grass (5.67 hectares) on 11 May 2022, (d) wheat (36.45 hectares) on 21 June 2022, and (e) alfalfa
(12.96 hectares) on 12 May 2022.

Hydrology 2023, 10, x FOR PEER REVIEW  16  of  26 
 

 

 

Figure 8. The boxplot showing the variability of ETrF being captured by the two sensors for five 

different crops alfalfa, corn, peas, rye grass, and wheat. 

3.4. Partial Cloud Effect on UAV‐ET 

Figure 9 below shows the UAV ET mapping for a cornfield at site3 on the same day 

but at different times under partial cloud and cloud free conditions. It shows that the pre-

dicted evapotranspiration  is higher  in places superimposed by cloud shadows  than  in 

other cloud-free places. This is because the pixel overlaid over cloud shadows resulted in 

lesser LST values giving the weaker  longwave radiation from the ground based on the 

Stefan-Boltzman equation. As a result, in comparison to the pixels in the non-cloudy areas, 

the net radiation (and subsequently the predicted ET) of the pixels overlaid under cloud 

shadows increased more than the ET, which was unexpected. Direct comparison between 

the  two  images shows  that  the ET mapped are almost similar  in places other  than  the 

overcast cloud shadows. Therefore, although the UAV can be flown under the cloudy con-

ditions,  there  seems  to be a direct  influence on  the ET estimation  that needs  to be ac-

counted for especially during partly cloudy sampling. 

Figure 8. The boxplot showing the variability of ETrF being captured by the two sensors for five
different crops alfalfa, corn, peas, rye grass, and wheat.



Hydrology 2023, 10, 120 15 of 23

3.4. Partial Cloud Effect on UAV-ET

Figure 9 below shows the UAV ET mapping for a cornfield at site3 on the same day
but at different times under partial cloud and cloud free conditions. It shows that the
predicted evapotranspiration is higher in places superimposed by cloud shadows than in
other cloud-free places. This is because the pixel overlaid over cloud shadows resulted
in lesser LST values giving the weaker longwave radiation from the ground based on
the Stefan-Boltzman equation. As a result, in comparison to the pixels in the non-cloudy
areas, the net radiation (and subsequently the predicted ET) of the pixels overlaid under
cloud shadows increased more than the ET, which was unexpected. Direct comparison
between the two images shows that the ET mapped are almost similar in places other
than the overcast cloud shadows. Therefore, although the UAV can be flown under the
cloudy conditions, there seems to be a direct influence on the ET estimation that needs to
be accounted for especially during partly cloudy sampling.
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3.5. Temporal Integration of ET

Since 24-h ET estimated by two sensors departs from each other, it raises the question of
whether ET estimated using these two sensors can be combined for time series integration.
To answer this question, we compared the ET estimated using the UAV imagery with ET
estimated using the Landsat imagery with and without the application of the integration
factor. For time series integration, we need to map the same place with the same crop
within a growing season to see how it behaves at different times of the year. As we
have needed two sets of images for three crops only, the comparison results presented
here are based on these three crops. The pixel-by-pixel integration factor was calculated
by dividing the UAV predicted ETrF by Landsat predicted ETrF on 11 May and 12 May,
and thus the calculated integration factor was applied to get the corrected ET values on
21 June of 2022. Interestingly, the integration assessment revealed that the application of the
integration factor for time series integration depends upon the plant’s growth stage and the
irrigation water application (Figure 10). This becomes more evident from the comparison of
relationship of alfalfa and peas, where R2 values significantly improve with the application
of the integration factor from 0.69 to 0.78 whereas it decreases in the case of peas from 0.58
to 0.34. One reason that leads to such variation between these two crops is that alfalfa was
being irrigated during both flights, whereas the peas were not irrigated at the first image
and was irrigated later. This might be also because the METRIC ET at the early stage of the
crop growth is not good and the integration factor calculated using this crop at an early
stage might not work for the later stage of the crop. Similarly, we can see that there is no
variation on R2 for the rye grass with and without the application of the correction factor,
which might be because this field was constantly irrigated and cow calves were constantly
grazed, making these two situations not ideal. Thus, the application of the correction factor
has no meaning here. Therefore, based on this result we can infer that for the time series
integration, the integration factor from one image to another can be done if they are in a
similar growth stage and have similar irrigation applications.

3.6. Spatial Integration of ET

As temporal integration did not show any constant pattern of improvement with
the use of integration factors, we further examined whether these ET estimates could
be integrated spatially by the application of integration factors. Since the pixel-by-pixel
correlation factor cannot be applied for ET computation at other sites as in previous steps,
here we computed the mean value of the integration factor. Table 9 shows the mean
values of the integration factor, calculated using these two sensors on all five crops on the
particular day listed below. The integration factors were found in the increasing order
from peas, alfalfa, corn, rye grass, and wheat. The highest integration factor on wheat
might be because the Landsat predicts a relatively low value of ET on dense vegetation
areas compared to UAV ET. Similarly, the lowest integration factor of 0.65 on peas was also
because the Landsat predicts relatively high values on bare areas compared to UAV ET.
The integration factor for alfalfa and peas calculated on the same day have different values,
based on this result we can say that the integration factor is unique for each crop even on a
single day.

Table 9. Spatial integration factors for five crops in the descending order.

S.N. Crop Day Month Year Integration Factor

1 Wheat 21 June 2022 1.19
2 Rye grass 11 May 2022 0.87
3 Alfalfa 11 May 2022 0.75
4 Corn 11 July 2021 0.84
5 Peas 11 May 2022 0.65
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Figure 10. Change of ETrF with and without the application of the time series integration factor on
alfalfa, rye grass, and peas. Each subplot represents the scatterplot with the corresponding coefficient
of determination, mean absolute error, bias, and root mean square values. Black line is the line with
slope of 1 and red line is the line of regression.

While Figure 11 depicts the comparison raster plot of ET across sensors, Table 10
summarizes the change in statistical values with and without the application of integration
factors on hold out set. Our result shows that the METRIC ET predicted using Landsat
will be significantly decreased with the application of integration factor RMSE (35.75% to
65.52%), MAE (41.99% to 73.81%), bias (49.56% to 85.85%). Evaluated by crop, the highest
improvements were found in alfalfa with the RMSE (1.22 to 0.42), MAE (1.15 to 0.3), and
bias (−1.15 to 0.16), whereas the lowest improvement was found on the corn with RMSE
(1.6 to 1.03), MAE (1.3 to 0.76). Since the mean value of the correction was applied, this
might be because there was less variability in ET for alfalfa compared to the corn. Similarly,
we found the improvement greater than 45% on all RMSE, MAE, and bias values for other
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crops of rye grass, wheat, and peas. Based on the Figure 11 and the Table 10 it is conceivable
that the integration factor computed at one location for a crop can be applied at the other
location and this will help in the better prediction of the watershed scale ET.
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Figure 11. The UAV and Landsat based ET with and without the application of the integration factor
on Landsat based ET (a) wheat on 21 June 2022 (b) alfalfa on 11 May (c) corn on 11 July 2021 (d) rye
grass on 11 May 2022 (e) peas on 11 May 2022. UAV, Landsat, and Integrated represents the UAV
estimated ET, Landsat estimated ET, and integrated ET, respectively.
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Table 10. Summary of statistical measure (root mean square error, mean absolute error, and bias)
with and without the application of integration factor.

S.N. Crop
Before Integration (mm/day) After Integration (mm/day)

RMSE MAE Bias RMSE MAE Bias

1 Wheat 1.71 1.56 1.55 0.91 0.76 0.49
2 Rye grass 1.30 1.27 −1.26 0.72 0.65 −0.64
3 Alfalfa 1.22 1.15 −1.15 0.42 0.30 0.16
4 Corn 1.60 1.30 −1.27 1.03 0.76 −0.32
5 Peas 2.63 2.55 −2.55 1.14 1.09 −0.91

4. Discussion
4.1. Comparison of Total ET

Integration of sensors is a cost-effective way of mapping earth observations with the
fusion of satellite and UAV images becoming increasingly popular [20,49,50]. A positive
correlation between Landsat predicted and UAV predicted seasonal ET has been shown [19,43].
Since daily ET estimation is critical for effective water management, in this study the METRIC
model was used for comparing and integrating the daily ET. We first demonstrated that
Landsat estimated 24 h ET was positively correlated with the UAV ET with the coefficient
of determination in the range of 0.27–0.84, consistent with the literature on seasonal ET
comparison [43,44]. In particular, the median values of ET for a field was similar (Figure 5),
forming the base for the integration of sensors.

Since UAV-based ET mapping incurs a certain extra cost for water managers [51],
we further asked whether there is a sizeable difference in ET mapped using UAV versus
satellite imagery. Our result shows that although the median values are similar and
positively correlated, the Landsat ET and UAV ET vary across the field (Figure 7), resulting
in a change in the total water budget. We found that the total water budget can vary
up to 114 m3 (wheat: 114 m3 for an area of 36.45 hectares, alfalfa: 78 m3 for an area of
12.96 hectares, corn: 43 m3 for an area of 18.72 hectares, rye grass: 25 m3 for an area of
5.67 hectares, and peas: 45 m3 for an area of 11.7 hectares). Besides, Landsat ET is normally
over-predicted around bare land areas and under-predicted around the dense vegetation
areas compared to UAV ET (Figure 4). The reason for this difference is due to the varying
sensing time and pixel resolution as the various landscapes exhibit varying temperature
and ET results are influenced by the aggregation [44,45,52]. As ET mapped using UAV-
based imagery was done at higher spatial resolution, the variability in ET captured using
UAV imagery is higher compared to Landsat imagery. Thus, the UAV approach of ET
estimation supersedes the Landsat approach for their application in precision agriculture
such as identifying ponding locations, identifying water stress or overirrigation at the field
size, and identifying irrigation system malfunctions [46–48]. Therefore, our results indicate
that this difference in ET variability across two sensors warrant the further investment in
UAV-based image mapping for field scale evaluation.

4.2. Cloud Cover Effect

We also assessed the possible cloud impact on UAV based ET estimation. As illustrated
in Figure 9, additional precautions are needed for ET mapping using UAV imagery as
cloud-based illumination impedes the ET estimation from the field. Although the UAV can
be flown under the clouds [46,53], the shadows cast by the clouds appear to have a direct
influence on ET estimation. The timing for UAV flying to determine the ET from the field is
thus constrained. Further research and investments are required to check whether there is
an effect under partial cloud only or when we have full cloud conditions.

4.3. Integration of ET

We examined if there is a way to combine these two sensors for better prediction of ET.
Similar to other remote sensing integration applications [52,54,55], our spatial integration
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result shows that the Landsat ET can be used in synergy with UAV ET. We found that the
RMSE, MAE, and bias values are significantly reduced in all crops by the application of the
integration factor by at least 35.75% (Table 10). This work will not only reduce the reliability
of people on single satellite-based imagery or UAV-based imagery for the computation
of the watershed scale ET, but will also significantly reduce the operational cost of UAV
image acquisition as only fewer flights are needed for the computation of the integration
factor. Therefore, the computation of an integration factor is crucial for the successful
integration of these two sensors. Once the integration factor is computed it can be applied
to the Landsat based ET. Additionally, our results provide evidence that ET estimation
would benefit from the synergy of UAV imagery with Landsat imagery for mapping ET at
a watershed scale as they can complement each other in their ET prediction.

In contrast to the spatial integration, temporal integration shows the mix result for
UAV ET integration with Landsat ET. We computed the integration factor using the image
collected on May of 2022, which was applied with the image collected on June 2022. The
purpose was to see if we could apply the same pixel by pixel integration factor at a place
for a crop within the same growing season as done in other spatiotemporal studies [55,56].
We found mixed results in alfalfa, with R2 values significantly increased from 0.69 to 0.78
with a small reduction in RMSE and MAE values, whereas all R2, RMSE, and MAE values
did not improve by using such an integration factor on peas and rye grass (Figure 10).
This suggests that the pixel by pixel factor can only be applied if the crop’s growth stage
does not differ a lot and if there is similar application of irrigation with less variation in
hydrothermal condition similar to the study on crop landscape [57,58].

This study is the first step in identifying a possible integration factor for the use of
Landsat ET in combination with UAV ET. The data suggest that with the integration factor
Landsat ET can be used in synergy with the UAV ET for a better prediction of watershed
scale ET. Understanding these earlier steps of ET integration provide a novel approach in
using the satellite of ET with UAV ET, which may ultimately lead to effective field and
watershed scale water management. This work will reduce people’s reliability on a single
satellite or UAV-based imagery for the computation of the watershed scale ET. It is also
conceivable that such a method of integration could work in many other crops including
annual and perennial crops, as well as for many other types of satellite and UAV sensors.

Finally, it is crucial to acknowledge a number of critical decision-making processes
that were considered beyond the scope of the current project. UAV-based ET was utilized
in this work to correct Landsat-based ET, however no ground observations were used to
determine the accuracy of UAV-based ET because of the lack of Eddy Covariance stations in
our study. Further, we used the same equations for the broadband albedo estimation from
the narrow band without considering the crop growth stage. However, as pointed out by
Bartmiński and Siłuch [52], the surface albedo equation needs adjustment for crop growth
stage. Besides, the current study was performed on working fields (not experimental
plots) allowing the farmers to use their own management practice, irrigation application,
and crop rotation. While this may make the study better for real world approximation, it
hinders the research as we could not get the corn crop in the same field for two consecutive
years. Future work could address these dimensions, as well as formulating a more complex
integration model that accounts for the change in crop growth stage and variation across the
annual and perennial crop. Comparing integrated ET along with UAV and satellite-based
ET with Eddy Covariance stations could also provide additional insight.

5. Conclusions

We have estimated and analyzed daily ET values using two different remote sensing
platforms typically used for earth observations. Pixel-by-pixel comparison suggest that
the daily ET estimates have varying degrees of coefficient of determination in the range
of 0.27 to 0.84 depending upon crop types. The UAV-based ET estimates exhibit higher
variability in ET and can provide real time ET estimation that has a heightened interest for
routine monitoring of daily ET and surface energy fluxes. Thus, UAV-based ET estimates
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are crucial for the real time ET estimation. Moreover, the similarity in the median value of
the ET mapped by two sensors and the positive correlation suggest that integrating these
two methods may provide a good earth observation like in similar applications. The initial
proof-of-concept experiment demonstrates that the combination of these two sensors will
improve ET prediction and that the errors are greatly reduced when an integration factor is
applied. The possibility of integrating two sources of ET estimates with the application of
an integration factor provides the additional justification for the investment in UAV based
consumptive use measurements and monitoring—a critical element for water markets in
the western United States. This will help reduce costs, as mapping the entire watershed is
not required, and for same day mapping the integration factor computed at one location can
be applied to a similar crop within the watershed. Further application of this integration of
UAV ET with Landsat ET will help better predict watershed scale ET, thereby increasing
our understanding of demand and availability of water for effective water management.
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