Applying Floodplain Inundation Modeling to Estimate Suitable Spawning Habitat and Recruitment Success for Alligator Gar in the Guadalupe River, Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Analyses
2.2.1. Digital Terrain Modeling
2.2.2. Floodplain Inundation Modeling
2.2.3. Habitat Suitability Modeling
2.2.4. Alligator Gar Sampling and Year Class Strength Assessment
2.2.5. Flow-Ecology Analysis
3. Results
3.1. Flood Inundation Modeling
3.2. Suitable Spawning Habitat Modeling
3.3. Flow-Ecology Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kupfer, J.A.; Meitzen, K.M.; Gao, P. Flooding and surface connectivity of Taxodium-Nyssa stands in a southern floodplain forest ecosystem. River Res. Appl. 2015, 31, 1299–1310. [Google Scholar] [CrossRef]
- Meitzen, K.M.; Kupfer, J.A.; Gao, P. Modeling hydrologic connectivity and virtual fish movement across a large southeastern floodplain. Aquat. Sci. 2018, 80, 1–15. [Google Scholar] [CrossRef]
- Robertson, C.R.; Aziz, K.; Buckmeier, D.L.; Smith, N.G.; Raphelt, N. Development of a flow specific floodplain inundation model to assess alligator gar recruitment success. Trans. Am. Fish. Soc. 2018, 147, 674–686. [Google Scholar] [CrossRef]
- Chomba, I.C.; Banda, K.E.; Winsemius, H.C.; Eunice, M.; Sichingabula, H.M.; Nyambe, I.A. Integrated hydrologic-hydrodynamic inundation modeling in a groundwater dependent tropical floodplain. J. Hum. Earth Future. 2022, 3, 237–246. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Ward, J. Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conserv. 1998, 83, 269–278. [Google Scholar] [CrossRef]
- Lytle, D.H.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Walker, R.H.; Naus, C.J.; Adams, S.R. Should I stay or should I go: Hydrologic characteristics and body size influence fish emigration from the floodplain following an atypical summer flood. Ecol. Freshw. Fish. 2021, 31, 607–621. [Google Scholar] [CrossRef]
- van der Most, M.; Hudson, P.F. The influence of floodplain geomorphology and hydrologic connectivity on Alligator Gar (Atractosteus spatula) habitat along the embanked floodplain of the lower Mississippi River. Geomorphology 2017, 302, 62–75. [Google Scholar] [CrossRef]
- Allen, Y.; Kimmel, K.; Constant, G. Using remote sensing to assess Alligator Gar spawning habitat suitability in the lower Mississippi River. N. Am. J. Fish. Manag. 2020, 40, 580–594. [Google Scholar] [CrossRef]
- Opdyke, D.R.; Oborny, E.L.; Vaugh, S.K.; Mayes, K.B. Texas Environmental flow standards and the hydrology-based environmental flow regime methodology. Hydrol. Sci. J. 2014, 59, 820–830. [Google Scholar] [CrossRef]
- Daugherty, D.J.; Andrews, A.; Smith, N.G. Otolith-based age estimates of Alligator Gar assessed using bomb radiocarbon dating to greater than 60 years. N. Am. J. Fish. Manag. 2020, 40, 613–621. [Google Scholar] [CrossRef]
- Daugherty, D.J.; Buckmeier, D.L.; Smith, N.G. Sex-specific dynamic rates in the Alligator Gar: Implications for stock assessment and management. N. Am. J. Fish. Manag. 2019, 39, 535–542. [Google Scholar] [CrossRef]
- Smith, N.G.; Daugherty, D.J.; Brinkman, E.L.; Wegener, M.G.; Kreiser, B.R.; Ferrara, A.M.; Kimmel, K.D.; David, S.R. Advances in conservation and management of the alligator gar: A synthesis of current knowledge and introduction to a special section. N. Am. J. Fish. Manag. 2020, 40, 527–543. [Google Scholar] [CrossRef]
- Allen, Y.C.; Kimmel, K.M.; Constant, G.C. Alligator Gar Movement and Water Quality Patterns on the St. Catherine Creek National Wildlife Refuge Floodplain; Baton Rouge Fish and Wildlife Conservation Office Report; U.S. Fish and Wildlife Service: Washington, DC, USA, 2014.
- Boudreaux, P.J.; Ferrara, A. Acute toxicity of ammonia to Spotted Gar, Lepisosteus oculatus, Alligator Gar, Atractosteus spatula, and Paddlefish, Polyodon spathula. J. World Aquac. Soc. 2007, 38, 322–325. [Google Scholar] [CrossRef]
- Schwarz, D.E.; Allen, P.J. Effects of salinity on growth and ion regulation of juvenile Alligator Gar Atractosteus spatula. Comp. Biochem. Phys. A 2014, 169, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sakaris, P.C.; Ferrara, A.M.; Kleiner, K.J.; Irwin, E.R. Movements and home ranges of Alligator Gar in the Mobile-Tensaw delta, Alabama. Proc. Annu. Conf. Southeast Assoc. Fish. Wildl. Agencies 2005, 57, 102–111. [Google Scholar]
- Inebnit, T.E., III. Aspects of the Reproductive and Juvenile Ecology of Alligator Gar in the Fourche LaFave River, Arkansas. Master’s Thesis, University of Central Arkansas, Conway, AR, USA, 2009. [Google Scholar]
- Buckmeier, D.L.; Smith, N.G.; Daugherty, D.J. Alligator Gar Movement and Macrohabitat Use in the Lower Trinity River, Texas. Trans. Am. Fish. Soc. 2013, 142, 1025–1035. [Google Scholar] [CrossRef]
- Wegener, M.G.; Harriger, K.M.; Knight, J.R.; Barrett, M.A. Movement and Habitat Use of Alligator Gars in the Escambia River, Florida. N. Am. J. Fish. Manag. 2017, 37, 1028–1038. [Google Scholar] [CrossRef]
- Kluender, E.R.; Adams, R.; Lewis, L. Seasonal habitat use of alligator gar in a river-floodplain ecosystem at multiple spatial scales. Ecol. Freshw. Fish. 2016, 26, 233–246. [Google Scholar] [CrossRef]
- Roberts, H.C.; Acre, M.R.; Claus, M.P.; Kappen, F.J.; Winemiller, K.O.; Daugherty, D.J.; Perkin, J.S. Tributary streams provide migratory fish with access to floodplain habitats in a regulated river: Evidence from Alligator Gar, Atractosteus spatula. Can. J. Fish. Aquat. Sci. 2023, 80, 393–407. [Google Scholar] [CrossRef]
- Buckmeier, D.L.; Smith, N.G.; Daugherty, D.J.; Bennett, D.L. Reproductive ecology of alligator gar: Identification of environmental drivers of recruitment success. J. South Assoc. Fish. Wild. Agency 2017, 4, 8–17. [Google Scholar]
- Mendoza, R.; Aguilera, C.; Rodriguez, G.; Gonzalez, M.; Castro, R. Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Rev. Fish. Biol. Fish. 2002, 12, 133–142. [Google Scholar] [CrossRef]
- Winemiller, K.O.; Rose, K.A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 1992, 49, 2196–2218. [Google Scholar] [CrossRef]
- Ferrara, A.M. Life History Strategy of Lepisosteidae: Implications for the Conservation and Management of Alligator Gar. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2001. [Google Scholar]
- Birdsong, T.; Garrett, G.; Bean, M.; Bean, P.; Curtis, S.; Fleming, P.; Grubh, A.; Lutz-Carrillo, D.; Mayes, K.; Robertson, C.; et al. Conservation of Texas Freshwater Fish Diversity: Selection of Species of Greatest Conservation Need; TPWD RP T3200-2780 (10/20); Texas Parks and Wildlife Department: Austin, TX, USA, 2020. [Google Scholar]
- Hoeinghaus, D.; Jensen, J.L.; Hardy, T.B.; Winemiller, K.O.; Pease, A.A.; Allen, Y. Quantification of Alligator Gar Recruitment Dynamics Using a River-Stage Specific Floodplain Inundation Model; Gulf Coast Prairie Landscape Conservation Cooperative Report; U.S. Fish and Wildlife Service: Washington, DC, USA, 2018; pp. 1–46.
- Baker, V.R. Flood Hazards along the Balcones Escarpment in Central Texas: Alternative Approach to Their Recognition, Mapping, and Management; Bureau of Economic Geology; Geological Circular 75-5; The University of Texas at Austin: Austin, TX, USA, 1975. [Google Scholar]
- Slade, R.M., Jr.; Patton, J. Major and Catastrophic Storms and Floods in Texas; U.S. Geological Survey Open-File Report 03-193; U.S. Geological Survey: Baltimore, MD, USA, 2003; pp. 1–26.
- NOAA. National Ocean and Atmospheric Agency, National Center for Environmental Information. 2023. Available online: https://www.ncei.noaa.gov/cdo-web/ (accessed on 10 March 2023).
- USGS. United States Geological Survey, National Water Information System. 2023. Available online: https://waterdata.usgs.gov/monitoring-location/08176500/#parameterCode=00065&period=P7D (accessed on 26 April 2023).
- USACE. HEC-SSP, v.2.1.1; US Army Corps of Engineers: Washington, DC, USA, 2016.
- Elliott, L.F.; Treuer-Kuehn, A.; Blodgett, C.F.; True, C.D.; German, D.; Diamond, D.D. Ecological Systems of Texas: 391 Mapped Types. Phase 1–6, 10-Meter Resolution Geodatabase, Interpretive Guides, and Technical Type Descriptions; Texas Parks & Wildlife Department and Texas Water Development Board: Austin, TX, USA, 2014. [Google Scholar]
- USACE. HEC-RAS 1D/2D, v.5.0.1; US Army Corps of Engineers: Washington, DC, USA, 2016.
- USACE. HEC-GeoRAS, v. 10.2 for ArcGIS 10.2; US Army Corps of Engineers: Washington, DC, USA, 2016.
- ESRI. ArcGIS Desktop, Software v.10.2 and v.10.4.1; Environmental Systems Research Institute: Redlands, CA, USA, 2016. [Google Scholar]
- NWS. National Weather Service Advanced Hydrologic Prediction Service. 2023. Available online: https://water.weather.gov/ahps2/inundation/index.php?gage=vict2 (accessed on 26 April 2023).
- Brinkman, E.L. Contributions to the Life History of Alligator Gar Atractosteus spatula in Oklahoma. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2008. [Google Scholar]
- Daugherty, D.J.; Pangle, K.L.; Karel, W.; Baker, F.; Robertson, C.R.; Buckmeier, D.L.; Smith, N.G.; Boyd, N. Population Structure of Alligator Gar in a Gulf Coast River: Insights from Otolith Microchemistry and Genetic Analyses. N. Am. J. Fish. Manag. 2017, 37, 337–348. [Google Scholar] [CrossRef]
- Buckmeier, D.L.; Smith, N.G.; Reeves, K.S. Utility of Alligator Gar Age Estimates from Otoliths, Pectoral Fin Rays, and Scales. Trans. Am. Fish. Soc. 2012, 141, 1510–1519. [Google Scholar] [CrossRef]
- Indicators of Hydrological Alteration (IHA) Software. Available online: https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/IndicatorsofHydrologicAlteration/Pages/IHA-Software-Download.aspx (accessed on 3 March 2023).
- Mathews, R.; Richter, B.D. Application of the Indicators of Hydrologic Alteration Software in Environmental Flow Setting. J. Am. Water Resour. Assoc. 2007, 43, 1400–1413. [Google Scholar] [CrossRef]
- Robertson, C.R.; Zeug, S.C.; Winemiller, K.O. Associations between hydrologic connectivity and resource partitioning among sympatric gar species (Lepisosteidae) in a Texas river and associated oxbows. Ecol. Freshw. Fish. 2008, 17, 119–129. [Google Scholar] [CrossRef]
- Smith, N.G.; Buckmeier, D.L.; Daugherty, D.J.; Bennett, D.L.; Sakaris, P.C.; Robertson, C.R. Hydrologic correlates of reproductive success in the Alligator Gar. N. Am. J. Fish. Manag. 2020, 40, 595–606. [Google Scholar] [CrossRef]
- Long, J.M.; Snow, R.A.; Porta, M.J. Effects of temperature on hatching rate and early development of Alligator Gar and Spotted Gar in a laboratory setting. N. Am. J. Fish. Manag. 2020, 40, 661–668. [Google Scholar] [CrossRef]
- Snow, R.A.; Porta, M.J.; Simmons, R.W., Jr.; Bartnicki, J.B. Early life history characteristics and contribution of stocked juvenile Alligator Gar in Lake Texoma, Oklahoma. Proc. Okla. Acad. Sci. 2018, 98, 46–54. [Google Scholar]
- Todd, D.; Ogren, J. The Texas Landscape Project: Nature and People; Texas A&M University Press: College Station, TX, USA, 2016; pp. 1–96. [Google Scholar]
Vegetation Community Common Names | |
---|---|
Central Texas: Floodplain Deciduous Shrubland | Blackland Prairie: Disturbance or Tame Grassland |
Central Texas: Floodplain Evergreen Shrubland | Gulf Coast: Coastal Prairie |
Central Texas: Floodplain Herbaceous Vegetation | Gulf Coast: Coastal Prairie Pondshore |
Central Texas: Floodplain Herbaceous Wetland | Gulf Coast: Salty Prairie |
Central Texas: Riparian Deciduous Shrubland | Gulf Coast: Salty Prairie Shrubland |
Central Texas: Riparian Evergreen Shrubland | Inland: Salty Prairie |
Central Texas: Riparian Herbaceous Vegetation | Inland: Salty Prairie Shrubland |
Central Texas: Riparian Herbaceous Wetland | Invasive: Evergreen Shrubland |
Coastal and Sandsheet: Deep Sand Grassland | Marsh |
Coastal and Sandsheet: Deep Sand Shrubland | Native Invasive: Baccharis Shrubland |
Coastal Bend: Floodplain Deciduous Shrubland | Native Invasive: Common Reed |
Coastal Bend: Floodplain Evergreen Shrubland | Native Invasive: Juniper Shrubland |
Coastal Bend: Floodplain Grassland | Native Invasive: Mesquite Shrubland |
Coastal Bend: Floodplain Herbaceous Wetland | Non-native Invasive: Saltcedar Shrubland |
Coastal Bend: Riparian Deciduous Shrubland | Post Oak Savanna: Live Oak Shrubland |
Coastal Bend: Riparian Evergreen Shrubland | Post Oak Savanna: Sandyland Grassland |
Coastal Bend: Riparian Grassland | Post Oak Savanna: Savanna Grassland |
Coastal Bend: Riparian Herbaceous Wetland | Row Crops |
Coastal Plain: Terrace Sandyland Grassland | South Texas: Clayey Blackbrush Mixed Shrubland |
Coastal: Salt and Brackish High Tidal Marsh | South Texas: Clayey Mesquite Mixed Shrubland |
Coastal: Salt and Brackish High Tidal Shrub Wetland | South Texas: Shallow Dense Shrubland |
Coastal: Salt and Brackish Low Tidal Marsh | South Texas: Shallow Shrubland |
Coastal: Sea Ox-eye Daisy Flats | South Texas: Shallow Sparse Shrubland |
Magnitude | Duration | Frequency |
---|---|---|
April_Mean Q | April High Flow Pulse Max CD | April High Flow Pulse count |
May_Mean Q | April High Flow Pulse Total D | May High Flow Pulse count |
June_Mean Q | May High Flow Pulse Max CD | June High Flow Pulse count |
July_Mean Q | May High Flow Pulse Total D | July High Flow Pulse count |
1-day max | June High Flow Pulse Max CD | |
3-day max | June High Flow Pulse Total D | |
7-day max | July High Flow Pulse Max CD | |
30-day max | July High Flow Pulse Total D | |
90-day max | Spawn Season High Flow Pulse Total D | |
April Max Q | Spawn Season High Flow Pulse Max CD | |
May Max Q | ||
June Max Q | ||
July Max Q |
Gonzales 08173900 | Cuero 08175800 | |||||
---|---|---|---|---|---|---|
Event (m3s−1) | Model (m) | USGS | Diff (m) | Model (m) | USGS | Diff (m) |
NWS minor (257) | 78.23 | 78.27 | −0.04 | 44.91 | 44.96 | −0.05 |
NWS moderate (453) | 80.65 | 80.71 | −0.06 | 46.68 | 46.63 | 0.05 |
2-year (506) | 81.08 | 81.02 | 0.06 | 47.26 | 47.24 | 0.02 |
NWS major (884) | 82.87 | 82.84 | 0.03 | 48.88 | 48.92 | −0.04 |
5-year (1260) | 83.50 | 83.45 | 0.05 | 49.78 | 49.83 | −0.05 |
10-year (2057) | 84.07 | 84.06 | 0.01 | 50.85 | 50.90 | −0.05 |
15-year (2638) | 84.31 | 84.37 | −0.06 | 51.30 | 51.36 | −0.06 |
20-year (3108) | 84.45 | 84.52 | −0.07 | 51.51 | 51.51 | 0.00 |
50-year (4997) | 84.66 | 84.67 | −0.01 | 51.71 | 51.66 | 0.05 |
Victoria 08176500 | Bloomington 08188800 | |||||
Event (m3s−1) | Model (m) | USGS | Diff (m) | Model (m) | USGS | Diff (m) |
NWS minor (257) | 15.30 | 15.28 | 0.02 | 7.50 | 7.50 | 0.00 |
NWS moderate (453) | 17.01 | 17.03 | −0.02 | 7.91 | 7.90 | 0.01 |
2-year (506) | 17.30 | 17.20 | 0.10 | 8.02 | 8.00 | 0.02 |
NWS major (884) | 17.83 | 17.80 | 0.03 | 8.18 | 8.10 | 0.08 |
5-year (1260) | 17.93 | 17.90 | 0.03 | 8.26 | 8.25 | 0.01 |
10-year (2057) | 18.04 | 18.00 | 0.04 | 8.58 | 8.60 | −0.02 |
15-year (2638) | 18.13 | 18.10 | 0.03 | 8.72 | 8.70 | 0.02 |
20-year (3108) | 18.22 | 18.20 | 0.02 | 8.90 | 8.90 | 0.00 |
50-year (4997) | 18.58 | 18.50 | 0.08 | 9.55 | 9.50 | 0.05 |
Year Class | Observed | Expected | RYCS |
---|---|---|---|
1981 | 1 | 0.660209 | 1.51 |
1982 | 0 | 0.72154 | 0 |
1983 | 0 | 0.788568 | 0 |
1984 | 0 | 0.861823 | 0 |
1985 | 1 | 0.941883 | 1.06 |
1986 | 1 | 1.029381 | 0.97 |
1987 | 1 | 1.125006 | 0.89 |
1988 | 0 | 1.229515 | 0 |
1989 | 0 | 1.343732 | 0 |
1990 | 1 | 1.46856 | 0.68 |
1991 | 0 | 1.604983 | 0 |
1992 | 1 | 1.75408 | 0.57 |
1993 | 0 | 1.917027 | 0 |
1994 | 0 | 2.095112 | 0 |
1995 | 0 | 2.28974 | 0 |
1996 | 3 | 2.502448 | 1.20 |
1997 | 4 | 2.734915 | 1.46 |
1998 | 1 | 2.988979 | 0.33 |
1999 | 0 | 3.266643 | 0 |
2000 | 1 | 3.570102 | 0.28 |
2001 | 5 | 3.901751 | 1.28 |
2002 | 37 | 4.264209 | 8.68 |
2003 | 3 | 4.660337 | 0.64 |
2004 | 9 | 5.093265 | 1.77 |
2005 | 4 | 5.56641 | 0.72 |
2006 | 5 | 6.083508 | 0.82 |
2007 | 10 | 6.648642 | 1.50 |
2008 | 1 | 7.266276 | 0.14 |
2009 | 2 | 7.941285 | 0.25 |
2010 | 4 | 8.679 | 0.46 |
Spearman’s Rho p-Value | High Recruitment Years | Moderate Recruitment Years | Low Recruitment Years | All Years | |
---|---|---|---|---|---|
July Mean Q (m3s−1) | 0.612 (0.0005) | 222.57 | 175.29 | 119.36 | 72.25 |
July HFP Total D (days) | 0.606 (0.0006) | 28.33 | 22.56 | 16.07 | 8.57 |
Spawn Season HFP Max CD (days) | 0.592 (0.0009) | 48.50 | 42.56 | 47.60 | 29.67 |
July HFP Max CD (days) | 0.587 (0.001) | 46.67 | 38.22 | 38.27 | 20.07 |
July Max Q (m3s−1) | 0.587 (0.001) | 626.32 | 456.47 | 299.75 | 184.47 |
April High Flow Pulse Total D (days) | 0.504 (0.0062) | 17.67 | 14.22 | 13.13 | 8.60 |
April Mean Q (m3s−1) | 0.498 (0.0072) | 95.66 | 75.61 | 79.04 | 59.62 |
April High Flow Pulse Max CD (days) | 0.466 (0.0127) | 14.83 | 17.11 | 26.07 | 16.57 |
April Max Q (m3s−1) | 0.456 (0.015) | 305.44 | 217.53 | 215.33 | 143.75 |
July High Flow Pulse # (count) | 0.434 (0.0212) | 1.00 | 0.89 | 0.80 | 0.57 |
June Mean Q (m3s−1) | 0.413 (0.0289) | 158.34 | 192.15 | 143.18 | 93.26 |
April High Flow Pulse Count (m3s−1) | 0.399 (0.0354) | 1.83 | 1.33 | 1.40 | 1.07 |
June High Flow Pulse Total D (days) | 0.395 (0.0374) | 20.67 | 20.00 | 15.33 | 9.50 |
7-day max (m3s−1) | 0.378 (0.047) | 534.93 | 532.22 | 385.39 | 264.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meitzen, K.M.; Robertson, C.R.; Jensen, J.L.; Daugherty, D.J.; Hardy, T.B.; Mayes, K.B. Applying Floodplain Inundation Modeling to Estimate Suitable Spawning Habitat and Recruitment Success for Alligator Gar in the Guadalupe River, Texas. Hydrology 2023, 10, 123. https://doi.org/10.3390/hydrology10060123
Meitzen KM, Robertson CR, Jensen JL, Daugherty DJ, Hardy TB, Mayes KB. Applying Floodplain Inundation Modeling to Estimate Suitable Spawning Habitat and Recruitment Success for Alligator Gar in the Guadalupe River, Texas. Hydrology. 2023; 10(6):123. https://doi.org/10.3390/hydrology10060123
Chicago/Turabian StyleMeitzen, Kimberly M., Clinton R. Robertson, Jennifer L. Jensen, Daniel J. Daugherty, Thomas B. Hardy, and Kevin B. Mayes. 2023. "Applying Floodplain Inundation Modeling to Estimate Suitable Spawning Habitat and Recruitment Success for Alligator Gar in the Guadalupe River, Texas" Hydrology 10, no. 6: 123. https://doi.org/10.3390/hydrology10060123
APA StyleMeitzen, K. M., Robertson, C. R., Jensen, J. L., Daugherty, D. J., Hardy, T. B., & Mayes, K. B. (2023). Applying Floodplain Inundation Modeling to Estimate Suitable Spawning Habitat and Recruitment Success for Alligator Gar in the Guadalupe River, Texas. Hydrology, 10(6), 123. https://doi.org/10.3390/hydrology10060123