Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Constructed Wetlands as Nature-Based Solutions in the Hospitality Industry
Location | Treatment Processes | Area | Flow | Plants | References |
---|---|---|---|---|---|
Portugal (Ponte de Lima) | Septic tank → HSFCW → pond | Total of 40.5 m2 | 4.1 m3/d | Canna flaccida, Canna indica, Zantedeschia aethiopica, Watsonia borbonica, and Agapanthus africanus | [8,27,28,29,30,31] |
Spain (Almería) | Series 1, 2, and 3: anaerobic stabilization pond → Hybrid flow CW; Series 4: WWTP effluent → Hybrid flow CW | 24 tanks; each with a surface area of 1 m2 | Series 1 and 2: 0.19 m3/d; Series 3: 0.37 m3/d; Series 4: 0.29 m3/d | Phragmites australis and Typha dominguensis | [32] |
Spain (Lleida) | Septic tank → HSFCW | Two parallel beds; each with a surface area of 187.5 m2 | 11 m3/d | The development of the macrophytes was very poor; thus, both CWs are considered unplanted | [33] |
Spain (Lloret de Mar) | Pre-treatment tank → Hybrid flow CW | Installation area of 4.5 m long × 1.5 m wide | Three flow rates tested: 0.75 m3/d, 1.01 m3/d, and 1.4 m3/d | Cyperus alternifolius L., Monstera deliciosa, Carex acutiformis, Ficus pumila L., Juncus inflexus L., Philodendron scandens K., Juncus effuses L., Philodendron erubescens, Equisetum hyemale L., Syngonium podophyllum, Spathiphyllum wallisii, Iris laevigata, Spathiphyllum wallisii ‘sensation’, Mentha aquatica L., and Calathea sp. | [34] |
Spain (Lloret de Mar) | Pre-treatment tank → Hybrid flow CW | Total of 7.2 m2 | 2 m3/d | Combination of 14 species, such as Iris sp., Juncus sp., Carex sp., Cyperus sp., and Monstera sp. | [35] |
Italy (Florence) | Imhoff tank + septic tanks → HSFCW | Total of 108 m2 | 0.4–7 m3/d | Phragmites australis | [36] |
Italy (Appennines) | Imhoff tank → VSFCW | Surface area 126 (63 + 63) m2 | 2–7.5 m3/d | Phragmites australis | [36] |
Italy (Arezzo) | Imhoff tank → Hybrid flow CW | Surface area of 160 m2 for HF and 180 m2 for VF | 13–33 m3/d | Phragmites australis | [36] |
Italy (Florence) | Blackwater: septic tank → HSFCW; Graywater: degreaser → HSFCW | Surface area of 116 m2 for graywater and 126 m2 for blackwater | 0.9–2.4 (black); 3–10 (gray) m3/d | Phragmites australis | [36] |
Italy (Florence) | Imhoff tank → Hybrid flow CW | Surface area of 160 m2 for HF and 180 m2 for VF | 17–33 m3/d | Phragmites australis | [37] |
Italy (Florence) | Imhoff tank → Hybrid flow CW | Surface area of 160 m2 for HF and 180 m2 for VF | 17–33 m3/d | Phragmites australis | [38] |
Italy (Mount Sibillini National Park) | Grid → Hybrid flow CW | Total area of 1014 m2 for VRBF and 1000 m2 for VF | N/A | N/A | [34] |
Mexico (Cancun) | Septic tank → HSFCW | N/A | 2–3 m3/d | Seventy vascular plant species were identified | [38] |
India (N/A) | Screening → sieves → HSFCW | Installation area of 2.3 m long × 0.12 m wide | 23 mL/min | Colocasia esculenta | [39] |
Thailand (Koh Phi Phi) | Septic tank → Hybrid flow CW | Three VSFCW = 2300 m2; Three HSFCW = 750 m2; Three FWSCW = 750 m2; 200 m2 polishing ponds | 400 m3/d | Canna, Heliconia, and Papyrus | [40] |
Poland (Paszków) | Septic tank → HSFCW | Surface area of 214.1 m2 | 4.0 m3/d | Phragmites L. | [41] |
China (Wuhan) | Iron carbon micro-electrolysis reactors → sedimentation tank → HSFCW | Total of 1000 m2 | 150 m3/d in winter; 400 m3/d in summer | Calamus, Typha orientalis, Phragmites, little iris, and Thalia dealbata. | [42] |
Costa Rica (BahíaBallena) | Septic tank for sewage + grease trap graywater → HSFCW | Seven HSFCW, each with a surface area of 12 m2 | N/A | Agapanthus africanus (L.) Hoffmanns, Canna generalis L. H. Bailey, Chlorophytum comosum (Thunb.) Jacques, Cyperus alternifolius L., Cyperus papyrus L., Heliconia caribaea Lam., Heliconia rostrata, and Renealmia alpinia (Rottb.) Maas | [14] |
Malaysia (Selangor) | Secondary wastewater from WWTP → FWSCW | Installation area of 670 mm long × 420 mm wide | N/A | Salvinia molesta | [43] |
3.1. Free Water Surface Flow Constructed Wetlands
3.2. Horizontal Subsurface Flow Constructed Wetlands
3.3. Vertical Subsurface Flow Constructed Wetlands
3.4. Hybrid Flow Constructed Wetlands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisano, U.; Endl, A.; Berger, G.; The Rio+20 Conference 2012: Objectives, Processes and Outcomes. ESDN Quarterly Report No 25. European Sustainable Development Network (ESDN). 2012. Available online: https://www.esdn.eu/fileadmin/ESDN_Reports/2012-June-The_Rio_20_Conference_2012.pdf (accessed on 9 April 2023).
- Abdou, A.H.; Hassan, T.H.; Dief, M.M.A. Description of green hotel practices and their role in achieving sustainable development. Sustainability 2020, 12, 9624. [Google Scholar] [CrossRef]
- International Monetary Fund. World Economy Outlook. 2021. Available online: https://www.imf.org/en/Publications/WEO/Issues/2021/03/23/world-economic-outlook-april-2021 (accessed on 9 April 2023).
- Crase, L.; O’Keefe, S.; Horwitz, P.; Carter, M.; Duncan, R.; MacDonald, D.H.; McKenzie, F.H.; Gawne, B. Australian Tourism in a Water Constrained Economy: Research Agenda; CRC for Sustainable Tourism Pty Ltd.: Gold Coast, Australia, 2010; ISBN 9781921658303. [Google Scholar]
- Becken, S. Water equity—Contrasting tourism water use with that of the local community. Water Resour. Ind. 2014, 7–8, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.K.G.; Mullor, E.C.; Ma, Y.; Sandang, Y. Tourism, water, and gender—An international review of an unexplored nexus. WIREs Water 2020, 7, e1442. [Google Scholar] [CrossRef]
- Antakyah, D.; Krampe, J.; Steinmetz, H. Practical application of wastewater reuse in tourist resorts. Water Sci. Technol. 2008, 57, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Bessa, V.S.; Mesquita, R.B.R.; Brix, H.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol. Eng. 2015, 79, 1–7. [Google Scholar] [CrossRef]
- Morel, A.; Diener, S. Greywater Management in Low and Middle-Income Countries, Review of Different Treatment Systems for Households or Neighbourhoods; Sandec Report No. 14/06; Sandec (Water and Sanitation in Developing Countries) at Eawag (Swiss Federal Institute of Aquatic Science and Technology): Dübendorf, Switzerland, 2006. [Google Scholar]
- Paulo, P.L.; Azevedo, C.; Begosso, L.; Galbiati, A.F.; Boncz, M.A. Natural systems treating greywater and blackwater on-site: Integrating treatment, reuse and landscaping. Ecol. Eng. 2013, 50, 95–100. [Google Scholar] [CrossRef]
- United Nations Children’s Fund (UNICEF); World Health Organization. State of the World’s Sanitation: An Urgent Call to Transform Sanitation for Better Health, Environments, Economies and Societies; United Nations Children’s Fund (UNICEF): New York, NY, USA, 2020; ISBN 978-92-4-001447-3. [Google Scholar]
- Moreira, F.D.; Dias, E.H.O. Constructed wetlands applied in rural sanitation: A review. Environ. Res. 2020, 190, 110016. [Google Scholar] [CrossRef]
- Liamlaem, W.; Benjawan, L.; Polprasert, C. Sustainable wastewater management technology for tourism in Thailand: Case and experimental studies’. Water Sci. Technol. 2019, 79, 1977–1984. [Google Scholar] [CrossRef]
- Pérez-Salazar, R.; Mora-Aparicio, C.; Alfaro-Chinchilla, C.; Sasa-Marín, J.; Scholz, C.; Rodríguez-Cor, J.Á. Biogardens as constructed wetlands in tropical climate: A case study in the Central Pacific Coast of Costa Rica. Sci. Total Environ. 2019, 658, 1023–1028. [Google Scholar] [CrossRef]
- Calheiros, C.; Pereira, S.; Castro, P.M.L. Chapter 3. Constructed wetlands as nature-based solutions. In An Introduction to Constructed Wetlands; Jespersen, A.N., Ed.; Nova Science Publishers: New York, NY, USA, 2020; Available online: https://novapublishers.com/shop/an-introduction-to-constructed-wetlands/ (accessed on 9 April 2023).
- Fonder, N.; Headley, T. The taxonomy of treatment wetlands: A proposed classification and nomenclature system. Ecol. Eng. 2013, 51, 203–211. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124046122. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Calheiros, C.S.C.; Nikolaou, I. Nature-Based Solutions as a Tool in the New Circular Economic Model for Climate Change Adaptation. Circ. Econ. Sustain. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; Taylor & Francis,: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Meyer, D.; Chazarenc, F.; Claveau-Mallet, D.; Dittmer, U.; Forquet, N.; Molle, P.; Morvannou, A.; Pálfy, T.; Petitjean, A.; Rizzo, A.; et al. Modelling constructed wetlands: Scopes and aims—A comparative review. Ecol. Eng. 2015, 80, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.L.C.; da Silva, T.D.; da Cruz, A.G.B.; Rosman, P.C.C. Numerical simulation of wetland hydrodynamics and water quality. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 444. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Uddameri, V.; Ahsan, A. Numerical model for the transport and degradation of pollutants through wetlands. Int. J. Water 2016, 10, 1–12. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Boland, A.; Cherry, M.G.; Dickson, R. Doing a Systematic Review: A Student’s Guide; SAGE: Newcastle upon Tyne, UK, 2017. [Google Scholar]
- Wang, M.; Zhang, D.Q.; Dong, J.W.; Tan, S.K. Constructed wetlands for wastewater treatment in cold climate—A review. J. Environ. Sci. 2017, 57, 293–311. [Google Scholar] [CrossRef]
- Stein, O.R.; Hook, P.B. Temperature, plants, and oxygen: How does season affect constructed wetland performance? J. Environ. Sci. Health—Part A Toxic/Hazard. Subst. Environ. Eng. 2005, 40, 1331–1342. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Q.; Yan, B.; Liang, Y.; Yu, X.; Gerchman, Y.; Cheng, X. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal. Water Sci. Technol. 2018, 77, 829–837. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Pereira, S.I.A.; Brix, H.; Rangel, A.O.S.S.; Castro, P.M.L. Assessment of culturable bacterial endophytic communities colonizing Canna flaccida inhabiting a wastewater treatment constructed wetland. Ecol. Eng. 2017, 98, 418–426. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Ferreira, V.; Magalhães, R.; Teixeira, P.; Castro, P.M.L. Presence of microbial pathogens and genetic diversity of Listeria monocytogenes in a constructed wetland system. Ecol. Eng. 2017, 102, 344–351. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Pereira, S.I.A.; Franco, A.R.; Castro, P.M.L. Diverse Arbuscular Mycorrhizal Fungi (AMF) Communities Colonize Plants Inhabiting a Constructed Wetland for Wastewater Treatment. Water 2019, 11, 1535. [Google Scholar] [CrossRef] [Green Version]
- Calheiros, C.S.C.; Castro, P.M.L.; Gavina, A.; Pereira, R. Toxicity Abatement of Wastewaters from Tourism Units by Constructed Wetlands. Water 2019, 11, 2623. [Google Scholar] [CrossRef] [Green Version]
- Cerezo, R.G.; Suarez, M.L.; Vidal-Abarca, M.R. The performance of a multi-stage system of constructed wetlands for urban wastewater treatment in a semiarid region of SE Spain. Ecol. Eng. 2001, 16, 501–517. [Google Scholar] [CrossRef]
- García, J.; Ojeda, E.; Sales, E.; Chico, F.; Píriz, T.; Aguirre, P.; Mujeriego, R. Spatial variations of temperature, redox potential, and contaminants in horizontal flow reed beds. Ecol. Eng. 2003, 21, 129–142. [Google Scholar] [CrossRef]
- Zraunig, A.; Estelrich, M.; Gattringer, H.; Kisser, J.; Langergraber, G.; Radtke, M.; Rodriguez-Roda, I.; Buttiglieri, G. Long term decentralized greywater treatment for water reuse purposes in a tourist facility by vertical ecosystem. Ecol. Eng. 2019, 138, 138–147. [Google Scholar] [CrossRef]
- Estelrich, M.; Vosse, J.; Comas, J.; Atanasova, N.; Costa, J.C.; Gattringer, H.; Buttiglieri, G. Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. J. Environ. Manag. 2021, 294, 112968. [Google Scholar] [CrossRef]
- Masi, F.; Martinuzzi, N.; Bresciani, R.; Giovannelli, L.; Conte, G. Tolerance to hydraulic and organic load fluctuations in constructed wetlands. Water Sci. Technol. 2007, 56, 39–48. [Google Scholar] [CrossRef]
- Masi, F.; Martinuzzi, N. Constructed wetlands for the Mediterranean countries: Hybrid systems for water reuse and sustainable sanitation. Desalination 2007, 215, 44–55. [Google Scholar] [CrossRef]
- Makopondo, R.O.B.B.; Rotich, L.K.; Kamau, C.G. Potential Use and Challenges of Constructed Wetlands for Wastewater Treatment and Conservation in Game Lodges and Resorts in Kenya. Sci. World J. 2020, 14, 9184192. [Google Scholar] [CrossRef]
- Bindu, T.; Sylas, V.P.; Mahesh, M.; Rakesh, P.S.; Ramasam, E.V. Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system. Ecol. Eng. 2008, 33, 68–82. [Google Scholar] [CrossRef]
- Brix, H.; Koottatep, T.; Fryd, O.; Laugesen, C.H. The flower and the butterfly constructed wetland system at Koh Phi Phi-System design and lessons learned during implementation and operation. Ecol. Eng. 2011, 37, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Pawȩska, K.; Kuczewski, K. The small wastewater treatment plants—Hydrobotanical systems in environmental protection. Arch. Environ. Prot. 2013, 39, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zhang, L.; Xi, B.; Xiong, Y.; Yu, P.; Li, G.; Li, J.; Zhao, C. Treatment of farmer household tourism wastewater using iron-carbon micro-electrolysis and horizontal subsurface flow constructed wetlands: A full-scale study. Ecol. Eng. 2018, 110, 192–203. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater. Ain Shams Eng. J. 2021, 12, 2585–2592. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Wastewater Technology Fact Sheet: Free Water Surface Wetlands’; Environmental Protection Agency: Washington, DC, USA, 2000; pp. 1–8. Available online: https://www3.epa.gov/npdes/pubs/free_water_surface_wetlands.pdf (accessed on 9 April 2023).
- Iridra. Constructed Wetlands System for Wastewater Treatment for Fattoria Baggiolino. 2002. Available online: http://iridra.eu/attachments/article/112/Baggiolino.pdf (accessed on 9 April 2023).
- Ministerio de Ambiente y Energia. Reglamento de Vertido y Aguas Residuales No 33601’. La Gac. 2007, 55, 56. [Google Scholar]
- Brix, H.; Arias, C.A. Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage. Water Sci. Technol. 2005, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Aguirre, P.; Mujeriego, R.; Huang, Y.; Ortiz, L.; Bayona, J.M. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. Water Res. 2004, 38, 1669–1678. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Constructed Wetlands Treatment of Municipal Wastewaters. 2000; p. 165. Available online: http://www.epa.gov/ORD/NRMRL (accessed on 9 April 2023).
- Brix, H. Functions of macrophytes in constructed wetlands’. Water Sci. Technol. 1994, 29, 71–78. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch. Environ. Contam. Toxicol. 2008, 55, 404–414. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Vymazal, J.; Kröpfelová, L. A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation. Ecol. Eng. 2011, 37, 90–98. [Google Scholar] [CrossRef]
- Gabarda-Mallorquí, A.; Garcia, X.; Ribas, A. Mass tourism and water efficiency in the hotel industry: A case study. Int. J. Hosp. Manag. 2017, 61, 82–93. [Google Scholar] [CrossRef]
CW Scale | BOD5 | COD | TSS | NH4+ | NH3 | NO3 | TKN | TN | PO43− | TP | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Real | 94% | 94% | 95% | N/A | 44% | 88% | N/A | N/A | 73% | 73% | [8] |
Real | >80% | >80% | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [28] |
Real | 75% | 75% | 83% | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [29] |
Real | 91% | 91% | 88% | 48% | N/A | N/A | N/A | N/A | 66% | N/A | [30] |
Real | 87% | 87% | 99% | 97% | N/A | 97% | N/A | N/A | 91% | 87% | [31] |
Real | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [36] Baggiolino tourism farm |
Real | N/A | Black—88%; Gray—40% | N/A | Black—55%; Gray—99% | N/A | Black—25%; Gray—98% | Black—84%; Gray—96% | N/A | N/A | Black—99%; Gray—95% | [36] La Cava |
Real * | 2.7–5.7 mg/L | 8.8–28.3 mg/L | N/A | 0.4–1.5 mg/L | N/A | N/A | N/A | N/A | N/A | N/A | [41] |
Real | 80% | 66% | 72% | N/A | N/A | N/A | 85% | N/A | 76% | N/A | [14] |
Experiment | N/A | Experiment I—85.6 vs. 97.8%, Experiment II—82.3 vs. 90.2%, Experiment III—91.7 vs. 93.5%, Experiment IV—91.2 vs. 94.5% (Unplanted vs. Planted) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [39] |
Real | 97% | 86% | 66% | N/A | N/A | N/A | N/A | 59% | N/A | 57% | [41] |
Real | 88% | 65–70% | 44% | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [37] |
Real | 54% | 37% | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [33] |
CW Scale | BOD5 (%) | COD (%) | TSS (%) | NH4+ (%) | NH3 (%) | NO3-N (%) | TKN (%) | TN (%) | TP (%) | References |
---|---|---|---|---|---|---|---|---|---|---|
Real | 95% | 94% | 90% | N/A | 85% | N/A | 60% | N/A | 94% | [36,37,38] |
Real | 96% | 94% | 91% | 56% | N/A | N/A | 73% | 43% | N/A | [34] |
Pilot | 98% | 84% | 86% | 99% | N/A | N/A | N/A | 65% | N/A | [35] |
Real | 90% | 81% | 94% | N/A | N/A | N/A | N/A | 45% | 57% | [32] |
Real | 92% | N/A | 90% | N/A | N/A | 50% | 39% | N/A | 46% | [40] |
Real | N/A | 98% | N/A | N/A | N/A | N/A | N/A | N/A | N/A | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justino, S.; Calheiros, C.S.C.; Castro, P.M.L.; Gonçalves, D. Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review. Hydrology 2023, 10, 153. https://doi.org/10.3390/hydrology10070153
Justino S, Calheiros CSC, Castro PML, Gonçalves D. Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review. Hydrology. 2023; 10(7):153. https://doi.org/10.3390/hydrology10070153
Chicago/Turabian StyleJustino, Sara, Cristina S. C. Calheiros, Paula M. L. Castro, and David Gonçalves. 2023. "Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review" Hydrology 10, no. 7: 153. https://doi.org/10.3390/hydrology10070153
APA StyleJustino, S., Calheiros, C. S. C., Castro, P. M. L., & Gonçalves, D. (2023). Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review. Hydrology, 10(7), 153. https://doi.org/10.3390/hydrology10070153