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Abstract: This paper presents a comparative analysis of machine learning (ML) models for predict-
ing drought conditions using the Standardized Precipitation Index (SPI) for two distinct stations,
one in Shiraz, Iran and one in Tridolino, Italy. Four ML models, including Artificial Neural Network
(ANN), Multiple Linear Regression, K-Nearest Neighbors, and XGBoost Regressor, were employed
to forecast multi-scale SPI values (for 6-, 9-, 12-, and 24-month) considering various lag times. Results
indicated that the ML model with the most robust performance varied depending on station and SPI
duration. Furthermore, ANN demonstrated robust performance for SPI estimations at Shiraz station,
whereas no single model consistently outperformed the others for Tridolino station. These findings
were further validated through the confidence percentage analysis performed on all ML models in
this study. Across all scenarios, longer SPI durations generally yielded better model performance.
Additionally, for Shiraz station, optimal lag times varied by SPI duration: 6 months for the 6- and
9-month SPI, 4 months for the 12-month SPI, and 2 months for the 24-month SPI. For Tridolino station,
on the other hand, no definitive optimal lag time was identified. These findings contribute to our
understanding of predicting drought indicators and supporting effective water resource management
and climate change adaptation efforts.

Keywords: drought; standardized precipitation index; machine learning; XGBoost

1. Introduction

Climate change refers to long-term shifts in the Earth’s weather patterns and average
temperatures [1]. It is primarily caused by human activities, particularly the burning of
fossil fuels (such as coal, oil, and natural gas), which release greenhouse gases into the
atmosphere. The consequences of climate change have impacts on various aspects of our
planet. Some of the most important effects include rising temperatures, melting ice, rising
sea levels, extreme weather events, ecosystem disruptions, and drought.

Drought is a natural hazard posing significant challenges to water resources, agri-
culture, and ecosystem health. For drought analysis, some drought indices have been
recommended to delineate whether a basin experiences drought.

The Standardized Precipitation Index (SPI) is a widely used climate index that mea-
sures the deviation of precipitation from its long-term average [2,3]. It basically provides a
standardized measure of drought or wetness conditions based on precipitation data. In
other words, SPI is a statistical tool that transforms precipitation values into a dimensionless
index, enabling comparisons across different locations and time periods. The magnitude
of the SPI represents the severity of the deviation from the long-term average, with more
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extreme values indicating more severe drought or wetness. Typically, it is calculated over
different time scales, such as 1 month, 3 months, 6 months, 12 months, etc., which allows
assessment of short-term or long-term drought conditions. For example, a negative SPI
value over a 12-month time scale demonstrates a prolonged period of below-average pre-
cipitation and could indicate long-term drought. Therefore, the SPI is a valuable tool for
monitoring and assessing drought conditions, identifying drought onset and duration,
and comparing drought severity across different regions, which is the scope of this study.
Hence, SPI-based drought analysis is indeed one of the important tasks in water resources
management and climate change impact assessment studies.

There has been increasing interest in using machine learning (ML) algorithms for
conducting climate change research. ML techniques build an estimation model based
on sample data, known as training data, to make predictions or decisions without being
explicitly programmed to do so. They have shown results in improving the accuracy and
efficiency of climate models, enabling faster analysis of large datasets and supporting the
development of predictive models for future climate scenarios.

There are many studies in the literature focusing on SPI-based drought analysis
using ML models (Table 1). For instance, Hosseini-Moghari and Araghinejad [4] in-
vestigated drought-forecasting SPI in the Gorganroud basin over various time scales
(3, 6, 9, 12, and 24 months). They utilized neural networks, including a Recursive Multi-
Step Multi-Layer Perceptron and the Direct Multi-Step Radial Basis Function. They found
that recursive models performed better for smaller SPI time scales, whereas direct models
exhibited better accuracy with longer SPI durations. Furthermore, Docheshmeh Gorgij
et al. [5] investigated the effectiveness of long short-term memory (LSTM) in forecasting
drought using monthly rainfall data of four stations in Iran. They reported that LSTM
outperformed Extra Trees (ET), Vector Autoregressive (VAR), and Multivariate Adap-
tive Regression Spline (MARS) methods in forecasting SPI values at different time scales
(3, 6, 9, and 12 months). Moreover, Lotfirad et al. [6] aimed to select the best model for
predicting SPI values with time scales of 1, 3, 6, 9, 12, 24, and 48 months using Random
Forest (RF) with lag times ranging from 1 to 12 months. They concluded that the best
set of lag times is different for each station and time scale of SPI. Piri et al. [7] evaluated
various ML models, including Artificial Neural Network (ANN) and Support Vector Re-
gression (SVR), optimized by Particle Swarm Optimization and Response Surface Method
(RSM), for predicting meteorological drought indices. According to their study, SVR-RMS
emerged as the best model for accuracy in forecasting drought indices. Additionally,
Shakeri et al. [8] estimated SPI values for meteorological and hydrological drought assess-
ment in Yazd, Iran. They focused on SPI values with time scales of 3, 6, 12, and 24 months.
They employed linear and non-linear ML models, with RF indicating the highest accuracy
in predicting SPI values at different time scales. Furthermore, Elbeltagi et al. [9] conducted
a study in Rajasthan, India, evaluating various ML models for predicting SPI values at 3,
6, and 12-month intervals. They compared the performance of Random Subspace (RSS)
models alone and combined with M5 Pruning Tree (M5P), RF, and Random Tree (RT).
Their results demonstrated that the hybrid RSS-M5P model outperformed others in pre-
dicting SPI values, highlighting the effectiveness of RSS-M5P in drought estimation for
agricultural applications. Similarly, Elbeltagi et al. [10] focused on drought prediction
in Maharashtra, India, using RF, RT, and Gaussian process regression (GPR-PUK kernel)
models. By analyzing SPI data at 6- and 12-month intervals, they found RF to be the
most robust model for forecasting drought events at meteorological stations in the upper
basin area of the Godavari River. In addition, Coşkun and Citakoglu [11] investigated
drought prediction in Sakarya province, Türkiye, using LSTM networks. By analyzing
the SPI data at various time scales, they compared the performance of LSTM with that
of an Empirical Mode Decomposition (EMD)–Extreme Learning Machine (ELM) hybrid
model. Based on their results, LSTM exhibited excellent SPI predictions, particularly for
shorter time scales of SPI. Furthermore, Adnan et al. [12] evaluated the prediction accuracy
of heuristic ML methods, including Optimally Pruned ELM (OP-ELM) and a Dynamic
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Evolving Neural-Fuzzy Inference System (DENFIS), for drought modeling in Pakistan.
Their study focused on SPI at different time scales across multiple meteorological stations.
According to their results, DENFIS outperformed other models in most cases, showing its
effectiveness in drought analysis with improved accuracy, particularly for shorter SPI time
scales. Moreover, Saha et al. [13] proposed an ensemble ML approach for assessing drought
vulnerability in Odisha, India, using M5P, M5P-Dagging, M5P-RSS, and M5P-Rotation
Forest (M5P-RTF) models. By incorporating various drought vulnerability indicators, they
demonstrated the capability of ensemble models to produce accurate drought vulnerability
maps. Among the ensemble models, M5P-RFT exhibited the highest accuracy in their study.
Finally, Niazkar et al. [14] examined the trend changes in the SPI values at 6, 9, 12, and
24 months, using innovative trend analysis. Additionally, they applied Multiple Linear
Regression (MLR), ANN, K-Nearest Neighbors (KNN), and XGBoost Regressor (XGBR)
using rainfall data for between 1965 and 2020 from eight rainfall stations. Despite the
abundance of the literature exploring ML models for SPI-based drought analysis, there
remains a noticeable gap in the literature concerning comparative assessments of these
models across different geographical regions. Furthermore, while previous studies have
highlighted the effectiveness of certain ML algorithms for SPI prediction, there is still a
need for comprehensive evaluations encompassing a wide range of ML techniques in order
to identify the most suitable approach for each station and time scale.

Table 1. Overview of ML models and lead times in previous studies and this study.

Study Year Stations SPI Months ML Models Used for
Comparison Best Resulting Model

Belayneh and Adamowski [15] 2012 3 3, 12 ANN, SVR, and WN WN

Belayneh et al. [16] 2014 12 12, 24 ARIMA, ANN, SVR,
WA-ANN, and WA-SVR WA-ANN

Hosseini-Moghari and
Araghinejad [4] 2015 1 3, 6, 9, 12, 24

RMSMLP, DMSMLP,
RMSRBF, DMSRBF,

RMSGRNN, and
DMSGRNN

RMSRBF and RMSGRNN,
for smaller time scales,

DMSRBF and DMSGRNN
for larger ones.

Belayneh et al. [17] 2016 3 3, 12, 24

BANN, BSVR, WA-ANN,
WA-SVR, BS-ANN,

BS-SVR, WBS-ANN, and
WBS-SVR

WBS-ANN and WBS-SVR

Maca and Pech [18] 2016 2 1 sANN and hANN hANN
El Ibrahimi and Baali [19] 2018 2 3, 12 ANFIS, ANN, and SVR ANFIS

Khan et al. [20] 2020 3 1 WN, ARIMA, ANN, and
W-2A W-2A

Adikari et al. [21] 2021 13 1 CNN, LSTM, and WANFIS WANFIS
Malik et al. [22] 2021 7 1, 3, 6, 9, 12, 24 ANN, CANFIS, and MLR CANFIS and MLR

Docheshmeh Gorgij et al. [5] 2021 4 3, 6, 9, 12 LSTM, MARS, ET, and VAR LSTM

Taylan et al. [23] 2021 3 3, 6, 9, 12
ANFIS, SVM, ANN,

WA-ANFIS, WA-ANN, and
WA-SVR

WA-ANFIS for 12-month
SPI and WA-SVR for other

SPIs
Lotfirad et al. [6] 2022 6 1, 3, 6, 9, 12, 24, 48 RF RF

Piri et al. [7] 2022 11 1 ANN, SVR, SVR-PSO, and
SVR-RSM SVR-RSM

Shakeri et al. [8] 2023 1 3, 6, 12, 24 MLR, KNN, GB, DT, XGBR,
RF, and ANN ANN

Pande et al. [24] 2023 3 3, 6, 12 AR, RSS, M5P, and BT M5P and BT

Elbeltagi et al. [9] 2023 1 3, 6, 12 RSS, RSS-M5P, RSS-RF, and
RSS-RT RSS-M5P

Elbeltagi et al. [10] 2023 2 6, 12 RF, RT, and GPR-PUK
kernel RF

Ham et al. [25] 2023 6 6, 12 WLSTMN, WA-ANN, and
WA-SVR WLSTMN

Coşkun and Citakoglu [11] 2023 1 1, 3, 6 LSTM, EMD, and ELM LSTM
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Table 1. Cont.

Study Year Stations SPI Months ML Models Used for
Comparison Best Resulting Model

Adnan et al. [12] 2023 3 3, 6, 9, 12 OP-ELM, DENFIS, and
MARS DENFIS

Saha et al. [13] 2023 1 3, 6, 12, 24 M5P, M5P-Dagging,
M5P-RSS, and M5P-RTF M5P-RFT

Niazkar et al. [14] 2023 8 6, 9, 12, 24 ANN, MLR, KNN, XGBR ANN, MLR, and XGBR
Hukkeri et al. [26] 2023 12 6 ANN, MARS, GB, CBR MARS and GB

Lalika et al. [27] 2024 5 6, 9 LSTM, MARS, SVR, ELM,
M5P LSTM

Mohammed et al. [28] 2024 3 3 BT, RF, DT, M5P RF

Abbreviations: ANFIS: Adaptive Neuro-Fuzzy Inference System; AR: Additive Regression; ARIMA: Au-
toregressive Integrated Moving Average; BANN: Bootstrap ANN; BS-ANN: Boosting Ensemble with ANN;
BS-SVR: Boosting Ensemble with SVR; BSVR: Bootstrap SVR; BT: Bagging Tree; CANFIS: Co-Active Neuro-
Fuzzy Inference System; CBR: CatBoost Regression; CNN: Convolutional Neural Network; DMSGRNN: Di-
rect Multi-Step Generalized Regression Neural Network; DMSMLP: Direct Multi-Step Multi-Layer Perceptron;
DMSRBF: Direct Multi-Step Radial Basis Function; DT: decision tree; GB: gradient boosting; GPR-PUK kernel:
Gaussian process regression; hANN: integrated neural network; RMSGRNN: Recursive Multi-Step Generalized
Regression Neural Network; RMSMLP: Recursive Multi-Step Multi-Layer Perceptron; RMSRBF: Recursive Multi-
Step Radial Basis Function; RSS-M5P: Hybridization of RSS with M5P; RSS-RF: Hybridization of RSS with RF;
RSS-RT: Hybridization of RSS with RT; sANN: feedforward multilayer perceptron; SVR-PSO: SVR with Particle
Swarm Optimization; SVR-RSM: SVR with Response Surface Method; VR: Voting Regressor; W-2A: Hybrid
ensemble of WN, ANN, and ARIMA; WA-ANN: ANN coupled with wavelet transform; WA-ANFIS: ANFIS
coupled with wavelet transform; WANFIS: wavelet decomposition functions combined with ANFIS; WA-SVR:
SVR coupled with wavelet transform; WBS-ANN: wavelet boosting with ANN; WBS-SVR: wavelet boosting with
SVR; WLSTMN: wavelet long short-term memory network; WN: Wavelet Neural Network.

The aim of this study was to evaluate drought conditions in two different climates,
i.e., at one station in a semi-arid region (Shiraz, Iran) and one station in a Mediterranean
region (Tridolino, Italy). For this purpose, four ML models were exploited to forecast
6-, 9-, 12-, and 24-month SPI values for the selected rainfall stations. Various SPI lag times
ranging from 1 to 6 were utilized as input variables for ML models. By examining numerous
case scenarios, this study not only offers valuable insights into the drought status of
both study areas but also provides a comprehensive comparative analysis of different ML
models for SPI predictions. Building upon the emphasis of previous studies on comparative
analysis [14], this study underscores the importance of evaluating diverse ML approaches
across distinct geographical locations to enhance the understanding and applicability
of ML models in drought analysis. Moreover, this study focuses on two stations from
geographically different regions, Iran and Italy, thereby providing a better understanding
of the applicability of ML models across diverse climatic conditions. Furthermore, feature
importance analysis was conducted on the ML models to highlight the significance of each
lag time in the final predictions. Finally, confidence percentages were calculated to evaluate
the predictive capability and reliability of ML models for future SPI predictions.

2. Materials and Methods
2.1. Study Areas

This study considered two case studies from two countries, involving two different
climate conditions. The details of these cases are presented below.

(1) Shiraz station: Rainfall data measured at the synoptic station in Shiraz, Fars
province, Iran were utilized in this study. The location of Shiraz and the corresponding
station are depicted in Figure 1. As shown, the latitude of the station is at 29◦48′ N, 29◦29′

S, while its longitude is 52◦40′ E and 52◦23′ W. The average annual rainfall from 1923 to
2015 was 274.7 mm per year. Shiraz’s climate is temperate because its average altitude is
1484 m above sea level. The maximum, minimum, and average temperatures in Shiraz are
40.2, 14.4, and 18 ◦C, respectively.



Hydrology 2024, 11, 163 5 of 18

Figure 1. Location map of Shiraz weather station in Iran (blue dot), in the Shiraz watershed (red line).

(2) Tridolino station: The Mantova Tridolino pluviometric station is in the Lombardy
region, south of Lake Garda, Italy (Figure 2). Strategically located in the heart of the Po
Valley, one of the most water-rich regions in Europe, characterized by a complex network
of rivers, canals, and springs, this station is an integral part of the regional meteorological
and hydrological observation system. Thus, it is an important node in the hydrological
monitoring network of the area. It contributes significantly to the understanding of rainfall
patterns and water flows in the surrounding area. The data analyzed from this station
covered the period from 1993 to 2023.

Figure 2. Location map of Mantova Tridolino pluviometric station (blue dot), in the Lombardy region
(red line).

Table 2 presents the statistical characteristics of the data collected from both stations.
To be more specific, it provides the minimum, maximum, average, skewness, and standard
deviation of precipitation and SPI values for 6, 9, 12, and 24 months for Shiraz station
(1927–2017) and Tridolino station (1993–2023). As shown, the average rainfall measured
at Shiraz station (26.81 mm) has been lower than the mean rainfall at Tridolino station
(40.07 mm), whereas the maximum rainfall observed at Shiraz station (330 mm) was
approximately twice as high as the maximum rainfall at Tridolino station (159.36). Further-
more, Table 2 reveals that both stations have reported a wide range of SPI values across
different time scales.
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Table 2. Statistical properties of precipitation (P) and SPI values with different time scales for Shiraz
and Tridolino stations.

Statistical Property

Shiraz Station Tridolino Station

P (mm)
SPI P

(mm)
SPI

6 9 12 24 6 9 12 24

Minimum 0 −2.51 −2.51 −2.51 −2.50 0 −2.10 −2.10 −2.10 −2.08
Average 26.81 0.02 0.001 0.001 4 × 10−4 40.07 −4 × 10−16 −7 × 10−16 −9 × 10−16 −2 × 10−16

Maximum 330 2.51 2.51 2.51 2.50 159.36 2.10 2.10 2.10 2.08
Skewness 2.40 0.06 −0.001 0.001 −5 × 10−4 1.00 3 × 10−16 1 × 10−16 1 × 10−15 3 × 10−16

Standard deviation 43.76 0.97 0.99 0.99 0.99 29.51 0.97 0.97 0.97 0.97

2.2. Standardized Precipitation Index

SPI is one of the most popular drought indices [29,30]. In this index, the rainfall
data may be fitted by a gamma distribution, and consequently, SPI is calculated using the
gamma distribution, as shown in Equation (1):

f (x; α, β) =
1

βατ(α)
xα−1e−x/β f or x, α, β > 0 (1)

where β, α, x, and τ(α) represent the scale, shape variables, rainfall amount, and gamma
function, respectively. The most precise values of α and β can be obtained by
Equations (2) and (3), respectively [14]:

α =
1

4A

(
1 +

√
1 +

4A
3

)
(2)

β =
x
α

(3)

where A = lnx− ∑ ln(x)
n , and x and n are the mean rainfall and quantity of data, respectively.

In this study, the rainfall data of each station was checked to see whether it followed the
gamma distribution. The results of the statistical tests indicated that the rainfall data for the
two stations were consistent with the gamma distribution. The Kolmogorov-Smirnov test
did not reject the null hypothesis in either case, with p-values of 0.5436 for the
Mantova Tridolino station and 0.099592 for Shiraz station (after removing data with zero
precipitation), respectively. Therefore, the observed rainfall data followed a gamma distri-
bution, confirming the applicability of the SPI calculation.

When the SPI is between −0.99 and 0.99, the drought status is normal. In addition,
positive SPI values higher than 1 indicate wetter-than-average conditions: (i) moderately
wet (1.00 < SPI < 1.49), (ii) very wet (1.50 < SPI < 1.99), and (iii) extremely wet (SPI > 2.00).
On the other hand, negative SPI values lower than 1 denote drier-than-average conditions:
(i) moderately dry (−1.00 < SPI < −1.49), (ii) severely dry (−1.50 < SPI < −1.99), and
(iii) extremely dry (SPI < −2.00).

2.3. Machine Learning Models

This study utilized four ML models for predicting the SPI across diverse timeframes.
The Python programming language was employed to implement ML models, specifically
using the Scikit-learn library for coding MLR and KNN models, the XGboost library for
implementing eXtreme Gradient Boosting (XGBoost) models, and the Keras library with
TensorFlow as the backend for applying ANNs. Preceding model implementation, the
dataset was modified to enhance the models’ performances, incorporating the utilization of
the MinMaxScaler technique from the Scikit-learn library. The rescaling involved adjusting
each variable within a range of 0 to 1. Subsequently, the data were randomly divided into
two groups: (i) 80% for training dataset and (ii) the remainder as a test dataset. Furthermore,
the dataset for each station was handled separately, and the ML models were trained on
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the Shiraz and Tridolino data to assess their performances in predicting the SPI under each
distinct climate condition. To optimize model performances, hyperparameter tuning was
performed for each ML model, using a grid search method [31]. Table 3 provides the key
hyperparameters tuned for each ML model [32–34]. The subsequent section outlines each
ML model individually.

Table 3. Brief description of key hyperparameters tuned for each machine learning model.

Model Hyperparameter Description Range

ANN

activation The activation function introduces nonlinearity to
models. ‘tanh’, ‘relu’, ‘sigmoid’, and ‘linear’

optimizer Optimizer algorithm determines optimal weights for
the model. ‘sgd’, ‘rmsprop’, ‘adadelta’, and ‘adam’

loss The loss function measures the model performance. ‘mae’, ‘mse’, or other defined metrics in
‘keras’ library

KNN

p Power parameter for the Minkowski metric. float

n_neighbors Number of neighbors. positive integer

weights Weight function is used in prediction. ‘uniform’, ‘distance’, callable or none

algorithm Algorithm is used to compute the nearest neighbors. ‘auto’, ‘ball_tree’, ‘kd_tree’, and ‘brute’

XGBR

n_estimators Number of trees. positive integer

max_depth Maximum depth allowed for each tree. positive integer or none

learning_rate Step size shrinkage is used to prevent
overfitting (eta). [0, 1]

reg_alpha L1 weight regularization term. [0, ∞]

reg_lambda L2 weight regularization term. [0, ∞]

min_split_loss Minimum loss reduction required to make a further
partition on a leaf node of the tree (gamma). [0, ∞]

min_child_weight Minimum summation of the instance weight needed
in a child node. [0, ∞]

2.3.1. Artificial Neural Networks

ANNs stand out among various types of neural networks described in previous
studies on drought analysis [35]. They represent a widely utilized ML model that bears
a resemblance to the human brain, consisting of interconnected units known as neurons
or nodes. In the architecture of any neural network, the output of a neuron serves as the
input for the subsequent one. The weighted values received by each neuron are added
together, while an activation function is generally used to limit the amplitude of the neuron
output. In this study, the tanh activation function was used for hidden layers, whereas a
linear function was employed for the output layer.

In this study, the number of input neurons in each model varied from 1 to 6 based
on lead times, and a single hidden layer was considered. Furthermore, consistent with
a recommendation from a prior study [14], the number of hidden neurons was set to
2m + 1, where m denotes the number of input neurons. Finally, the ANN models were
trained using 500 epochs, and an early stopping criterion was implemented. To be more
specific, if the error failed to decrease after 100 epochs, the algorithm halted the training
process, returning the weights and biases corresponding to the minimum error.

2.3.2. eXtreme Gradient Boosting Regressor

XGBR is a tree-based boosting ML technique recognized for its performance, speed,
scalability, and unique features in addressing both regression and classification prob-
lems [14]. As a variation of the gradient boosting model, its simplicity, parallelism, and
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outstanding predictive accuracy have led to victories in various ML competitions [36].
Essentially, XGBoost integrates multiple weak learning models (i.e., decision trees) and
refines their residuals iteratively, making it highly effective for sparse data. It exploits
a sparsity-aware split-finding approach, processes large datasets efficiently through its
block technology, and employs CPU multithreading for parallelism, setting it apart with
distinctive capabilities in handling large-scale data [37]. In contrast to conventional ML
models like RF, XGBR establishes a sequence of consecutive decision trees by leveraging
prediction errors (residuals) from the preceding trees. It entails a dependency among the
trees, with each new tree constructed based on the most recent residuals of the previous
one. The final output for each sample is represented by the cumulative weighted output
values of the trees [38]. Additionally, the unique objective function of XGBoost incorporates
both training error and regularization components, helping to minimize overfitting and
improve generalization performance. These advancements contribute to its superior per-
formance, particularly in applications like hydrological modeling, water quality prediction,
and groundwater management [37].

2.3.3. K Nearest Neighbors

Data-driven techniques are useful for deriving significant insights, such as hidden
patterns, correlations, and trends, from large datasets by using advanced mathematical
functions and algorithms. Among ML models, KNN stands out as a popular nonparametric
approach for (i) regression models and (ii) pattern classification [39]. It is often referred to
as a “lazy learner” because it does not require a training phase. Instead, it stores the entire
training dataset and performs calculations only at runtime, making it computationally
efficient for smaller datasets. However, it may become slower for larger datasets due to
its reliance on real-time calculations of distance [40]. It predicts test data points based on
the classifications of their K nearest neighbors within the training data, demonstrating
robustness in handling various combinations, mitigating overfitting risks, effectively man-
aging large datasets, and exhibiting resilience to noisy data [41]. Furthermore, the distances
between test and training data points are calculated using distance functions, such as the
Minkowski distance function described by Equation (4):

d(Xtr, Xte) =
[
∑n

i=1(xtri − xtei )
p
] 1

p (4)

where Xtr and Xte represent the training data with specific parameters (xtr1 , xtr2 , . . . , xtrn )
and the test data with specific parameters (xte1 , xte2 , . . . , xten ), respectively, and p is the
power of the Minkowski distance function. If p = 1, the distance function is referred to as
Manhattan, while if p = 2, it is called Euclidean.

Subsequently, the distances in KNN are sorted and the nearest neighbor is identified
based on the minimum distance, signifying the maximum similarity. The prediction process
involves finding the K nearest data points, calculating the weighted average target values,
and determining the output for a given data point. The choice of K in KNN significantly
influences model accuracy, with a low K resulting in inaccurate predictions and a high K
potentially leading to overfitting [14].

2.3.4. Multiple Linear Regression

The foundation of MLR rests on the presumption of a linear association between the
dependent variable (output data, denoted as y) and independent variables (input data,
denoted as xi) [14]. In this context, Equation (5) embodies the structure of an MLR model:

y = β0 + ∑n1
i=1 βixi (5)

where β0 is a constant, signifying the y-axis intersection point of the regression line. The βi
values symbolize the slopes of lines linking the regression line to individual data points.
Finally, the parameter n1 denotes the number of independent variables.
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2.4. Feature Importance Analysis

After tuning and implementing XGBR, feature importance analysis, akin to sensitivity
analysis, was performed using a built-in function within XGBoost to rank the influence of
each input feature on the model’s predictions. Typically, this type of assessment employs
metrics such as a weight or a gain to evaluate the feature importance [31]. To be more
specific, the weight reflects the frequency of each feature’s usage in splitting the data across
all trees, while the gain computes the average improvement in accuracy attained when each
feature is utilized for data splitting. In this study, the gain was utilized. Finally, features
with a higher importance, i.e., a stronger influence, can inform subsequent analyses or
feature selection endeavors.

2.5. Performance Criteria

To assess various ML models, four distinct criteria were employed: (i) root mean
square error (RMSE), (ii) mean absolute error (MAE), (iii) Nash-Sutcliffe efficiency (NSE),
and (iv) the determination coefficient (R2). The equations of these metrics are presented as
follows [14]:

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(6)

MAE =
1
n∑n

i=1|Oi − Pi| (7)

NSE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1

(
Oi − ∑n

i=1 Oi
n

)2 (8)

R2 =


∑n

i=1

[(
Oi − ∑n

i=1 Oi
n

)(
Pi − ∑n

i=1 Pi
n

)]
√

∑n
i=1

(
Oi − ∑n

i=1 Oi
n

)2
∑n

i=1

(
Pi − ∑n

i=1 Pi
n

)2


2

(9)

where Oi and Pi denote the ith observed and predicted SPIs, respectively.
According to the definition of each metric, it is evident that an enhancement in the

accuracy of SPI estimations is associated with higher values of R2 and NSE, along with
lower values of RMSE and MAE.

2.6. Confidence Percentages Analysis

According to the SPI definition in Section 2.2, each data point represented a condition
ranging from extremely dry to extremely wet. Based on this classification, the actual SPI
values and those predicted by each ML model were categorized in different drought classes.
A value of 1 was assigned when both predicted and observed SPI values fell into the same
category. Otherwise, a value of 0 was given. The average of these values as a percentage
yielded a confidence percentage (CP) related to the drought index. CP results can reveal for
how many points (in percentage) an ML model estimates the correct class of SPI [42].

3. Results and Discussion
3.1. Results of Comparing Different Models in Terms of Metrics

This study employed four ML models to forecast the 6-, 9-, 12-, and 24-month SPI
values across two stations from two different countries, while accounting for six dif-
ferent lag times. Consequently, a total of 192 cases (four ML models × four SPIs ×
two case studies × six lag times) were developed and compared. To facilitate a com-
prehensive evaluation, the ML models for each station are presented individually as
distinct case studies. The metric outcomes for Shiraz and Tridolino stations are depicted in
Figures 3 and 4, respectively. Within each figure, every row shows four heatmaps illus-
trating the values of four performance evaluation indices (i.e., RMSE, MAE, NSE, and R2).
Also, each column in Figures 3 and 4 represents one of the ML models (i.e., ANN, MLR,
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KNN, or XGBR). The vertical axis of each heatmap indicates various lag times, spanning
from 1 to 6, while the horizontal axis delineates the 6-, 9-, 12-, and 24-month SPI values. The
heatmaps utilize a consistent color scale to illustrate the efficacy of estimation models, with
superior performance highlighted in blue and inferior in grey. Additionally, the metrics
acquired for Shiraz station and Tridolino station for different scenarios are presented in
Tables S1 and S2, respectively, as Supplementary Materials.

Figure 3. Heatmap of the metric results for Shiraz station for all ML models utilized in this study.

Figure 4. Heatmap of the metric results for Tridolino station for all ML models utilized in this study.

3.1.1. SPI Results for Shiraz Station

Figure 3 illustrates the results of the metrics achieved by the ML models applied to
the SPI data obtained from Shiraz station. A total of 96 models were generated using the
four ML models (i.e., ANN, MLR, KNN, and XGBR) for predicting 6-, 9-, 12-, and 24-month
SPIs. The figure indicates an improvement in the model accuracy with increasing SPI
duration. Across all scenarios, the KNN models consistently exhibited superior perfor-
mance on the training data, demonstrating values approaching 0 for RMSE and MAE, and
values close to 1 for NSE and R2. However, on the test data, although the KNN models
performed adequately, they generally ranked the lowest compared with the other ML
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models. To facilitate a comprehensive comparison, the results are presented based on
different SPI durations.

For the 6-month SPI, the ANN model with a lag time of 6 showed the best performance
in terms of MAE (0.462), RMSE (0.609), NSE (0.636), and R2 (0.647), indicating that a lag
time of 6 yielded an optimal performance for the 6-month SPI for Shiraz station. Conversely,
KNN with a lag time of 1 exhibited the poorest performance with RMSE (0.782) and MAE
(0.601), while the KNN models with lag times of 3 and 5 reached the lowest NSE (0.399)
and R2 (0.424), respectively.

For the 9-month SPI, the ANN model with a lag time of 6 achieved the best MAE
(0.319), while the XGBR model with the same lag time exhibited the lowest RMSE (0.473).
However, based on NSE and R2, the ANN model with a lag time of 5 demonstrated superior
performance (NSE = 0.766 and R2 = 0.772), suggesting that lag times of 5 or 6 yielded better
results for the 9-month SPI. Conversely, KNN with a lag time of 5 obtained the highest
MAE (0.445), and KNN with a lag time of 2 showed the poorest performance in terms of
RMSE (0.663), NSE (0.557), and R2 (0.570).

For the 12-month SPI, the ANN model with a lag time of 4 exhibited the best MAE
(0.187) and R2 (0.900), while the MLR model with the same lag time demonstrated superior
performance in terms of RMSE (0.320) and NSE (0.896). Hence, a lag time of 4 was
considered optimal for the 12-month SPI. Conversely, KNN with a lag time of 6 showed the
poorest performance in terms of MAE (0.340), RMSE (0.495), NSE (0.727), and R2 (0.729).

For the 24-month SPI, the ANN model with a lag time of 2 displayed the best MAE
(0.154) and R2 (0.940), while the MLR model with the same lag time demonstrated superior
performance in terms of RMSE (0.247) and NSE (0.940). Thus, a lag time of 2 was optimal for
the 24-month SPI. Conversely, KNN with a lag time of 4 showed the highest RMSE (0.370) and
MAE (0.250), while KNN with a lag time of 6 exhibited the lowest NSE (0.835) and R2 (0.841).

3.1.2. SPI Results for Tridolino Station

Figure 4 compares the ML models applied to the SPI data from Tridolino station. Like
the results of previous stations, the results obtained for Tridolino station indicated an en-
hancement of the model accuracy with the increase of the SPI duration. Moreover, KNN out-
performed other ML models regarding the train data while underperforming in comparison
to other ML models for the test data across all scenarios. In the following, the comparison
of the metric results shown in Figure 4 are presented based on different SPI durations.

Regarding the 6-month SPI, the ANN model with a lag time of 4 achieved the most
favorable RMSE (0.437) and the lowest MAE (0.349), while the MLR model with a lag time
of 6 demonstrated the highest NSE and R2 (0.793 and 0.794, respectively). Consequently,
lag times of 4 or 6 may have been optimal for the 6-month SPI. Furthermore, the KNN
model with a lag time of 1 achieved the weakest performance in terms of RMSE (0.572).
Also, KNN with a lag time of 4 displayed the poorest performance in terms of MAE (0.457),
NSE (0.562), and R2 (0.630).

For the 9-month SPI, the ANN model with a lag time of 1 achieved the lowest MAE
(0.272), while the MLR model with a lag time of 4 attained the highest R2 (0.843). Addition-
ally, the XGBR model with lag times of 2 and 4 had the best RMSE (0.365) and NSE (0.841),
respectively. Therefore, no definitive conclusion can be drawn regarding the optimal lag
time for the 9-month SPI. Furthermore, KNN with a lag time of 1 exhibited the lowest NSE
(0.702), while KNN with a lag time of 5 demonstrated the poorest performance in terms of
RMSE (0.490), MAE (0.402), and R2 (0.748).

Regarding the 12-month SPI, the XGBR model with a lag time of 6 displayed the most
favorable MAE (0.227), whereas the MLR model with a lag time of 1 achieved superior
performances in terms of RMSE (0.300), NSE (0.899), and R2 (0.909). Consequently, a lag
time of 1 might be considered optimal for the 12-month SPI. Moreover, KNN with a lag
time of 4 demonstrated the weakest performance in terms of RMSE (0.465) and MAE (0.354),
while KNN with a lag time of 2 showed the lowest NSE (0.789) and the lowest R2 (0.797).
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Regarding the 24-month SPI, the ANN model with a lag time of 4 exhibited the highest
NSE (0.954), while the MLR models with lag times of 1, 3, and 6 demonstrated superior
performances in terms of MAE (0.148), RMSE (0.197), and R2 (0.956), respectively. Thus,
no definitive conclusion can be made regarding the optimal lag time for the 24-month SPI.
Conversely, KNN with a lag time of 2 displayed the weakest performance across RMSE
(0.233) and MAE (0.291), while KNN with a lag time of 5 demonstrated the lowest for NSE
(0.895) and R2 (0.897).

3.2. Results of the Feature Importance Analysis

The XGBoost feature importance analysis was carried out across all stations to predict
the 6-, 9-, 12-, and 24-month SPIs with a lag time of 6 months, specifically defined as t−1
(one period prior) to t−6 (six periods prior) relative to the current SPI. As illustrated in
Figure 5, the feature importance analysis revealed that SPI values from the previous day
emerged as the most crucial feature, with importance scores exceeding 90%. Conversely, SPI
values from preceding days exhibited lower importance scores, generally below 10% and
frequently below 2%, depending on different scenarios, suggesting the potential of consid-
ering the SPI values from the previous day in predicting future SPI values. This observation
aligned with expectations, akin to the Pearson correlation test, indicating the high impact
of the SPI values from t−1. Also, it is recommended that future investigations profoundly
explore the relationship between historical SPI values, to enhance comprehension of their
influence. Based on the results of the feature importance analysis, a feature with a low
importance value may still contribute to the overall model performance. Therefore, while
these findings highlight the importance of the SPI values from the previous day, they do
not dismiss the inevitable impact of the SPI values from previous months (rather than t−1)
on the outcome. Thus, conclusions should not be based solely on this analysis, and further
exploration is warranted.

Figure 5. Feature importance analysis results for (a) Shiraz station and (b) Tridolino station.
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3.3. Results of Confidence Percentages for Machine Learning Models

Figures 6 and 7 illustrate the results of CPs for each scenario for Shiraz and Tridolino
stations, respectively. Each figure contains plots corresponding to the four ML models
used in this study. In each plot, the x-axis denotes the lag times, while the y-axis shows
CP. Additionally, each line in Figures 6 and 7 represents the CP results for a specific SPI
duration. Overall, the CP results displayed a trend consistent with the findings of the
metric results reported in Section 3.1.

Figure 6. CP results obtained for Shiraz station for different machine learning models and time lags.

According to Figure 6, for the 6-month SPI, when comparisons were made based on
lag time, the lowest CP was 60.27% for the KNN model with a lag time of 4, while the
highest CP was 70.78% for the MLR model with a lag time of 3. In general, lag times of 3
were associated with the highest CP. For the 9-month SPI, the lowest and highest CP values
were 69.41% for the KNN model with a lag time of 3 and 78.9% for the ANN model with a
lag time of 5, respectively. While the CP results did not demonstrate clear differences for
the 6-month SPI, the model performance was more stable across different lag times. To be
more specific, the ANN model outperformed others, followed by the MLR model. For the
12-month SPI, the lowest and highest CP values were 75.69% for the XGBR model with a lag
time of 5 and 88.07% for the ANN model with a lag time of 4, respectively. The ML models
showed a relatively stable performance across different lag times for the 12-month SPI,
with lag times ranging from 2 to 4 appearing as suitable options. As indicated in Figure 6, it
was also evident that the ANN model overall outperformed other models for the 12-month
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SPI. For the 24-month SPI, the lowest and highest CP values were 78.24% for the KNN
model with a lag time of 3 and 88.43% for the ANN model with a lag time of 4, respectively.
Unlike the results for the other SPIs, no clear conclusions could be drawn regarding the
best-case scenario for the 24-month SPI, even though lag times of 3 and 5 were associated
with weaker performances. Finally, the ANN and MLR models again produced the best
CP values.

Figure 7. CP results obtained for Tridolino station for different machine learning models and
time lags.

The CP results obtained for Tridolino station demonstrated a general trend similar to
those observed at Shiraz station. As shown in Figure 7, for the 6-month SPI, the lowest CP
was 60.27% for the XGBR model with a lag time of 1, while the highest CP was 76.71% for
the MLR model with a lag time of 4. In general, a lag time of 4 exhibited the highest CP
for Shiraz station. For the 9-month SPI, the lowest and highest CP values were 63.89% for
the KNN model with a lag time of 6 and 84.93% for the ANN model with a lag time of 1,
respectively. No strong conclusion could be made regarding the best-performing model
for the 9-month SPI. Similarly, a definitive choice of the optimal lag time remains unclear.
For the 12-month SPI, the lowest CP was 61.97% for the KNN model with a lag time of 5,
and the highest CP was 84.72% for the ANN model with a lag time of 1. Likewise, no
recommendation can be made about the best combination of ML models or lag times for
SPI analysis. Unlike Shiraz station, the ML performances for the 9-month SPI were better
than that for the 6-month SPI, while the CP results for the 12-month SPI did not show any
improvement. However, the 24-month SPI showed a significant improvement compared
with the shorter SPI durations. For the 24-month SPI, the lowest and highest CP values
were 72.46% for the XGBR model with a lag time of 4 and 92.86% for the ANN model with
a lag time of 1, respectively. No clear conclusions could be drawn regarding the best model
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or lag time for the 24-month SPI, even though a lag time of 4 was associated with a weaker
performance, particularly for the XGBR model.

In summary, the CP results, similar to the statistical metrics, improved as the SPI
duration increased. Nevertheless, the performances of the ML models for the 12-month
SPI and 24-month SPI were relatively close, with some scenarios with lag times of 3 and 5
suggesting higher confidence in the 12-month SPI compared with the 24-month SPI.

3.4. Comparison between Two Different Stations

Adaptation measures are necessary not only to cope with the changes already under-
way but also to minimize negative impacts on vulnerable communities and ecosystems.
For drought mitigation and preparedness, drought analysis based on SPI helps in water
resource management, agriculture, and decision making. To be more specific, SPI focuses
solely on precipitation and does not consider other factors such as temperature or evapora-
tion, which can also influence drought conditions. Since this study conducted an SPI-based
drought analysis, other factors that may have an influence on this natural hazard were
neglected, which represents a limitation of the present study. Therefore, it is suggested that
further studies should use SPI in conjunction with other indices and information sources to
provide a comprehensive understanding of drought patterns and impacts.

Across the various modeling scenarios considered in this study, the optimal ML
model varied based on influencing factors such as station, lag time, or return period
when calculating the drought index. Furthermore, additional aspects, such as computa-
tional efficiency, interpretability, ease of implementation, and requirements inherent to
the problem under consideration, should be considered for selecting the most suitable
ML model for estimating SPI. For example, among the ML models utilized in this study,
ANN and XGBR generally performed adequately with higher accuracy compared with
the others, specifically for capturing the complex and nonlinear relationships of data from
different stations and with multiple lag times. Moreover, ANN requires a relatively high
level of computational resources, while XGBR is balanced in both accuracy and efficiency.
KNN, as simple and straightforward as it is, may pose a problem when dealing with large
datasets with high dimensionality and cause overfitting. On the other hand, MLR, being
a basic linear model, has more interpretability but less flexibility in capturing nonlinear
patterns, and consequently, it performs less adequately in more complex cases. Therefore,
the choice of ML models depends on the trade-offs between complexity, interpretability,
and computational efficiency.

Based on the results shown in Figures 3 and 4, the performances of ML models for
long-term SPI timescales, such as the 24-month SPI, surpassed that for shorter-term SPIs,
like the 6-month SPI, similar to previous studies [4–6,8,12,13,17,22,23]. Furthermore, the
overall performance of the ML models exhibited minimal variation, mirroring outcomes
observed in previous research [14]. Furthermore, ANN obtained different optimal lag times
for each SPI for Shiraz station (lag times of 6, 6, 4, and 2 for SPIs of 6, 9, 12, and 24 months,
respectively) in terms of the four performance evaluation criteria. Nevertheless, no specific
optimum lag time could be reported for SPI values for Tridolino station when considering
the four indices (i.e., RMSE, MAE, NSE, and R2). Therefore, there was a distinctive differ-
ence between the results obtained for Shiraz station (Iran) and those achieved for Tridolino
station (Italy).

According to the CP results, the CP values for both stations improved as the SPI
duration increased. Nonetheless, for Shiraz station, the CP values for the 12-month SPI
and 24-month SPI were quite close, while for Tridolino station, the 9-month SPI and
12-month SPI showed similar results, with the 24-month SPI yielding primarily higher CP
values. Overall, all the ML models demonstrated high percentages of confidence in their
estimations, with none of the CP values falling below 60% and some CP values being above
90% in certain scenarios.

The results obtained in the current study indicated the satisfactory performances of
the ML models for both stations. Given the diverse climatic conditions and geographical
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separation of these stations, the ML models can be utilized effectively for SPI-based drought
analysis in these regions. Similarly, Adikari et al. [21] explored various stations in Australia
and Cambodia; however, their study did not investigate different lag times and timeframes
of SPI. Furthermore, their models, namely a Convolutional Neural Network, LSTM, and
wavelet decomposition functions combined with the Adaptive Neuro-Fuzzy Inference
System, shared a common conceptual basis to some extent, whereas the current study offers
a broader coverage of the mentioned limitations.

In summary, ANN outperformed the other ML models used in this study for Shiraz
station, whereas no ML modes outperformed the others in terms of the four metrics for
estimating SPI values for Tridolino station. Finally, KNN resulted in SPI estimations with
the lowest precision for many cases considered for both stations in this study, similar to
the results of a previous study [14]. This study, akin to various studies available in the
literature [6,9,10,12,14,17,22,24,25], highlights the need to consider different combinations
of lag times as input, as no firm conclusion on the optimal number of lag times can be
made. The focus of this study was on comparing performances of ML models rather than
an in-depth assessment of agricultural or hydrological drought conditions in the study
areas. Future studies can utilize the SPI values predicted by our models for further drought
assessments. Indeed, using only two stations limits the generalizability of an assessment of
drought conditions. However, this study provides valuable insights into the performance
of different ML models across two climatically distinct regions, which can serve as a basis
for future research using broader datasets.

4. Conclusions

This study provides valuable insights into the effectiveness of ML-based drought
prediction methodologies and highlights the importance of tailoring ML models to specific
geographical contexts for enhanced applicability and accuracy. It provides a comprehensive
analysis of drought conditions in two distinct stations with two different climates, Shiraz
in Iran and Tridolino in Italy, using ML models to forecast SPI values. By examining
different scenarios and considering different lag times, this study not only contributes to
our understanding of predicting drought indicators but also highlights the importance of
comparative assessments of ML approaches across diverse geographical locations.

The results showed that the performance of ML models varied based on the station, lag
time, and SPI duration. Specifically, the ANN model exhibited robust estimations for SPI
values at Shiraz station, while no single ML model consistently outperformed the others
for Tridolino station. This variability underscores the importance of not only tailoring
ML approaches to specific contexts but also considering multiple factors when selecting
the most suitable model. Furthermore, CP values were computed for each ML model to
assess the capability and reliability of the predictions made by the ML models. Analysis of
CP values revealed that higher SPI durations generally led to better estimations for both
stations. Overall, all the ML models demonstrated a high level of confidence, with CP
values no lower than 60% and up to 90% for some cases. Additionally, similar to the metric
results, the ANN models generally outperformed the other ML models in terms of CP
performances for Shiraz station, while no single ML model consistently outperformed the
others for Tridolino station.

Moreover, this study highlights the need for further research to explore the syner-
gies between SPI and other drought indices or environmental variables to enhance the
accuracy and comprehensiveness of drought prediction models. Future studies can ex-
plore incorporating other drought indices, such as the Palmer Drought Severity Index
or the Standardized Precipitation Evapotranspiration Index, to provide a more nuanced
understanding of drought dynamics and impacts.

Additionally, while this study focused on SPI-based drought analysis, future studies
could also investigate the integration of remote sensing data and climate model outputs to
improve the spatial and temporal resolutions of drought predictions.
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Overall, the satisfactory performance of the ML models across both the Iranian and
Italian stations suggests the potential applicability of these approaches in diverse climatic
conditions. However, continued research and refinement of ML techniques are necessary to
improve the accuracy and reliability of drought prediction models, ultimately supporting
effective water resource management and climate change adaptation efforts worldwide.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/hydrology11100163/s1, Table S1: Metric results for Shiraz
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