Distribution of Subsurface Nitrogen and Phosphorus from Different Irrigation Methods in a Maize Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Field Management
2.2. Experiment Treatment and Sampling
2.3. Statistical Analysis
3. Results and Discussion
3.1. Nitrogen Distribution under Different Irrigation Methods
3.2. Phosphorus Distribution under Different Irrigation Methods
3.3. Differential Analysis of Nitrogen and Phosphorus Distribution
3.4. Nitrogen and Phosphorus Distribution under Different Planting Patterns
3.5. Impact of -N/Olsen-P Ratio on Cumulative Olsen-P
3.6. Impact of Nitrogen and Phosphorus Accumulation to Groundwater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, K.; Bao, H.X.; Huang, S.M.; Chen, L.J. Effects of long-term fertilization on available P, P composition and phosphatase activities in soil from the Huang-Huai-Hai Plain of China. Agric. Ecosyst. Environ. 2017, 237, 134–142. [Google Scholar] [CrossRef]
- National Bureau of Statistic of China. China Statistical Year Book; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Sui, J.; Wang, J.D.; Gong, S.H.; Xu, D.; Zhang, Y.Q. Effect of Nitrogen and Irrigation Application on Water Movement and Nitrogen Transport for a Wheat Crop under Drip Irrigation in the North China Plain. Water 2015, 7, 6651–6672. [Google Scholar] [CrossRef]
- Xu, C.L.; Tao, H.B.; Tian, B.J.; Gao, Y.B.; Ren, J.H.; Wang, P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Res. 2016, 196, 268–275. [Google Scholar] [CrossRef]
- Patil, A.; Tiwari, K.N. Okra Crop Response Under Subsurface Drip and Conventional Furrow Irrigation with Varying N Fertilization. Commun. Soil Sci. Plant Anal. 2018, 49, 2429–2445. [Google Scholar] [CrossRef]
- Liu, J.; Bi, X.Q.; Ma, M.T.; Jiang, L.H.; Du, L.F.; Li, S.J.; Sun, Q.P.; Zou, G.Y.; Liu, H.B. Precipitation and irrigation dominate soil water leaching in cropland in Northern China. Agric. Water Manag. 2019, 211, 165–171. [Google Scholar] [CrossRef]
- Gu, L.M.; Liu, T.N.; Wang, J.F.; Liu, P.; Dong, S.T.; Zhao, B.; So, H.B.; Zhang, J.W.; Zhao, B.; Li, J. Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Field Crops Res. 2016, 188, 82–95. [Google Scholar] [CrossRef]
- Home, P.G.; Panda, R.K.; Kar, S. Effect of method and scheduling of irrigation on water and nitrogen use efficiencies of Okra (Abelmoschus esculentus). Agric. Water Manag. 2002, 55, 159–170. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, Z.G.; Bao, X.G.; Sun, J.H.; Yang, S.C.; Wang, P.; Wang, C.B.; Wu, J.P.; Liu, X.R.; Tian, X.L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Fan, Z.L.; Chai, Q.; Yu, A.Z.; Zhao, C.; Yin, W.; Hu, F.; Chen, G.; Cao, W.; Coulter, J.A. Water and radiation use in maize–pea intercropping is enhanced with increased plant density. Agron. J. 2020, 112, 257–273. [Google Scholar] [CrossRef]
- Xiao, M.H.; Yu, S.E.; She, D.L.; Hu, X.J.; Chu, L.L. Nitrogen and phosphorus loss and optimal drainage time of paddy field under controlled drainage condition. Arab. J. Geosci. 2015, 8, 4411–4420. [Google Scholar] [CrossRef]
- Du, Y.; Deng, Y.M.; Ma, T.; Shen, S.; Lu, Z.J.; Gan, Y.Q. Spatial Variability of Nitrate and Ammonium in Pleistocene Aquifer of Central Yangtze River Basin. Ground Water 2019, 58, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.C.; Cao, Z.H.; Wang, G.P.; Wong, M.H. Winter runoff losses of phosphorus from paddy soils in the Taihu Lake Region of South China. Chemosphere 2003, 52, 1461–1466. [Google Scholar] [CrossRef]
- Toor, G.S.; Condron, L.M.; Di, H.J.; Cameron, K.C. Seasonal fluctuations in phosphorus loss by leaching from a grassland soil. Soil Sci. Soc. Am. J. 2004, 68, 1429–1436. [Google Scholar] [CrossRef]
- Johzston, A.; Poulton, P.; White, R. Plant-available soil phosphorus. Part II: The response of arable crops to Olsen P on a sandy clay loam and a silty clay loam. Soil Use Manag. 2013, 29, 12–21. [Google Scholar] [CrossRef]
- Sánchez-Alcalá, I.; Del Campillo, M.C.; Barrón, V. The Olsen-P/solution P relationship as affected by soil properties. Soil Use Manag. 2014, 30, 454–462. [Google Scholar] [CrossRef]
- Werner, F.; de la Haye, T.R.; Spielvogel, S.; Prietzel, J. Small-scale spatial distribution of phosphorus fractions in soils from silicate parent material with different degree of podzolization. Geoderma 2017, 302, 52–65. [Google Scholar] [CrossRef]
- Sun, W.X.; Huang, B.; Qu, M.K.; Tian, K.; Yao, L.P.; Fu, M.M.; Yin, L.P. Effect of Farming Practices on the Variability of Phosphorus Status in Intensively Managed Soils. Pedosphere 2015, 25, 438–449. [Google Scholar] [CrossRef]
- Turner, B.; Haygarth, P. Phosphorus Forms and Concentrations in Leachate under Four Grassland Soil Types. Soil Sci. Soc. Am. J.-SSSAJ 2000, 64, 1090–1099. [Google Scholar] [CrossRef]
- Zhao, X.B.; Guo, H.P.; Wang, Y.L.; Wang, G.J.; Zhu, J.Y. Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China plain. Environ. Earth Sci. 2021, 80, 162. [Google Scholar] [CrossRef]
- Li, S.X.; Chen, Y.F.; Lu, Y.; Xu, S.H.; Liao, B.L. Synthesis, fluorescence, and anticancer activity of silver(I) complex based on 2-hydroxyquinoxaline ligand. Inorg.-Nano-Met. Chem. 2020, 50, 315–320. [Google Scholar] [CrossRef]
- Xu, Y.L.; Jia, C.; Jia, J.J.; Huang, L. Study on optimal arrangement of pumping and irrigation system for groundwater heat pump. Water Ences Eng. Technol. 2017, 6, 54–59. [Google Scholar]
- GB/T 36197-2018; State Administration for Market Regulation. Soil Quality—Guidance on Sampling Techniques. Standard Press of China: Beijing, China, 2018.
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- NY/T1121.24-2012; Soil Testing-Part 24: Determination of Total Nitrogen in Soil-Automatic Kjeldahl Apparatus Method. Ministry of Agriculture of the PRC: Beijing, China, 2012.
- Guo, L.J.; Li, J.S.; Li, Y.F.; Xu, D. Nitrogen Utilization under Drip Irrigation with Sewage Effluent in the North China Plain. Irrig. Drain. 2017, 66, 699–710. [Google Scholar] [CrossRef]
- HJ 636-2012; Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Ecology and Environment of the PRC: Beijing, China, 2012.
- HJ/T 346-2007; Water Quality—Determination of Nitrate-Nitrogen—Ultraviolet Spectrophotometry. Ministry of Agriculture of the PRC: Beijing, China, 2007.
- GB 11893-1989; Water Quality-Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. Ministry of Ecology and Environment of the PRC: Beijing, China, 1989.
- Zhu, T.; Zeng, S.M.; Qin, H.L.; Zhou, K.; Yang, H.; Lan, F.; Huang, F.; Cao, J.; Müller, C. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil Biol. Biochem. 2016, 97, 99–101. [Google Scholar] [CrossRef]
- Cui, L.; Li, D.P.; Wu, Z.J.; Xue, Y.; Xiao, F.; Zhang, L.; Song, Y.; Li, Y.; Zheng, Y.; Zhang, J.; et al. Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH. Agronomy 2021, 11, 1674. [Google Scholar] [CrossRef]
- Sharmasarkar, F.C.; Sharmasarkar, S.; Miller, S.D.; Vance, G.; Zhang, R. Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets. Agric. Water Manag. 2001, 46, 241–251. [Google Scholar] [CrossRef]
- Tang, X.; Ma, Y.B.; Hao, X.Y.; Li, X.; Li, J.; Huang, S.; Yang, X. Determining critical values of Olsen-P for maize and winter wheat from long-term experiments in China. Plant Soil 2009, 323, 143–151. [Google Scholar] [CrossRef]
- Yu, K.H.; Chen, X.M.; Pan, G.X.; Zhang, X.; Chen, C. Dynamics of soil available phosphorus and its impact factors under simulated climate change in typical farmland of Taihu Lake region, China. Environ. Monit. Assess. 2016, 188, 1–8. [Google Scholar] [CrossRef]
- Li, X.P.; Mu, Y.H.; Cheng, Y.B.; Liu, X.G.; Nian, H. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol. Plant. 2013, 35, 1113–1119. [Google Scholar] [CrossRef]
- Renneson, M.; Vandenberghe, C.; Dufey, J.E.; Marcoen, J.M.; Bock, L.; Colinet, G. Degree of phosphorus saturation in agricultural loamy soils with a near-neutral pH. Eur. J. Soil Sci. 2015, 66, 33–41. [Google Scholar] [CrossRef]
- Xiao, D.; Che, R.X.; Liu, X.; Tan, Y.; Yang, R.; Zhang, W.; He, X.; Xu, Z.; Wang, K. Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biol. Fertil. Soils 2019, 55, 457–469. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Eur. J. Soil Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhou, L.; Chen, P.; Liu, X.M.; Song, C.; Yang, F.; Wang, X.C.; Liu, W.G.; Sun, X.; Du, J.B. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. Crop J. 2020, 8, 140–152. [Google Scholar] [CrossRef]
- Qin, L.; Jiang, H.; Tian, J.; Zhao, J.; Liao, H. Rhizobia enhance acquisition of phosphorus from different sources by soybean plants. Plant Soil 2011, 349, 25–36. [Google Scholar] [CrossRef]
- Allen, B.L.; Mallarino, A.P.; Klatt, J.G.; Baker, J.L.; Camara, M.L. Soil and surface runoff phosphorus relationships for five typical USA midwest soils. J. Environ. Qual. 2006, 35, 599–610. [Google Scholar] [CrossRef]
- Dragon, K. Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ. Earth Sci. 2013, 68, 2099–2109. [Google Scholar] [CrossRef]
- GB/T 14848-2017; General Administration of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China. Standard for Groundwater Quality. Standard Press of China: Beijing, China, 2017.
- GB/T 3838-2002; General Administration of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China. Environmental Quality Standards for Surface Water. Standard Press of China: Beijing, China, 2002.
- Li, S.; He, Y.F.; Chen, J.; Huang, Q.; Xu, L.; Wang, H.C.; Liu, Y.L. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agric. Water Manag. 2015, 159, 255–263. [Google Scholar]
- Qin, Z.X.; Shober, A.L.; Beeson, R.C.; Wiese, C. Nutrient leaching from mixed-species Florida residential landscapes. J. Environ. Qual. 2013, 42, 1534–1544. [Google Scholar] [CrossRef]
Zone | Clay | Silty Clay | Silty | Silty Clay |
---|---|---|---|---|
SI Zone 1, DI zone | 0–0.3 | 0.3–1.8 | 1.8–3.2 | 3.2–5.0 |
SI Zone 2 | 0–0.4 | 0.4–1.2 | 1.2–2.4 | 2.4–5.0 |
SUBI zone | 0–0.3 | 0.3–0.9 | 0.9–3.4 | 3.4–5.0 |
Treatment | Irrigation Volume (m3·hm−2) | Planting Pattern | Soil Sampling Point |
---|---|---|---|
SI Zone 1 | 40 | MP | T1, T2 |
SI Zone 2 | 40 | IP | T3, T4 |
DI zone | 25 | MP | T5, T6 |
SUBI zone | 23 | MP | T7, T8 |
Depth Intervals | SI Zone 1 | DI Zone | SUBI Zone | SI Zone 2 |
---|---|---|---|---|
0–0.9 m | −0.714 * | −0.600 | −0.095 | −0.563 |
0.9–4.5 m | −0.529 * | −0.462 | −0.803 ** | −0.829 ** |
0–4.5 m | −0.718 ** | −0.582 ** | −0.616 ** | −0.636 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, G.; Su, Z.; Fu, Y.; Li, J.; Mao, D.; Wang, S. Distribution of Subsurface Nitrogen and Phosphorus from Different Irrigation Methods in a Maize Field. Hydrology 2024, 11, 171. https://doi.org/10.3390/hydrology11100171
Xie G, Su Z, Fu Y, Li J, Mao D, Wang S. Distribution of Subsurface Nitrogen and Phosphorus from Different Irrigation Methods in a Maize Field. Hydrology. 2024; 11(10):171. https://doi.org/10.3390/hydrology11100171
Chicago/Turabian StyleXie, Gang, Zhihui Su, Yiming Fu, Jing Li, Deqiang Mao, and Shaowei Wang. 2024. "Distribution of Subsurface Nitrogen and Phosphorus from Different Irrigation Methods in a Maize Field" Hydrology 11, no. 10: 171. https://doi.org/10.3390/hydrology11100171
APA StyleXie, G., Su, Z., Fu, Y., Li, J., Mao, D., & Wang, S. (2024). Distribution of Subsurface Nitrogen and Phosphorus from Different Irrigation Methods in a Maize Field. Hydrology, 11(10), 171. https://doi.org/10.3390/hydrology11100171