Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile
Abstract
:1. Introduction
2. Methodology
2.1. Geographical Setting
2.2. Hydrological and Geological Setting
2.3. Hydrogeological Characterization
2.4. Flow Measurement
2.5. Piezometric Measurement
2.6. Water Sampling
2.7. Data Analysis
3. Results
3.1. Precipitation and Flows
3.2. Hydrogeology
3.3. Heads and Relation between Stream and Aquifer
3.4. Hydrogeochemistry of the Hydrological System
3.4.1. Physicochemical Parameters
3.4.2. Major and Relevant Ions
3.4.3. Biological Contamination and Water Quality
3.4.4. Ionic Ratios
3.4.5. Isotopic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wörman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophys. Res. Lett. 2007, 34, L07402. [Google Scholar] [CrossRef]
- Ramsar. The Ramsar Convention: What’s It All about? Secretaría de la Convensión Ramsar 2015. Available online: https://www.ramsar.org/sites/default/files/fs_6_ramsar_convention.pdf (accessed on 15 January 2024).
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1994. [Google Scholar]
- Brinson, M.M.; Malvárez, A.I. Temperate freshwater wetlands: Types, status, and threats. Environ. Conserv. 2002, 29, 115–133. [Google Scholar] [CrossRef]
- Finlayson, C.M. Forty years of wetland conservation and wise use. Aquat. Conserv. Mar. Freshw. Ecosyst. 2012, 22, 139–143. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.; Rosenqvist, A.; et al. State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses (March 31, 2015); Ramsar Briefing Note No. 7; Ramsar Convention Secretariat: Gland, Switzerland, 2015. [Google Scholar] [CrossRef]
- Gardner, R.C.; Finlayson, C.M. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People; Ramsar Convention Secretariat: Gland, Switzerland, 2018. [Google Scholar]
- Xu, X.; Xiong, G.; Chen, G.; Fu, T.; Yu, H.; Wub, J.; Liu, W.; Su, Q.; Wang, Y.; Liu, S.; et al. Characteristics of coastal aquifer contamination by seawater intrusion and anthropogenic activities in the coastal areas of the Bohai Sea, eastern China. J. Asian Earth Sci. 2021, 217, 104830. [Google Scholar] [CrossRef]
- Kazezyılmaz-Alhan, C.M. Analytical solutions for contaminant transport in streams. J. Hydrol. 2008, 348, 524–534. [Google Scholar] [CrossRef]
- U.S. EPA. Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence (Final Report); EPA/600/R-14/475F; U.S. Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Drexler, J.Z.; Knifong, D.; Tuil, J.L.; Flint, L.E.; Flint, A.L. Fens as whole-ecosystem gauges of groundwater recharge under climate change. J. Hydrol. 2013, 481, 22–34. [Google Scholar] [CrossRef]
- Ramsar Convention Secretariat. The Ramsar Convention Manual: A Guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2013. [Google Scholar]
- Sophocleus, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Ramsar. Humedales: En Peligro de Desaparecer en Todo el Mundo. Convención Sobre Humedales. Ficha Informativa 3. 2011. Available online: www.ramsar.org/es/acerca-de/uso-racional-de-los-humedales (accessed on 15 January 2024).
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of international importance: Status, threats, and future protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef]
- Stehr, A.; Álvarez, C.; Álvarez, P.; Arumí, J.L.; Baeza, C.; Barra, R.; Berroeta, C.A.; Castillo, Y.; Chiang, G.; Cotoras, D.; et al. Recursos hídricos en Chile: Impactos y adaptación al cambio climático. Informe de la mesa Agua. Santiago: Comité Científico COP25; Ministerio de Ciencia, Tecnología, Conocimiento e Innovación. 2019. Available online: https://cdn.digital.gob.cl/filer_public/e6/ff/e6ff260a-d926-4210-83e6-ad7b840b320c/19agua-recursos-hidricos-stehr.pdf (accessed on 15 January 2024).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Climate Change 2008: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Horton, B.P.; Rahmstorf, S.; Engelhart, S.E.; Kemp, A.C. Expert assessment of sealevel rise by AD 2100 and AD 2300. Q. Sci. Rev. 2014, 84, 1–6. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Inventario de Cuencas, Subcuencas y Subsubcuencas de Chile. DGA. División de Estudios y Planificación. 2014. Available online: https://bibliotecadigital.ciren.cl/handle/20.500.13082/32709 (accessed on 25 October 2023).
- Ministerio del Medio Ambiente de Chile (MMA). Estrategia Nacional de Humedales 2024; Ministerio del Medio Ambiente de Chile: Santiago, Chile, 2024. [Google Scholar]
- CR2. Centro de Ciencia del Clima y la Resiliencia (CR2). La Mega Sequía 2010–2015: Una Lección para el Futuro; Informe a la Nación; CR2. Centro de Ciencia del Clima y la Resiliencia (CR2): Santiago, Chile, 2015. [Google Scholar]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010– 2018): A climate dynamics perspective. Int. J. Climatol. 2019, 40, 421–439. [Google Scholar] [CrossRef]
- Masotti, I.; Aparicio-Rizzo, P.; Yevenes, M.A.; Garreaud, R.; Belmar, L.; Farías, L. The Influence of River Discharge on Nutrient Export and Phytoplankton Biomass Off the Central Chile Coast (33°–37°S): Seasonal Cycle and Interannual Variability. Front. Mar. Sci. 2018, 5, 423. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Información Pluviométrica, Fluviométrica, Estado de Embalses y Aguas Subterráneas. Boletín N° 524 Mes Diciembre Año 2021. División de Hidrología (DGA). 2021. SSD: 15614003. Available online: https://dga.mop.gob.cl/productosyservicios/informacionhidrologica/Informacin%20Mensual/Boletin_12_Diciembre_2021.pdf (accessed on 26 July 2023).
- Zúñiga, M. Caracterización de la Vulnerabilidad Socio Territorial en el área Rural, Forestal y de Expansión Urbana de Laguna Verde, Valparaíso. Bachelor’s Thesis, Departamento de Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile, 2015. [Google Scholar]
- Rivera Castro, C.A.; Letelier Pino, J.A.; Acevedo Pizarro, B.; Tobar Correa, T.D.P.; Loreto Torres Lepe, C.; Cataldo Figueroa, A.M.; Rivera Castro, M.Á. Water quality in the El Sauce Estuary, Valparaíso, Central Chile. Rev. Int. De Contam. Ambient. 2020, 36, 261–273. [Google Scholar] [CrossRef]
- Millanir, N. Proyecto de Factibilidad de Instalación de Redes de Alcantarillado y Agua Potable Sector Curaumilla-Laguna Verde. Bachelor’s Thesis, Departamento de Diseño y Manufactura, Universidad Técnica Federico Santa María, Viña del Mar, Chile, 2003. [Google Scholar]
- AES/02/2012; Caracterización de aguas, Sector Laguna Verde, Quinta Región. Silob Chile. Informe técnico preparado por el Departamento de Ingeniería Ambiental: Valparaíso, Chile, 2012; 18p.
- Pozo-Solar, F.; Cornejo-D’Ottone, M.; Orellana, R.; Acuña, C.; Rivera, C.; Aguilar-Muñoz, P.; Lavergne, C.; Molina, V. Microbial and Biogeochemical Shifts in a Highly Anthropogenically Impacted Estuary (“El Sauce” Valparaíso). Water 2023, 15, 1251. [Google Scholar] [CrossRef]
- DGA. Dirección General de Aguas, Gobierno de Chile. Evaluación de los Recursos Subterráneos de las Cuencas Costeras de la Quinta Región; Informe Técnico. Serie de Documentos Técnicos S.D.T. Nº 201; Dirección General de Aguas, Ministerio de Obras Públicas: Santiago, Chile, 2005; 93p. [Google Scholar]
- Tobar, T.; and Torres, C.L. Evaluación de la calidad del agua del estero El Sauce, Laguna Verde: Impacto y Consecuencias. Bachelor’s Thesis, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile, 2014; 175p. [Google Scholar]
- DGA. Dirección General de Aguas, Gobierno de Chile. Evaluación de los Recursos Subterráneos de las Cuencas Costeras de la V Región; Informe Técnico. Departamento de Recursos Hídricos. S.D.T. N°130; Dirección General de Aguas, Ministerio de Obras Públicas: Santiago, Chile, 2002; 43p. [Google Scholar]
- Dirección Meteorológica de Chile (DMC). 2024. Available online: https://climatologia.meteochile.gob.cl/ (accessed on 26 July 2023).
- Superintendencia de Servicios Sanitarios (SISS). Decreto Supremo N°90/2000 Establece Norma de Emisión para la Regulación de Contaminantes Asociados a las Descargas de Residuos Líquidos a Aguas Marinas y Continentales Superficiales. Ministerio Secretaría General de la Presidencia, Chile. 2000. Available online: https://bcn.cl/2esfo (accessed on 14 July 2024).
- Reyes, A.; Ulises, F.; Carvajal, Y. Guía Básica para la Caracterización Morfométrica de Cuencas Hidrográficas; Universidad del Valle: Cali, Colombia, 2010; 139p, ISBN 9789587654011. [Google Scholar]
- Villela, S.M.; Mattos, A. Hidrologia Aplicada; McGraw-Hill do Brasil: Sao Paulo, Brazil, 1975; 245p. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Alcántara, J.L. Caracterización Hidromorfométrica de la Microcuenca Puyllucana-Baños del Inca-Cajamarca, Mediante la Aplicación de ArcGis. Universidad Nacional de Cajamarca. 2008. Available online: https://alicia.concytec.gob.pe/vufind/Record/RUNC_800c627c183b752bafd2bd6892033979/Details (accessed on 15 August 2023).
- Rizo, R.; Romero, L.; Zeledón, J. Caracterización Biofísica y Socioeconómica de la Microcuenca La Jabonera, Perteneciente a la Subcuenca del Río Estelí; Universidad Nacional Autónoma de Nicaragua: Managua, Nicaragua, 2011. [Google Scholar]
- Gana, P.; Wall, R.; Gutiérrez, A.; Yañez, G. Mapa Geológico Del Área Valparaíso–Curacaví, Región de Valparaíso y Región Metropolitana; Esc. 1:100.000. Mapas Geológicos N° 1; Servicio Nacional de Geología y Minería: Santiago de Chile, Chile, 1994. [Google Scholar]
- Gana, P.; Wall, R.; Gutiérrez, A. Mapa Geológico del área de Valparaíso-Curacaví, Regiones de Valparaíso y Metropolitana [en línea]; Mapas Geológicos Nº001; SERNAGEOMIN: Santiago de Chile, Chile, 1996. [Google Scholar]
- Encinas, A.; Le Roux, J.; Buatois, L.; Nielsen, S.; Finger, K.; Fourtanier, E.; Lavenu, A. Nuevo esquema estratigráfico para los depósitos marinos mio-pliocenos del área de Navidad (33º00′-34º30′ S), Chile central. Rev. Geológica De Chile 2006, 33, 221–246. [Google Scholar] [CrossRef]
- Keller, B.Y.; Martin, A. Estudio de la Actividad de la Falla Laguna Verde para Zonificación de usos Urbanos y sus Restricciones. In Proceedings of the Congreso Geológico Chileno, Puerto Varas, Chile, 4 August 2000; pp. 77–78. [Google Scholar]
- Instituto Privado de Investigación Sobre Cambio Climático (ICC). Manual de Medición de Caudales; ICC: Santa Lucía Cotzumalguapa, Guatemala, 2017; 18p, ISBN 978-9929-8241-4-0. Available online: https://icc.org.gt/wp-content/uploads/2023/03/064.pdf (accessed on 15 August 2024).
- Richards, L. Diagnosis and Improvement of Saline and Alkali Soils; USDA Handbook 60; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Instituto Nacional de Normalización (INN). Norma Chilena Oficial NCh 1333/78. Modificada en 1987. Requisitos de Calidad del agua para Diferentes Usos; Gobierno de Chile: Santiago, Chile, 1987. [Google Scholar]
- Fundación Centro Internacional de Hidrología Subterránea (FCIHS). Hidrogeología; Fundación Centro Internacional de Hidrología Subterránea: Barcelona, Spain, 2009. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Custodio, E.; Llamas, M.R. Hidrología Subterránea; Ediciones Omega, S. A.: Barcelona, Spain, 1976; 2350p. [Google Scholar]
- López-Geta, J.A.; Mena, J.M. Aspectos Metodológicos en el Estudio de la Intrusión Salina. Documento Básico; Geomecánica y Aguas S.A. para División de Aguas Subterráneas y Geotécnica del Instituto Geológico y Minero de España: Madrid, Spain, 1988; 230p. [Google Scholar]
- Giménez, E.; Morell, I. Análisis hidrogeoquímico de los procesos de salinización en el acuífero costero de Oropesa (Castellón, España). Environ. Geol. 1997, 29, 118–131. [Google Scholar] [CrossRef]
- DGA. Dirección General de Aguas, Gobierno de Chile. Estimación de la Demanda Actual, Proyecciones Futuras y Caracterización de la calidad de los Recursos Hídricos en Chile; Unión Temporal de Proveedores Hídrica Consultores SPA y Aquaterra Ingenieros Ltd.a. S.I.T. N°419; Ministerio de Obras Públicas, Gobierno de Chile: Santiago, Chile, 2017. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1979; 604p. [Google Scholar]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Bianchi Janetti, E.; Riva, M.; Guadagnini, A. Natural springs protection and probabilistic risk assessment under uncertain conditions. Sci. Total Environ. 2021, 751, 141430. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, M. Entropy, fractality, and thermodynamics of groundwater pathways. J. Hydrol. 2023, 617, 128930. [Google Scholar] [CrossRef]
- Aziz, O.I.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Scibek, J.; Gleeson, T.; McKenzie, J.M. The biases and trends in fault zone hydrogeology conceptual models: Global compilation and categorical data analysis. Geofluids 2016, 16, 782–798. [Google Scholar] [CrossRef]
- EEA. European Environment Agency. Europe’s Groundwater: A Key Resource under Pressure. Report. 2022. Available online: https://www.eea.europa.eu/publications/europes-groundwater (accessed on 5 July 2024).
- Metcalf & Eddy, Inc. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Strack, O.D.L. A single-potential solution for regional interface problems in coastal aquifers. Water Resour. Res. 1976, 12, 1165–1174. [Google Scholar] [CrossRef]
- Ataie–Ashtiani, B.; Volker, R.E.; Lockington, D.A. Tidal effects on sea water intrusion in unconfined aquifers. J. Hydrol. 1999, 216, 17–31. [Google Scholar] [CrossRef]
- Levanon, E.; Yechieli, Y.; Haim, G.; Eyal, S. Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers-field measurements and numerical model. J. Hydrol. 2016, 551, 665–675. [Google Scholar] [CrossRef]
- Loáiciga, H.; Pingel, T.; Garcia, E. Sea Water Intrusion by Sea-Level Rise: Scenarios for the 21st Century. Ground Water 2012, 50, 37–47. [Google Scholar] [CrossRef]
- Wang, J.; Tsay, T. Tidal Effects on Groundwater Motions. Transp. Porous Media 2001, 43, 159–178. [Google Scholar] [CrossRef]
- Michael, H.; Mulligan, A.; Harvey, C. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 2005, 436, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.D.; Simmons, C.T. Impact of sea-level rise on seawater intrusion in coastal aquifers. Groundwater 2009, 47, 197–204. [Google Scholar] [CrossRef]
- Yechieli, Y.; Shalev, E.; Wollman, S.; Kiro, Y.; Kafri, U. Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations. Water Resour. Res. 2010, 46, W12550. [Google Scholar] [CrossRef]
- Ketabchi, H.; Mahmoodzadeh, D.; Ataie-Ashtiani, B.; Simmons, C. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. J. Hydrol. 2016, 535, 235–255. [Google Scholar] [CrossRef]
- Custodio, E. Coastal aquifers in Europe: An overview. J. Hydrol. 2010, 18, 269–280. [Google Scholar] [CrossRef]
- Custodio, E.; Lázaro, M.; Martínez, R. Salinización de las aguas subterráneas en los acuíferos. Rev. De La Soc. Española De Hidrogeol. 2017, 27, 43–60. [Google Scholar]
Major Ions and Recommended | Physicochemical Parameters | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | HCO3− | CO32− | Cl− | SO42− | Na+ | K+ | Mg2+ | Ca2+ | NO3− | NO2− | TDS | T | pH | EC | DO | COD | TUR | COL | |
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | (mg/L) | (°C) | (μS/cm) | (mg/L) | (mg/L) | NTU | Pt-Co | |||
Groundwater | North coastal aquifer | 219 ± 44 | 0.5 ± 0.9 | 854 ± 469 | 424 ± 327 | 149 ± 146 | 10.5 ± 6 | 94 ± 81 | 114 ± 98 | 51 ± 55 | 0.6 ± 0.1 | 2493 ± 1094 | 15.5 ± 1.3 | 6.8 ± 0.5 | 4155 ± 2044 | 3.6 ± 2.1 | 31.2 ± 26.2 | 1.0 ± 1.1 | 12.8 ± 8 |
Southern coastal aquifer | 162 ± 39 | 0.1 ± 0.1 | 761 ± 666 | 185 ± 108 | 219 ± 279 | 14.8 ± 4.5 | 55 ± 26 | 80 ± 28 | 64 ± 86 | 0.3 ± 0.6 | 1853 ± 1186 | 16.3 ± 1.2 | 6.9 ± 0.4 | 2925 ± 2211 | 5.2 ± 1.4 | 8.0 ± 5.8 | 1.4 ± 2.3 | 5.4 ± 1.5 | |
Middle aquifer | 159 ± 30 | 0.7 ± 1.4 | 124 ± 46 | 99 ± 68 | 54 ± 24 | 2.1 ± 0.4 | 27 ± 10 | 30 ± 14 | 24 ± 36 | 0.2 ± 0.3 | 633 ± 142 | 16.5 ± 0.9 | 7.2 ± 0.6 | 1309 ± 462 | 6.6 ± 2 | 3.6 ± 5.1 | 17.2 ± 23.6 | 4.8 ± 1.5 | |
Inland aquifer | 159 ± 30 | 0.3 ± 0.3 | 69 ± 9 | 60 ± 29 | 59 ± 59 | 1.7 ± 0.9 | 36 ± 30 | 67 ± 74 | 1.3 ± 1.5 | 0.01 ± 0 | 4577 ± 200 | 16.3 ± 03 | 7.2 ± 0.6 | 643 ± 172 | 4.2 ± 2.5 | 2.2 ± 2.8 | 7.9 ± 12.4 | 10.6 ± 15.9 | |
HU2 | 166 ± 48 | 0.4 ± 0.3 | 168 ± 75 | 106 ± 67 | 71 ± 35 | 4.6 ± 3 | 32 ± 1 | 40 ± 20 | 35 ± 57 | 0.2 ± 0.2 | 657 ± 230 | 16.9 ± 1.9 | 7.4 ± 0.7 | 1134 ± 291 | 6.2 ± 2.2 | 2.7 ± 3.5 | 5.4 ± 11.3 | 6.7 ± 9.2 | |
Surface Water | La Luz Lagoon | 108 ± 6 | 5.1 ± 8.6 | 34 ± 3 | 28 ± 1 | 41 ± 35 | 2.2 ± 1.2 | 37 ± 46 | 131 ± 199 | 3 ± 2.9 | 0.02 ± 0 | 229 ± 44 | 16.4 ± 4.9 | 8.3 ± 0.6 | 405 ± 26 | 7.8 ± 2.8 | 44.6 ± 59.6 | 4.5 ± 2.8 | 6.3 ± 2.5 |
Las Cenizas (S19) | 287 ± 50 | 1.1 ± 0.7 | 101 ± 31 | 183 ± 24 | 56 ± 24 | 6.25 ± 5.5 | 31 ± 9 | 71 ± 17 | 24 ± 33 | 0.1 ± 0 | 637 ± 75 | 14.2 ± 4.3 | 7.4 ± 0.5 | 1213 ± 288 | 5.6 ± 3.9 | 91.7 ± 62.7 | 22 ± 16.8 | 29 ± 24.6 | |
Las Cenizas (S20) | 271 ± 23 | 0.5 ± 0.3 | 137 ± 58 | 162 ± 23 | 59 ± 28 | 16.7 ± 1.3 | 20 ± 5 | 72 ± 23 | 6.5 ± 6 | 0.1 ± 0.02 | 652 ± 139 | 16.6 ± 4.8 | 7.2 ± 0.4 | 1124 ± 288 | 5.9 ± 1.7 | 61.5 ± 31.7 | 16.6 ± 10.1 | 17.5 ± 5 | |
High El Sauce | 224 ± 44 | 2.9 ± 2.8 | 155 ± 17 | 155 ± 25 | 62 ± 28 | 17.4 ± 2.3 | 22 ± 6 | 75 ± 23 | 13 ± 11 | 3.4 ± 0.5 | 702 ± 227 | 12.8 ± 2.6 | 7.9 ± 0.4 | 1429 ± 624 | 5 ± 2.8 | 58.2 ± 26.2 | 14.0 ± 7.4 | 15.0 ± 5.8 | |
Middle El Sauce | 187 ± 62 | 1.6 ± 1.2 | 329 ± 125 | 185 ± 29 | 134 ± 98 | 18 ± 3.4 | 33 ± 11 | 66 ± 13 | 9.4 ± 8.5 | 2.6 ± 2.6 | 1064 ± 327 | 16.14 ± 2.4 | 5.9 ± 3.8 | 1831 ± 562 | 8.1 ± 2 | 57.6 ± 28 | 13.2 ± 9.1 | 18.8 ± 2.5 | |
Lower El Sauce | 171 ± 48 | 3 ± 2.2 | 440 ± 222 | 189 ± 36 | 119 ± 126 | 20 ± 3.4 | 37 ± 12 | 63 ± 15 | 9.7 ± 6 | 8.02 ± 7.1 | 1263 ± 539 | 15.2 ± 5.2 | 7.8 ± 0.3 | 2279 ± 1108 | 8.2 ± 1.7 | 62.2 ± 37.9 | 16.6 ± 9.8 | 15.0 ± 5.8 | |
Artificial Lagoon S30 | 11 ± 5 | 0 ± 0 | 6388 ± 376 | 2179 ± 2000 | 186 ± 192 | 69 ± 56 | 74 ± 32 | 90 ± 35 | 21 ± 24 | 0.3 ± 0.4 | 10,567 ± 2263 | 15.3 ± 3.5 | 6.5 ± 3.5 | 15,532 ± 2503 | 7.2 ± 1 | 223.9 ± 112.7 | 39 ± 1.7 | 30 ± 5.4 | |
Dump Flow S23 | 356 ± 116 | 3.7 ± 3 | 1987 ± 344 | 1640 ± 421 | 88 ± 12 | 34 ± 15.5 | 90 ± 44 | 111 ± 25 | 155 ± 144 | 10.7 ± 13.6 | 6144 ± 1567 | 11.9 ± 1.7 | 8.1 ± 0.4 | 8552 ± 1172 | 7.8 ± 0.7 | 248.3 ± 56.1 | 10.3 ± 0.3 | 113 ± 25.5 |
Microelements (mg/L) | F | Al | Ba | Br | Co | Cu | Fe | Mn | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
Groundwater | North Coastal aquifer | 0.2 ± 0.03 | 0.7 ± 2.4 | 0.1 ± 0.03 | 17.9 ± 12.7 | 0.01 ± 0.001 | 0.03 ± 0.03 | 0.5 ± 1.4 | 1.1 ± 1.6 | 0.1 ± 0.1 | 0.03 ± 0.03 |
Southern Coastal aquifer | 0.2 ± 0.02 | 0.6 ± 1.5 | 0.1 ± 0.01 | 11.5 ± 9.5 | 0.008 ± 0.004 | 0.01 ± 0.005 | 0.2 ± 0.2 | 0.01 ± 0.007 | 0.06 ± 0.03 | 0.03 ± 0.02 | |
Middle aquifer | 0.2 ± 0.05 | 0.1 ± 0.1 | 0.04 ± 0.02 | 3.1 ± 0.8 | 0.01 ± 0.00 | 0.04 ± 0.06 | 3.2 ± 4.7 | 0.3 ± 0.5 | 0.1 ± 0.1 | 0.03 ± 0.03 | |
Inland aquifer | 0.2 ± 0.03 | 0.2 ± 0.3 | 0.1 ± 0.1 | 1.8 ± 1 | 0.1 ± 0.1 | 0.02 ± 0.02 | 1.3 ± 1.3 | 0.6 ± 1.3 | 0.01 ± 0.004 | 0.04 ± 0.05 | |
UH2 | 0.3 ± 0.1 | 0.8 ± 2.4 | 0.02 ± 0.02 | 3.0 ± 1.2 | 0.009 ± 0.003 | 0.02 ± 0.02 | 1.9 ± 5.8 | 0.04 ± 0.05 | 0.02 ± 0.01 | 0.04 ± 0.04 | |
Surface Water | La Luz Lagoon | 0.19 ± 0.0 | 0.77 ± 0.5 | 0.27 ± 0.4 | 0.83 ± 0.1 | 0.48 ± 0.8 | 0.04 ± 0.1 | 2.47 ± 3.5 | 0.1 ± 0.1 | 0.01 ± 0.0 | 0.021 ± 0.0 |
Las Cenizas S19 | 0.46 ± 0 | 2.2 ± 2.8 | 0.05 ± 0.01 | 1.1 ± 0 | 0.01 ± 0.01 | 0.01 ± 0.01 | 2.3 ± 2.6 | 0.62 ± 0.3 | 0.02 ± 0.01 | 0.03 ± 0.01 | |
Las Cenizas S20 | 0.45 ± 0.06 | 0.64 ± 0.16 | 0.02 ± 0 | 1.94 ± 0.7 | 0.01 ± 0.01 | 0.24 ± 0.4 | 2.13 ± 0.2 | 0.2 ± 0.06 | 0.01 ± 0 | 0.07 ± 0.09 | |
High El Sauce | 0.4 ± 0.03 | 0.5 ± 0.3 | 0.03 ± 0.005 | 3.0 ± 0.9 | 0.007 ± 0.00 | 0.1 ± 0.1 | 1.2 ± 0.3 | 0.3 ± 0.1 | 0.01 ± 0.0 | 0.04 ± 0.006 | |
Middle El Sauce | 0.4 ± 0.06 | 1.6 ± 3.04 | 0.04 ± 0.006 | 5 ± 2.5 | 0.008 ± 0.004 | 0.03 ± 0.03 | 1.1 ± 1 | 0.6 ± 0.3 | 0.01 ± 0.0 | 0.01 ± 0.06 | |
Lower El Sauce | 0.4 ± 0.1 | 0.9 ± 0.3 | 0.04 ± 0.0 | 7 ± 3.6 | 0.01 ± 0.001 | 0.03 ± 0.00 | 1.2 ± 0.2 | 0.6 ± 0.2 | 0.01 ± 0.0 | 0.01 ± 0.0 | |
Artificial Lagoon S30 | 0.2 ± 0.03 | 4.5 ± 0.01 | 0.1 ± 0.005 | 12.2 ± 0.7 | 0.01 ± 0.001 | 0.03 ± 0.00 | 2.5 ± 0.3 | 13.9 ± 3.6 | 0.2 ± 0.1 | 0.04 ± 0.009 | |
Dump Flow S23 | 0.1 ± 0.02 | 0.2 ± 0.01 | 0.1 ± 0.02 | 59.4 ± 13.5 | 0.01 ± 0.001 | 0.01 ± 0.00 | 0.9 ± 0.00 | 4.1 ± 0.3 | 0.4 ± 0.2 | 0.01 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gana, B.; Rodes, J.M.A.; Díaz, P.; Balboa, A.; Frías, S.; Ávila, A.; Rivera, C.; Sáez, C.A.; Lavergne, C. Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile. Hydrology 2024, 11, 174. https://doi.org/10.3390/hydrology11100174
Gana B, Rodes JMA, Díaz P, Balboa A, Frías S, Ávila A, Rivera C, Sáez CA, Lavergne C. Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile. Hydrology. 2024; 11(10):174. https://doi.org/10.3390/hydrology11100174
Chicago/Turabian StyleGana, Blanca, José Miguel Andreu Rodes, Paula Díaz, Agustín Balboa, Sebastián Frías, Andrea Ávila, Cecilia Rivera, Claudio A. Sáez, and Céline Lavergne. 2024. "Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile" Hydrology 11, no. 10: 174. https://doi.org/10.3390/hydrology11100174
APA StyleGana, B., Rodes, J. M. A., Díaz, P., Balboa, A., Frías, S., Ávila, A., Rivera, C., Sáez, C. A., & Lavergne, C. (2024). Geoenvironmental Effects of the Hydric Relationship Between the Del Sauce Wetland and the Laguna Verde Detritic Coastal Aquifer, Central Chile. Hydrology, 11(10), 174. https://doi.org/10.3390/hydrology11100174