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Abstract: Traditional coastal flood risk prediction often overlooks critical geographic features, un-
derscoring the need for accurate risk prediction in coastal cities to ensure resilience. This study en-
hances the prediction of coastal flood occurrence by utilizing the Geospatial Artificial Intelligence 
(GeoAI) approach. This approach employed models—random forest (RF), k-nearest neighbor 
(kNN), and artificial neural networks (ANN)—and compared them to the IPCC risk framework. 
This study used El Salvador as a demonstration case. The models incorporated seven input varia-
bles: extreme sea level, coastline proximity, elevation, slope, mangrove distance, population, and 
settlement type. With a recall score of 0.67 and precision of 0.86, the RF model outperformed the 
other models and the IPCC approach, which could avoid imbalanced datasets and standard scaler 
issues. The RF model improved the reliability of flood risk assessments by reducing false negatives. 
Based on the RF model output, scenario analysis predicted a significant increase in flood occurrences 
by 2100, mainly under RCP8.5 with SSP5. The study also highlights that the continuous mangrove 
along the coastline will reduce coastal flood occurrences. The GeoAI approach results suggest its 
potential for coastal flood risk management, emphasizing the need to integrate natural defenses, 
such as mangroves, for coastal resilience. 

Keywords: coastal flood risk; GeoAI; random forest; IPCC risk approach; mangroves; disaster risk 
management; coastal resilience 
 

1. Introduction 
Coastal zones worldwide are increasingly vulnerable to climate-related hazards, 

with coastal floods emerging as one of the most pressing threats [1]. Coastal flooding re-
fers to seawater penetrating land caused by unpredictable high-water occurrences, such 
as regular high tides or storm surges resulting from tropical cyclones, storms, or ty-
phoons, lasting at least one day in coastal regions [2]. Climate change is expected to in-
crease the frequency of coastal flooding due to rising sea levels, enhanced storm surges, 
and changes in precipitation patterns. This danger poses substantial hazards to human 
populations, infrastructure, and ecosystems in these coastal zones [3,4]. Consequently, 
comprehending coastal flooding and its related effects is essential. 

Previous studies have utilized coastal flood risks to ascertain the potential extent of 
inundated areas and the anticipated exposed populations or assets [5–7]. Coastal flood 
risk is the probability of coastal flood occurrence in specific regions, driven by physical 
and social factors, including hydrometeorological, geophysical, and socio-economic 

Citation: Atmaja, T.; Setiawati, M.D.; 

Kurisu, K.; Fukushi, K. Advancing 

Coastal Flood Risk Prediction  

Utilizing a GeoAI Approach by  

Considering Mangroves as an  

Eco-DRR Strategy. Hydrology 2024, 

11, 198. https://doi.org/10.3390/ 

hydrology11120198 

Academic Editor: Miklas Scholz 

Received: 24 October 2024 

Revised: 20 November 2024 

Accepted: 21 November 2024 

Published: 23 November 2024 

 

Copyright: © 2024 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Hydrology 2024, 11, 198 2 of 26 
 

 

variables. At the same time, the aggregate of detrimental consequences, income loss, and 
property damage induced by coastal floods is termed the impact [8]. Prior research em-
ployed coastal flood risk prediction to assess flooding likelihood and impact in coastal 
areas by integrating the abovementioned factors [2,7]. Generally, coastal flood risks are 
predicted using a statistical approach. This examines flood drivers’ correlations and sim-
ilarities, utilizing historical data and statistical models to identify patterns and relation-
ships, such as regression, probability, or machine learning (ML) models [7,9–11]. 

Coastal zones are subject to severe coastal flood risk, necessitating the development 
of more accurate and reliable flood risk prediction methods due to the limitations of cur-
rent approaches [12,13]. The current approaches in coastal flood prediction often use uni-
variate probability distributions that fail to account for the complex interactions between 
multiple flood drivers [12,13]. Another significant limitation is the underutilization of ge-
ographic features, i.e., proximity, shape, or density. Future coastal risk prediction should 
elaborate on the proximity of mangrove ecosystems, which function as natural defenses 
[14–16]. Mangroves have been demonstrated to dissipate wave energy and stabilize shore-
lines; however, their role is often overlooked in conventional flood risk prediction [17,18]. 
This omission is particularly critical given the growing recognition of mangroves as eco-
system-based disaster risk reduction (Eco-DRR) strategies, which emphasize integrating 
natural ecosystems into disaster risk management. 

Recent advances in geospatial technologies and artificial intelligence (AI) have of-
fered promising avenues for addressing these gaps. The geospatial artificial intelligence 
(GeoAI) approach utilizes ML models to elucidate location-based analytics, with a partic-
ular focus on the application of spatial (geographic feature) information [19–21]. This tech-
nique integrates geospatial science with AI techniques, either ML or deep learning (DL), 
to analyze and interpret spatial data. GeoAI enables the development of more robust and 
precise flood risk assessments by handling large and multi-dimensional data [19,20]. By 
incorporating a more comprehensive range of features, including natural defenses and 
additional geographical features, GeoAI is anticipated to enhance the robustness of coastal 
flood risk prediction [19]. 

This study aims to advance coastal flood risk prediction by employing GeoAI ap-
proaches, specifically utilizing random forest (RF), k-nearest neighbor (kNN), and artifi-
cial neural network (ANN) models, which are among the most commonly used models 
[22,23]. This study compares these models with the conventional Intergovernmental Panel 
on Climate Change (IPCC) risk assessment concept to demonstrate GeoAI’s potential in 
reliably predicting coastal flood occurrences. The framework was applied to coastal haz-
ard-prone areas, focusing on low- to lower-middle-income countries (LLMIC) and utiliz-
ing El Salvador as a case study for demonstration purposes. Seven key forcing variables—
extreme sea level (ESL), coastline proximity, elevation, slope, mangrove distance, popula-
tion, and settlement type—were incorporated into the GeoAI models to predict coastal 
flood occurrences as the target variable. 

The significance of this study lies in its potential to address the disparity between 
conventional risk assessments and the necessity for more comprehensive, data-driven 
methodologies that incorporate geographical features and mangroves as natural barriers 
into predictive models. By elucidating the role of mangroves and other geographic ele-
ments in mitigating flood risks, this research contributes to the growing body of literature 
advocating for Eco-DRR strategies. These findings are anticipated to inform more effective 
risk management practices, ultimately enhancing the resilience of coastal communities to 
climate change. 
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2. Materials and Methods 
2.1. Development of Coastal Flood Pathways and Key Variables 

The study developed and identified coastal flood pathways, and the key variables 
used to feed the GeoAI model input in predicting coastal flood occurrences as a target. 
This process was achieved through (i) a literature review and (ii) a structured data collec-
tion process. First, a comprehensive review of the existing literature was conducted to 
analyze and identify the variables used in previous coastal flood risk studies. The review 
covered publications from all years available in the Web of Science and ScienceDirect da-
tabases, focusing on articles featuring case studies in coastal flood risk assessments. The 
search keyword was “coastal flood risk variables”. This review specifically targeted the 
identification of different variables used in coastal flood risk assessment and the docu-
mentation of data sources and formats used. The outcome of this review yielded a list of 
key forcing variables, which subsequently guided the data collection and risk simulation 
processes. 

The subsequent step involved a data collection process that entailed archiving geo-
physical, socioeconomic, hydrometeorological, and other relevant datasets that were re-
cently available, accessible, and freely usable for academic purposes. These global da-
tasets, documented extensively in prior research [24], were critical for building the simu-
lation model. We paid particular attention to the spatial and temporal resolution of the 
data sources to ensure their adequate capture of relevant features and the variability of 
key variables over time. The GeoAI approach integrates and analyzes extensive datasets 
from various sources by leveraging big data to generate robust and reliable coastal flood 
pathways and key variables. 

Based on the literature review and extensive data collection, this study identified 
seven key variables and pathways contributing to coastal flood risk adopted from previ-
ous studies [25–32]. These variables encompass ESL, coastline proximity, elevation, slope, 
mangrove distance, population, and settlement types, as shown in the Supplementary Ma-
terial, Table S1. Coastal flood occurrence is defined as the penetration of seawater onto 
land due to storm tides and surges that persist for a duration of one day. ESL represents 
areas anticipated to be inundated by ESL. Coastline proximity refers to the accumulated 
distance for each grid within the study boundary to the coastline, calculated using Euclid-
ean distance. Elevation is the topographic height above sea level, while slope indicates the 
percent change in elevation over a specific distance for each grid. Mangrove distance 
measures the accumulated distance from each grid within the boundary to mangrove ar-
eas, estimated via Euclidean distance. Population represents the number of individuals 
per grid, and settlement types categorize the nature of settlements based on population 
density. These variables were utilized to inform the GeoAI model in predicting coastal 
flood occurrences as the target variable. A detailed description, sources, and data specifi-
cations are provided in Table 1. 

It should be noted that wave variables were omitted from this study. The interaction 
between waves and tides can modulate nearshore wave heights, increasing the risk of 
flooding during high water levels [33,34]. Wave overtopping, driven by stochastic wave 
behavior, can lead to significant coastal flooding [35,36]. However, the randomness of 
waves introduces uncertainties in flood projections, especially on short time scales [35,36]. 
Additionally, given the study’s focus on geomorphological and land-based flood drivers, 
the decision was made to exclude wave variables from the coastal flood risk prediction in 
this study. Therefore, considering the limitations inherent in current coastal flood risk pre-
diction methodologies, future research efforts should prioritize incorporating wave ac-
tion, particularly infragravity waves. Infragravity waves, which are long-period waves 
generated by the interaction of shorter wind waves with the ocean floor and coastal to-
pography, can significantly influence coastal hydrodynamics and sediment transport pro-
cesses, even in shallow mangrove areas [37,38]. Additionally, Vousdoukas et al. (2016) 
highlighted that excluding wave contributions in Total Water Level (TWL) estimations 
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could result in approximately a 60% underestimation of flooded areas [39]. Their inclusion 
in flood risk assessments could enhance the accuracy and reliability of predictions regard-
ing coastal inundation and erosion [37]. 

Table 1. Description and profile of the key variables. 

Key Variable 
Raw Data 

Format 

Original 
Horizontal 
Resolution 

Temporal 
Resolution Raw Data and URL Sources 

Variable 
Profile 

Coastal flood 
occurrence GeoTIFF 250 m 2000–2018 

Ref. [40], Global Flood Database, 
https://global-flood-database.cloudtostreet.ai (ac-

cessed on 10 December 2021) 

1: flood 
0: no flood 

Extreme Sea 
Level (ESL) 

Point NA 1980–2100 
Ref. [39], European Commission, http://data.eu-

ropa.eu/89h/jrc-liscoast-10012 (accessed on 9 August 
2021) 

meter ESL 

Coastline 
proximity Line NA 2000 

Author, based on Prototype Global Shoreline Data, 
https://shoreline.noaa.gov/data/datasheets/pgs.html 

(accessed on 17 September 2021) 
Index 

Elevation GeoTIFF 90 m  2020 
Ref. [41], CoastalDEM Database, https://go.climate-
central.org/coastaldem (accessed on 17 September 

2021) 
m asl 

Slope GeoTIFF 90 m  2020 
Ref. [41], CoastalDEM Database, https://go.climate-
central.org/coastaldem (accessed on 17 September 

2021) 
% 

Mangrove dis-
tance 

GeoTIFF 30 m 2021 
Ref. [42], Global Distribution of Mangroves USGS, 

https://data.unep-wcmc.org/datasets/4 (accessed on 
8 Juni 2021) 

Index 

Population GeoTIFF 1 km 2010–2100  
Ref. [43], Socioeconomic Data and Applications 

Center (SEDAC), https://doi.org/10.7927/q7z9-9r69 
(accessed on 15 February 2022) 

people 

Settlement 
types 

GeoTIFF 90 m  2020 
Ref. [44], Urban-Rural Catchment Areas (URCAs), 
https://doi.org/10.1073/pnas.2011990118 (accessed 

on 25 October 2021) 
1 to 10 types 

2.2. Development and Evaluation of Coastal Flood Risk Model Utilizing GeoAI Approach 
The GeoAI model was developed to predict coastal flood risk occurrences utilizing 

key variables outlined in Section 2.1. The model was used to predict coastal flood occur-
rence in three main periods: baseline within 2000–2020 and projections for 2050 and 2100. 
The coastal flood occurrence in binary format for 2000–2018 served as the target variable 
(Y), while the key variables functioned as features or independent variables (X). The key 
variables outlined in Section 2.1 included ESL, coastline proximity, elevation, slope, man-
grove distance, population, and settlement types. The coastal flood risk model was con-
structed in three key stages, as depicted in Figure 1: 2.2.2.) Data Preparation, 2.2.3.) Risk 
Simulation, and 2.5.) Risk Projection. A detailed description of the demonstration case is 
provided in Section 2.2.1.) Selection of Case Study. 
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Figure 1. Workflow for coastal flood risk prediction utilizing the GeoAI approach compared to the 
IPCC risk approach. The data under (*) and (**) indicated that the data had been projected for future 
ESL and population change following RCP and SSP scenarios, respectively. 

2.2.1. Selection of Case Study 
The GeoAI model was demonstrated to predict coastal flood occurrences using El 

Salvador as a case study. Coastal floods in El Salvador are a significant concern due to 
their location and various natural hazards such as tsunamis, flash floods, and sea swell 
events. According to historical data, between 2000 and 2018, El Salvador experienced sig-
nificant coastal flood incidents, resulting in the inundation of over 28 km2, affecting ap-
proximately 3415 people and impacting settlements over 0.57 km2 [40]. Prediction uncer-
tainty increases with basin size in El Salvador’s coastal flood basins, highlighting the need 
for accurate parameter estimation [45]. 

Moreover, a previous study documented an unprecedented sea swell event in 2015 
that substantially impacted the coastline of El Salvador. This occurrence resulted in severe 
coastal flooding and alterations to the shoreline. The highest levels of erosion and accre-
tion were recorded at 268 m in El Salvador [46]. Analysis of satellite data indicated that El 
Salvador experienced the most extensive erosion and inundation among several Latin 
American urban areas examined [46]. 

Additionally, El Salvador’s coastal wetlands, represented by mangrove forests, serve 
as the primary barrier against flooding and tsunamis, mitigating erosion and coastal 
floods [47]. The mangrove areas in El Salvador encompassed approximately 38,443 ha in 
2011, which represented a 0.32% decrease compared to the areas in 1998 [47]. In terms of 
ecosystem services, a recent study indicated that losses in ecosystem services provided by 
mangroves accounted for 9% of the decline in El Salvador, underscoring the severity of 
further losses [47]. This loss diminishes the mangroves’ function as natural barriers 
against coastal floods. 

Given these factors, El Salvador represents an optimal case study for evaluating the 
GeoAI model’s efficacy in predicting coastal flood risks. The country’s substantial history 
of coastal flood events was well-documented, with openly available data extensively pro-
vided by the Dartmouth Flood Observatory (DFO). These events were also mapped spa-
tially in the Global Flood Observatory, offering valuable resources for flood risk analysis. 
Additionally, flood’s dependence on mangrove ecosystems for natural flood mitigation 
provides a comprehensive context for assessing the model’s utility. El Salvador’s vulner-
ability, attributable to frequent extreme weather events, exacerbated by socioeconomic 
challenges and limited resources for conventional flood, underscores the necessity of in-
novative predictive tools such as GeoAI. Focusing on El Salvador, this study addresses 
local flood prediction requirements and elucidates the broader applicability of the GeoAI 
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approach for other similarly vulnerable coastal regions where mangrove conservation is 
crucial as Eco-DRR. 

2.2.2. Data Preparation 
The coastal flood risk model utilized the key variables identified in Section 2.1 and 

illustrated in Figure 1. The data were selected and prepared to capture the primary drivers 
and modifiers of flood risk. The data for simulation were confined to the research bound-
ary, specifically the Low Elevation Coastal Zone (LECZ), which is considered prone to 
coastal flooding [4]. It covered all areas with an elevation below 10 m above sea level and 
hydrologically connected to the coast. The data were prepared using ArcGIS Pro 2.8. Due 
to the varying spatial resolutions of the datasets, a resampling technique was imple-
mented to harmonize the datasets to a 30 m resolution. 

The resampling functions, e.g., nearest neighbor and bilinear, were utilized to han-
dling the data. According to previous study, the optimal resampling method for preserv-
ing sharpness and pixel break in high-resolution satellite images is contingent upon the 
image processing operation, spatial resolution, and evaluation parameters [48]. Previous 
research has demonstrated that when images are resampled to high spatial resolution, the 
object statistical features and classification accuracy are minimally affected by object 
boundary uncertainty; consequently, both raster and vector object boundary transfers are 
viable approaches [49]. In light of this consideration, we subsequently utilized the nearest 
neighbor and bilinear methods for resampling our datasets. 

The bilinear technique performs a bilinear interpolation and determines the new 
value of a cell based on a weighted distance average of the four nearest input cell centers. 
It is suitable for continuous data and results in some smoothing of the data. Yet, we con-
sidered the limitation that bilinear interpolation resampling technique had a relative error 
of 7.2% in streamflow simulations [50]. For example, in hydrological modeling, bilinear 
interpolation was used to resample elevation, despite it is affecting the accuracy of river 
network extraction and streamflow simulations [50]. Bilinear interpolation tends to pro-
duce more accurate results when resampling continuous data, as it considers the values 
of surrounding pixels to create a weighted average [51]. The nearest neighbor is a 
resampling technique that involve selecting the nearest pixel value to estimate new pixel 
values. This method is suitable used for categorical or ordinal datasets [52]. However, 
nearest neighbor interpolation can lead to noticeable artifacts such as blockiness and blur-
riness, which degrade image quality [53]. We acknowledged this limitation and suggested 
advances method. For instance, sparse neighbor selection and Semi-Nonnegative Matrix 
Factorization (SNMF) can achieve higher quality super-resolution images compared to 
traditional nearest neighbor method [54] 

Below is a comprehensive description of these variables, their data characteristics, 
and the interpolation techniques employed. The variables included coastal flood occur-
rences as the target variable, alongside ESL, coastline proximity, slope, elevation, man-
grove distance, population, and settlement types. 
• The coastal flood occurrence, serving as the target variable, was defined as a coastal 

flood event lasting at least one day, as acquired from the Global Flood Database from 
2000 to 2018, https://global-flood-database.cloudtostreet.ai (accessed on 10 December 
2021). These coastal flood occurrence data were recorded as binary values (1 indicat-
ing a flood, 0 indicating no flood) [40] with raster format in 250 m grid size. However, 
potential biases, such as false positives, were acknowledged in the model-generated 
data. To harmonize the data into a 30 m grid size, we resampled the aforementioned 
data using nearest-neighbor techniques, as this pertains to classified (binary) data, 
and utilized the mask with the elevation as a boundary. 

• ESL was identified as a critical variable due to the escalating risk of coastal floods 
associated with sea-level rise [24]. We used the global ESL projections data by Euro-
pean Commission, gathered from http://data.europa.eu/89h/jrc-liscoast-10012 
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(accessed on 9 August 2021) [39]. The data, in point format, has presented probabil-
istic projections of ESL until the end of the 21st century along the global coastline, 
considering the contributions of mean sea level, tides, waves, and storm surges [39]. 
These data were utilized due to their recognition of sea level and consideration of its 
temporal variances, which address the challenges encountered in Copernicus Marine 
and ECMWF data [55,56]. Copernicus marine operational ocean models can forecast 
extreme coastal water levels with satisfactory performance but underestimate peak 
magnitudes by 10% for water levels and 18% for surges [56], while ECMWF, i.e., 
ORAS5, still underestimates the temporal variance of sea level and continues exhib-
iting large SST biases in the Gulf Stream and its extension regions [55]. For instance, 
these European Commission datasets were previous used in the study of worst-case 
scenarios for ESL [57]. 
Specifically, we used median values of the ESL data, for period baseline, RCP45-2050, 
RCP4.5-2100, RCP8.5-2050, and RCP8.5-2100 [39]. The distance of each point is ap-
proximately 25 km. We used median values of the ESL data, for period baseline, 
RCP45-2050, RCP4.5-2100, RCP8.5-2050, and RCP8.5-2100. These data were subse-
quently mapped spatially and converted into raster format with a 0.54 grid size. A 
bilinear resampling technique was employed to transform the grid size to 30 m, align-
ing with previous study [50]. We hypothesized that regions within the same grid ex-
hibit similarities in metocean and atmospheric conditions, as well as in trends of cli-
mate extremes. The inland areas with elevations below the ESL were anticipated to 
be inundated by ESL and were consequently treated as the ESL variable in meter 
units. 

• Coastline proximity is an accumulated distance for each grid within the boundary to 
the coastline. Prototype Global Shoreline Data, from NOAA, https://shore-
line.noaa.gov/data/datasheets/pgs.html (accessed on 17 September 2021), were used 
to calculate this coastline distance of each cell in 30 m grid size using Euclidean dis-
tance considering weight of other cells. The area closer to the coastline is considered 
more prone to coastal flood risk. These data were shown in an index unit. 

• Elevation and slope emerged as significant variables in assessing coastal flood risk 
[7]. Elevation was measured in meters above sea level (masl), and slope, representing 
the gradient of the land surface (degree). These data were derived from the 
CoastalDEM dataset, https://go.climatecentral.org/coastaldem (accessed on 17 Sep-
tember 2021) [41]. The data which were simply resampled from 90 m to a 30 m grid 
size using bilinear resampling methods to do this given the elevation is continuous 
variable. As mentioned earlier, in the bilinear interpolation, the values of the four 
nearest cells are averaged to determine the value of the new cell [50]. Only elevation 
below 10 m asl and hydrologically connected with coast were included in this screen-
ing. In this case, we assumed and treated sub grid features like sand dunes as part of 
the elevation data, acknowledging the potential limitations of this approach. Subse-
quently, slope values were generated based on resampled elevation data. Conse-
quently, the slope datasets were in a 30 m grid format. 

• Mangrove distribution was incorporated as a key natural barrier. Therefore, we used 
the geographic feature data of mangrove proximity, as the key variable. This variable 
was quantified by mangrove distance—the Euclidean distance from each grid to the 
nearest mangrove point [58–62]. This variable was collected from previous research 
by Giri et al., (2011), https://data.unep-wcmc.org/datasets/4 (accessed on 8 Juni 2021) 
[63]. Mangroves are recognized for their ability to attenuate wave energy and reduce 
water heights, thereby mitigating flood risks [58–62]. These data were represented in 
an index unit. 

• Population data, both baseline and projected, were utilized to assess the relationship 
between population influence to coastal flood occurrence [5]. The study used the 
Global Population Projection Grids, acquired from Socioeconomic Data and Applica-
tions Center, (SEDAC), https://doi.org/10.7927/q7z9-9r69 (accessed on 15 February 
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2022). This source provided total population estimates from 2010 to 2100 based on 
various Shared Socioeconomic Pathways (SSPs) both baseline and SSP 1–5 in 1 km 
grid size [43]. The data on 2000 were used as the baseline, while data on 2050 and 
2100 for five SSPs were used as projection datasets. Population data is in continuous 
and exhibit gradual changes across geographic areas. Therefore, to harmonize the 
data into a 30 m grid size, we used bilinear interpolation because it calculates the 
output value based on the average of the four nearest pixel values, providing a 
smoother transition and reducing the blocky appearance that can occur with nearest-
neighbor interpolation. This is particularly important in population data, where ab-
rupt changes can lead to misinterpretations of demographic distributions [51]. The 
population data were presented as number of people. 

• Settlement types were based on population size and distance to urban centers, called 
Urban Residential Catchment Areas (URCAs), acquired from Cattaneo et al. (2021) 
[44]. This study has been adapted and modified into ten categories of urban settle-
ment types to simplify it. URCA types 1 to 7 were retained in this study. URCA types 
9–28 were classified into Type 8, rural areas, while the remaining types (URCA type 
29 and 30) were maintained and classified as type 9 and type 10, respectively. This 
classification aids in evaluating the vulnerability of different settlement types to 
flooding [44]. The data were originally in 90 m grid size in a raster format. We simply 
resampled into 30 m using nearest-neighbor as the data in a categorical format. These 
data were presented in an index unit (types). 
Following the transformation of all aforementioned data to a 30 m grid size, all vari-

ables were subsequently converted and standardized into a grid-based format and con-
solidated into a feature grid-based table. We stratified the datasets to address the imbal-
ance in coastal flood occurrences, where non-flooding cases were more prevalent. Stratifi-
cation enhances risk analysis by balancing the dataset, as demonstrated in previous stud-
ies [7,64]. We then divided the stratified data into training (70%) and testing (30%) datasets 
to develop and validate the GeoAI model. 

2.2.3. Risk Simulation 
This study utilized ensemble machine learning (ML) models—RF, kNN, and ANN—

to simulate coastal flood risks. The selection of these models was informed by their proven 
effectiveness in flood risk assessments and climate change risk assessments, as docu-
mented in the literature [65,66]. The RF algorithm, an ensemble learning method, con-
structs multiple decision trees and aggregates their outputs by majority vote for classifi-
cation tasks or averaging for regression tasks. RF is known for its high precision and re-
duced bias, making it ideal for coastal flood risk classification [66]. The kNN algorithm 
uses the proximity of data points to classify data [67]. In this study, the parameter k was 
initially set to 5 and tuned to 18 to achieve the highest accuracy. ANNs were employed 
for pattern recognition and classification tasks [68]. They are particularly effective in cap-
turing complex relationships in data, making them suitable for predicting coastal flood 
occurrences. 

2.3. Evaluation of the Coastal Flood Risk Utilizing the IPCC Risk Approach 
A comparison was made using the IPCC risk framework to evaluate the GeoAI 

model’s performance against conventional approaches. The IPCC approach was applied 
to the entire study area, with key variables standardized and adjusted according to their 
relevance to hazard, exposure, and vulnerability components [69]. The performance of the 
IPCC approach was assessed by comparing its risk predictions with historical coastal 
flood occurrences. 

The IPCC approach was applied to the entire study area, with key variables stand-
ardized from 0 to 1, where 1 indicates a higher contribution to flood risk. Several adjust-
ments were made: 
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• ESL: This is used directly as a hazard component, with higher ESL indicating more 
significant risk. 

• Coastline Proximity: Reversed, so areas farther from the coast were assigned lower 
risk scores. 

• Elevation: Reversed, with higher elevations considered less risky. 
• Slope: Reversed, with flatter areas assigned higher risk scores due to increased flood 

susceptibility. 
• Mangrove Distance: Reversed, with greater distances from mangroves contributing 

more to risk. 
• Population (SSPs): Treated as a vulnerability component, with higher populations 

increasing risk. 
• Settlement Types: Reversed, assuming rural areas have lower adaptive capacity and 

higher vulnerability. 
Risk scores were calculated using two weighting methods: identical weights for all 

variables and weights based on Random Forest Feature Importance. This produced a 
coastal flood risk score from 0 to 1, with 1 indicating a high likelihood of flooding. The 
IPCC risk results were then compared to historical flood occurrences to evaluate the 
model’s accuracy. This provided a benchmark to assess the GeoAI model’s effectiveness. 
While the IPCC approach offers a standardized method, the GeoAI model may provide 
more localized and accurate predictions, especially where traditional methods may be less 
effective. 

2.4. Comparison of Model Performance 
The model’s performance was evaluated using a confusion matrix and classification 

report. The classification model can make two types of “wrong” predictions. First, the 
model could predict an area will be flooded when the area is not flooded (false positive). 
Secondly, the model could predict that an area will not be flooded when the area is flooded 
(false negative). Avoiding the second point is crucial as it aims to prevent the underesti-
mation of flood damage, which could potentially lead to countries receiving less financial 
support. Thus, the recall score should be maximized to avoid this issue. The recall is a 
measure of how many truly relevant results are returned. It was calculated by dividing 
the number of true positives (TP) by the number of true positives plus the number of false 
negatives (FN). 

A confusion matrix (metrics accuracy) and classification report were used to evaluate 
the model’s performance. The model optimization was performed to tune the model 
where recall and f1-score are expected to be higher than 60% as a threshold for the model. 
Only the model that satisfied this score will be used for further estimation and projection. 
The final coastal flood risk model was then obtained, resulting in a prediction of coastal 
flood occurrences. Furthermore, this study used these performance tests, namely recall 
score, precision score, and f1 score, to compare the results of GeoAI models with the IPCC 
risk approach for coastal flood risk assessments. As explained earlier, the recall score rep-
resents the percentage of actual positives that the model correctly identified. The precision 
score shows the actual negatives that the model correctly identified, and the f1 score is an 
average of both recall and precision scores. 

2.5. Evaluation of Spatial–Temporal Projection of Coastal Flood Occurrence Under Climate 
Change 

The final step involved projecting coastal flood risks spatially and temporally for the 
years 2050 and 2100. This was achieved by incorporating population projections (using 
SSPs 1 to 5) and ESLs (based on RCP 4.5 and 8.5 scenarios). The projected variables were 
applied to training simulation in the selected GeoAI model to generate coastal flood risk 
maps for these future periods. The coastal flood grids were used to identify and estimate 
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the populations and settlements at risk. It overlaid the coastal flood occurrence grid with 
the population and World Settlement Footprint (WSF) map from [70]. 

In the final step, this section explored the significance of mangroves as Eco-DRR, uti-
lizing the GeoAI approach derived from ML models, mainly the RF. The RF is equipped 
with an embedded library that identifies the variables that significantly contribute to the 
target variable or the occurrence of coastal floods. By highlighting the role of mangroves, 
this paper emphasizes the importance of integrating ecological approaches into disaster 
risk assessment and further coastal flood management efforts. 

2.6. Revealing Mangrove Significance Using Feature Importance Based on RF Model 
A feature importance score represents the importance of a particular feature in mak-

ing predictions. The only RF model that can provide feature significance was available. 
Thus, regardless of the prediction model employed (with a recall score greater than 60%), 
the feature significance will only be derived from the RF model in this investigation. Fea-
ture significance is determined by calculating the reduction in node impurity, considering 
the chance of accessing that node. The node probability may be determined by dividing 
the number of samples that reach the node by the total number of samples. As the value 
increases, the importance of the trait becomes more significant. This work used the Scikit-
learn toolkit to compute the feature’s importance in the RF algorithm. RF combines the 
bagging algorithm with the random subspace method. It uses decision trees as the foun-
dation for the classifier. Scikit-learn found out how important each node in a decision tree 
was by figuring out the Gini significance, which is the average increase in purity that hap-
pens when you split a variable [71]. In this case, feature importance was used to under-
stand each feature’s contribution to flood risk prediction. 

3. Results 
3.1. Coastal Flood Pathways and Key Variables 

This study identifies key variables and pathways contributing to coastal flood risk, 
focusing on geophysical, hydrometeorological, and socioeconomic factors. The selected 
variables, illustrated in Figure 2, included ESL, coastline proximity, elevation, slope, man-
grove distance, population, and settlement types. These variables were subsequently uti-
lized to predict coastal flood occurrence as the target variable. These variables were con-
sidered to play a critical role in the occurrence and extent of coastal floods. 

 
Figure 2. Coastal flood pathways and key variables adapted from [72]. 

A developed GeoAI approach was demonstrated in El Salvador as a case study to 
assess the impact of coastal flooding. El Salvador is a Central American nation with a 307 
km coastline along the Pacific Ocean. Figure 3 in the study illustrates the coastal flood 
occurrence in El Salvador between 2000–2018 as the target variable. Upon examination of 
historical records of coastal floods, a bias (false positive) in the mapping data was identi-
fied. This limitation has affected the accuracy of the simulation. Additionally, Figure 3 
presented an exploratory data analysis of the critical variables in El Salvador during the 
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baseline period. The ESLs ranged from 0 to approximately 2 m above sea level. The prox-
imity to the coastline was consistent with the slope and distribution of mangroves. Most 
areas exhibited a slope of less than 2.5 degrees and were situated within 5000 units of 
proximity to the coastline. In El Salvador’s LECZ, the population density averaged 144 
people per grid unit, with a maximum of 812 individuals per grid. The study area in El 
Salvador encompassed seven towns, eight rural areas, and nine dispersed towns, predom-
inantly comprising rural areas. 

 
(a) Coastal flood occurrence 

 
(b) ESL [m] 

 
(c) Coastline Proximity [index] 

 
(d) Elevation [m] 

 
(e) Slope [degree] 

 
(f) Mangrove distance [index] 

 
(g) Population [people] 

 
(h) Settlement Types [index] 

Figure 3. Coastal flood occurrences and seven key forcing variables in El Salvador. 

3.2. Coastal Flood Risk Utilizing the GeoAI Approach 
The study utilized three ML models—RF, kNN, and ANN—to assess coastal flood 

risks in El Salvador following a GeoAI approach. The RF model, an ensemble learning 
algorithm aggregating multiple decision trees, exhibited robust predictive capability for 
coastal flood occurrence (Figure 4a). The model’s predictions closely matched historical 
coastal flood maps, demonstrating robustness in spatially identifying areas most suscep-
tible to coastal flooding. In contrast, the kNN model underestimated coastal flood risks, 
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particularly regarding spatial predictions, as shown in Figure 4c. Meanwhile, the ANN 
model resulted in poor spatial predictions, as illustrated in Figure 4d. The model identi-
fied few coastal flood zones geographically despite being tuned. 

 
(a) Historical Coastal flood occurrence 2000–2018 

 
(b) Coastal Flood Prediction based on RF Model at the 

baseline period 

 
(c) Coastal Flood Prediction based on the kNN Model 

at the baseline period 

 
(d) Coastal Flood Prediction based on the ANN Model 

at the baseline period 
Figure 4. Comparison of historical coastal flood occurrence 2000–2018 (a) and prediction of coastal 
flood at the baseline period in El Salvador case based on RF model (b), kNN model (c), and ANN 
model (d). 

The confusion matrix and classification report were utilized to evaluate the perfor-
mance of each ML model, as illustrated in Figure 5. The GeoAI approach, employing the 
RF model, demonstrated high efficacy in predicting coastal flood occurrence. The RF 
model attained a precision score of 0.86, a recall of 0.67, and an accuracy of 0.99. However, 
the model exhibited a substantial false-negative value of 3119. In contrast, the classifica-
tion report of kNN indicated a precision score of 0.78 and a recall score of 0.39, both infe-
rior to the RF model, with considerable challenges in accurately identifying all instances 
of coastal flooding. The ANN model’s classification report revealed a precision score of 
0.79, but its recall was notably low at 0.13 despite an overall accuracy of 0.98. 
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(a) RF model 

 
(b) kNN model 

  
(c) ANN model 

Figure 5. Comparison of model performance using classification report and accuracy, specifically 
RF model (a), kNN model (b), and ANN model (c). 

3.3. Coastal Flood Risk Utilizing the IPCC Risk Approach 
The IPCC has developed a risk approach to assess coastal flood risk based on the 

combination of exposure, vulnerability, and hazard [73]. In this study, the IPCC risk ap-
proach was applied to assess the coastal flood risk in El Salvador using two methods: the 
same weights for all variables and adjusted weights based on RF feature importance re-
sults (Figure 6). RF is the only model that provides feature importance scores, which is the 
primary reason for its utilization in this study. These feature importance scores represent 
a metric that indicates the significance of a particular variable in making predictions. They 
demonstrate the relative importance of each variable in contributing to coastal flood risk. 
Figure 6 illustrates the feature importance score of each variable, considering future 
changes (utilizing updated datasets on population and ESL). A higher score indicates 
greater importance of the variable. The feature importance scores indicated that the man-
grove proximity variable exhibited the highest contribution, followed by population, 
coastline distribution, and settlement types, respectively. These scores were utilized for 
the weighting in the IPCC risk approach. 
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Figure 6. Feature importance. 

The results were presented on a map that showed the coastal flood risk range from 0 
to 1, where 1 indicates a more severe risk. The map was overlaid with historical coastal 
flood data indicated in red (Figure 7—top panel). Both weighting methods were able to 
detect coastal flood risk in a spatial manner. However, evaluating the same weighting 
method between coastal flood risk and historical occurrence revealed a higher incidence 
of coastal floods in the 0.5 risk score (Figure 7—bottom panel)., suggesting that the risk 
approach did not yield satisfactory results. Meanwhile, on the adjusted weight, a risk 
score over 0.7 detected more coastal flood occurrences, which indicated that the IPCC risk 
approach with this weighting method could detect the coastal flood. 

  
(a) IPCC risk approach–the same weight method 

 
(b) IPCC risk approach–adjusted weight method 

 
(c) Performance of the IPCC risk approach  

with same weight method  

 
(d) Performance of the IPCC risk approach  

with adjusted weight method  

Figure 7. Coastal flood risk assessment and its performance based on the IPCC risk approach over-
laid with historical flood data in El Salvador. The same weighting method (a) and its performance 
(c) and the adjusted weight method based on RF feature importance (b) and its performance (d). 
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3.4. Comparison Between the GeoAI Model and the IPCC Risk Approach 
This study compared the performance of GeoAI models with the IPCC risk approach 

for coastal flood risk assessment based on the model results (recall score, precision score, 
and f1-score), as detailed in Table 2. The RF model was chosen for its superior perfor-
mance, demonstrating higher precision, recall, and accuracy than the kNN and ANN 
models. Specifically, the RF model achieved a precision score of 0.86, correctly identifying 
86% of the predicted positive coastal flood cases. The recall score was 0.67, indicating the 
model’s ability to correctly identify 67% of the actual positive coastal flood cases. Further-
more, the RF model exhibited an impressive accuracy score of 0.99, accurately classifying 
99% of the coastal flood cases. 

In contrast, the IPCC risk approach was evaluated using two different methods: equal 
weighting for all variables and adjusted weighting based on RF feature importance. The 
results showed that the same weighting method was less effective, with an f1 score of 0.49, 
showed the lowest accuracy in terms of detecting coastal flood risk. On the other hand, 
the adjusted weighting method improved the detection of coastal flood occurrences spa-
tially, suggesting that the IPCC risk approach with this method could better identify flood 
risks. Yet, all scores showed poor results with only 0.01 score. 

Table 2. Evaluation performance of the GeoAI and IPCC risk approach. 

Metric Accuracy RF kNN ANN
IPCC Risk 

Same Weight
IPCC Risk 

Adjusted Weight
TN 471,614 471,602 472,318 74,396 465,421
FP 1031 1043 327 398,248 9481
FN 3119 5792 8339 404 7224
TP 6442 3769 1222 9158 80
Total Observation Data 482,206 482,206 482,206 482,206 482,206
Recall Score 0.67 0.39 0.13 0.96 0.01
Precision Score 0.86 0.78 0.79 0.02 0.01
f1-score 0.77 0.59 0.46 0.49 0.01

3.5. Spatial–Temporal Projection of Coastal Flood Occurrence Under Climate Change 
This study employed the RF model, identified as the best model, to project the occur-

rence of coastal floods under future climate change scenarios. The RF model demonstrated 
high accuracy when applied to future datasets (Figure 8); however, there was a noted de-
cline in recall, indicating that the model may overlook some areas at risk of coastal flood-
ing. This issue underscores the necessity of fine-tuning model parameters or incorporating 
additional data to enhance recall and overall predictive performance. Specifically, four 
projection datasets were selected based on their high recall scores to predict coastal flood 
occurrences in 2050 and 2100. For period 2050, it included RCP4.5 with SSP3 
(cf_rf_45_SSP3) and RCP8.5 with SSP4 (cf_rf_85_SSP4). While for period 2100, it included 
RCP4.5 with SSP3 (cf_rf_45_SSP3) and RCP8.5 with SSP2 (cf_rf_85_SSP2). 
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Figure 8. RF model evaluation report for baseline and projection. 

The geographical analysis for El Salvador, based on the aforementioned four projec-
tion datasets, indicated a projected rise in coastal flood spots, particularly under future 
climatic scenarios, as seen in Figure 9. The total number of predicted coastal flood points 
in the coastal zone was 29,101, which was slightly lower by 2769 points compared to his-
torical occurrences. For instance, in the RCP4.5 scenario with SSP1 in 2050, the predicted 
number of coastal floods was 22,958, lower than both the baseline model and historical 
data. However, in 2100, this number increased to 38,268, indicating a long-term impact of 
climate change. Under the RCP8.5 scenario with SSP1 in 2050, the predicted number of 
floods was 23,297, which also increased to 37,923 by 2100. Temporal comparisons within 
the RCP4.5 scenario indicated a gradual decrease in coastal flood occurrences from 22,958 
points in 2050 (SSP1_50) to 13,321 points in 2100 (SSP3_100). Conversely, under the RCP8.5 
scenario, flood occurrences increased in certain cases, particularly in SSP5, where the 
number of predicted flood points rose from 27,099 in 2050 to 49,092 in 2100. This trend 
underscores the significant impact of both climate and socioeconomic factors on future 
coastal flood risks. 
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Figure 9. Coastal flood prediction in the baseline and projection periods in 2050 and 2100 using 
RCP4.5 and RCP8.5, as well as SSP1 to SSP5 scenarios based on RF Model results in El Salvador. Cf 
is defined as the frequency of coastal flood occurrence. 

To identify future coastal flood occurrence, this study also used all the projection 
datasets (Figure 10). This combination spanned RCP4.5 and 8.5 in the period 2050 and 
2100 considering SSP1 to SSP5. In total, there were 20 scenarios compare to baseline pro-
jection and historical coastal flood occurrence. The projections indicated an increase in 
coastal flood occurrences over time, with the extent of the increase depending on the se-
lected scenario, as illustrated in Figure 10. Notably, the highest projected percentage of 
coastal flood occurrence was found in the “cf_rf_45_SSP5_100” scenario, predicting that 
3.09% of coastal floods would occur by 2100, an increase of 1.28% from the baseline. In 
contrast, the lowest projected percentage was observed in the “cf_rf_45_SSP3_100” sce-
nario, with a value of 0.83%. When comparing the periods, coastal flood occurrence was 
generally higher in 2100 than in 2050, illustrating the influence of climate and socioeco-
nomic changes on increasing flood risks over time. The projections also showed that the 
highest coastal flood percentages were associated with SSP5 scenarios in both RCP4.5 and 
RCP8.5, while the lowest percentages were linked to SSP3 scenarios. 

 
Figure 10. Percentage of coastal flood occurrence at baseline and projection based on RF Model. Cf 
means coastal flood, while cfo represents coastal flood occurrence. 
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3.6. Mangrove Significance as Eco-DRR on Coastal Flood Risk Reduction 
The study utilized the GeoAI approach to assess the impact of various variables on 

coastal flood occurrences, with particular emphasis on the role of mangroves. The RF 
model revealed that proximity to mangroves was the most significant variable influencing 
coastal flood risk, achieving a feature importance score of 0.34. The results demonstrated 
a negative relationship between mangrove proximity and flood occurrence, suggesting 
that the closer an area is to mangroves, the higher the likelihood of flood occurrence. Spe-
cifically, coastal floods were more frequent within 0–500 m of continuous mangroves, with 
over 11,000 flood points observed in this range, as illustrated in Figure 11. In contrast, 
regions further than 1500 m from mangroves, particularly areas without continuous man-
grove coverage, experienced significantly fewer floods. Spatial analysis of the El Salvador 
coastline further supported these findings, showing that areas with dense mangrove pres-
ence had substantially fewer flood points than regions lacking continuous mangrove 
cover. In areas with continuous mangroves, only 3786 grids of coastal floods were rec-
orded, while 371,751 grids in the same region were flood-free. Additional variables, such 
as coastline proximity and population density, also played a role in flood risk, each with 
an importance score of 0.23. 

 
Figure 11. Coastal flood prediction in the baseline and projection periods in 2050 and 2100 using 
RCP4.5 and RCP8.5, as well as SSP1 to SSP5 scenarios based on RF Model results in El Salvador. 

4. Discussion 
Identifying coastal flood pathways and key variables is essential for effective flood 

risk management. Using coastal flood occurrence as a binary variable in the GeoAI model 
provided a clear framework for simulating flood risks. However, potential biases in the 
flood occurrence data, such as false positives, must be carefully considered to ensure the 
accuracy of the results [40]. The seven key variables identified have revealed their rela-
tionship to coastal flood occurrences. Including ESL as a key variable reflects the growing 
urgency of addressing sea-level rise. The study’s findings underscore the need for incor-
porating TWL in flood risk assessments. The probabilistic projections of ESL under differ-
ent emission scenarios offer a robust foundation for long-term flood risk management 
strategies [74,75]. Furthermore, the study reaffirmed the significance of elevation and 
slope in determining coastal flood risks. Low-lying areas with low gradient slopes are 
particularly vulnerable to flooding, emphasizing the importance of detailed topographic 
data in flood risk assessments. According to previous studies, slope contributed to over 
25% of flood risk prediction [76]. 
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In integrating geographic features, coastal proximity and mangrove distance were 
also found essential for the simulation. Mangroves are crucial in mitigating flood risks, 
acting as natural barriers that reduce wave energy and water heights. The inclusion of 
mangrove distance as a variable in the model highlights the importance of preserving 
these ecosystems for coastal flood protection. The study’s findings align with previous 
research that has demonstrated the effectiveness of mangroves in reducing the impact of 
coastal floods [58–62]. The study’s focus on population distribution and settlement types 
adds a critical dimension to coastal flood risk prediction. By considering SSP data on pro-
jected population growth, the research provides valuable insights into the future impacts 
of flooding on different settlement types. The classification of settlements based on their 
proximity to urban centers and population density helps prioritize areas for adaptation 
efforts, particularly those most at risk [4,5,44]. 

The GeoAI-based coastal flood risk assessment in El Salvador revealed that the RF 
model outperformed the kNN and ANN models’ prediction accuracy and spatial distri-
bution of coastal flood risks. The RF model’s high precision and accuracy indicate its ro-
bustness in predicting coastal flood events and its potential value in disaster preparedness 
and response strategies [77]. However, the model’s significant number of false negatives 
raises concerns, as these missed predictions could have critical implications for disaster 
risk management, particularly in areas where the model does not sufficiently capture 
coastal flood risks. This limitation suggests that additional variables, such as land-use 
changes and wave dynamics, might need to be incorporated into the model to enhance its 
predictive capability [78]. 

The kNN model, while simpler and easier to implement, demonstrated significant 
limitations in predictive accuracy, particularly in spatial predictions. The lower precision 
and recall scores compared to the RF model suggest that the kNN model may not fully 
capture the complexity of coastal flood dynamics. The underestimation of flood risks and 
the higher number of false positives could lead to unnecessary emergency responses, 
highlighting the importance of model selection in risk assessment studies. The results 
align with previous studies that found kNN models to be less effective than RF in similar 
contexts [7,78]. 

Conversely, the ANN model, while theoretically capable of capturing complex pat-
terns in data, underperformed in this study. Even after optimization, the model predicted 
a minimal number of coastal flood occurrences. The ANN model’s poor performance, par-
ticularly its low recall score, points to potential issues related to class imbalance in the 
training data. The model’s tendency to predict the majority class (non-flooding events) 
more frequently than the minority class (flooding events) likely contributed to its inability 
to accurately predict coastal floods [68]. This finding underscores the importance of ad-
dressing data imbalances when applying ANN models in environmental risk assessments. 
Additionally, the model’s limited consideration of relevant variables, such as typhoon fre-
quency and topographic wetness index, may have further hindered its predictive capabil-
ity [64,65,77]. 

The comparison between the GeoAI Model and IPCC risk results underscores the 
effectiveness of the GeoAI approach, particularly the RF model, in predicting coastal flood 
risks. The superior performance of the RF model aligns with previous studies that demon-
strated its high sensitivity and effectiveness in flood hazard risk assessments. Wang et al. 
(2015) highlighted the RF model’s ability to efficiently handle large databases and provide 
accurate predictions by estimating the importance of specific variables [79]. Similarly, its 
use in modeling urban coastal flood severity from crowd-sourced data further validated 
its low false negative rate and robust predictive capabilities [66]. In contrast, the IPCC risk 
approach, which relies heavily on historical data and a weighting method, was found to 
be less effective in capturing the complex dynamics of coastal flood occurrences. The IPCC 
risk approach requires human intervention (assigning weights to features) and has limi-
tations in handling multi-dimensional data [80]. The equal weighting method, in particu-
lar, failed to provide reliable risk assessments, as evidenced by the concentration of flood 
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occurrences at a mid-range risk score. However, when the IPCC approach was adjusted 
based on RF feature importance, its performance improved, indicating that variable 
weighting plays a crucial role in risk detection accuracy. The results of this study are con-
sistent with previous studies that also found the limitations of the IPCC risk approach in 
predicting coastal flood risk accurately. For instance, Lin (2019) [81] noted that the IPCC 
risk approach underestimated the flood risk in some regions due to the lack of considera-
tion of local topography and land cover characteristics. In summary, utilizing the GeoAI 
approach advances the accuracy of the coastal flood risk assessment. 

The advantages of the GeoAI approach, specifically its ability to integrate diverse 
data sources, including spatial and temporal data, were evident in its superior perfor-
mance over the IPCC approach. GeoAI’s capability to analyze complex datasets and iden-
tify patterns that traditional methods might overlook was crucial in enhancing coastal 
flood risk predictions. This aligns with findings from Li and Hsu (2022), who demon-
strated the efficacy of GeoAI and deep learning in accurately assessing coastal flood risk 
in specific areas [21]. The comparison between the GeoAI and IPCC approaches also high-
lights the flexibility and tunability of ML models like RF, which can be optimized to 
achieve high accuracy, unlike the more rigid IPCC approach. Additionally, GeoAI was not 
influenced by the weighting method that challenged the IPCC risk approach. This study, 
therefore, reinforces the potential of GeoAI as a powerful tool for coastal flood risk assess-
ment, offering more detailed and reliable insights for risk management and disaster pre-
paredness. The findings contribute to the growing body of literature advocating for the 
integration of advanced GeoAI methodologies in environmental risk assessments, partic-
ularly in the context of climate-induced coastal flooding [19–21,82]. 

The spatial-temporal analysis underscores the effectiveness of the RF model in pro-
jecting future coastal flood occurrences under various climate and socioeconomic change 
scenarios. Despite its effectiveness, there was a slight decline in recall, suggesting that the 
model could underestimate risks in some areas. Based on RF projections of coastal flood 
occurrences, the findings are consistent with existing literature, which indicates a rising 
trend in coastal flood risk due to factors such as sea-level rise and increased storm surges 
[74,83,84]. The variations in coastal flood occurrences across different SSPs and RCPs high-
light the significant role of climate and socioeconomic factors in influencing flood risks. 
Specifically, the higher flood percentages associated with SSP5 scenarios suggest that re-
gions with fossil-fuel-driven development may be more vulnerable to coastal flooding, 
aligning with the assumptions of the RCP8.5 scenario regarding higher greenhouse gas 
emissions and more severe climate impacts [85]. The spatial analysis of coastal flood oc-
currences in El Salvador further illustrates the model’s utility in identifying regions at 
heightened risk. The increased predicted flood points over time, particularly under 
RCP8.5, indicate the potential for more severe flooding, necessitating proactive measures 
to mitigate these risks. The comparison between different periods within the RCP4.5 and 
RCP8.5 scenarios underscores the complex interplay between climate change and socio-
economic developments in shaping future flood risks. 

To reveal the contribution of mangroves in reducing coastal flood risk, the feature 
importance results strongly emphasize the importance of mangroves as critical natural 
barriers against coastal floods, aligning with previous studies highlighting their role in 
mitigating flood risks [59]. The study revealed that proximity to mangroves significantly 
reduces flood occurrences, as observed in the El Salvador region. Mangrove proximity 
contributed one-third of the flood risk prediction (0.34), while coastline proximity ac-
counted for nearly one-quarter (0.23), as shown in Figure 6. This finding is consistent with 
research demonstrating that mangrove belts—whether thousands or hundreds of meters 
wide—can significantly decrease the impact of coastal flooding by reducing storm surge 
height, wave energy, and wind velocity [8,58,61,62]. 

Mangroves’ protective capacity stems from their complex root systems, which stabi-
lize coastlines, reduce erosion, and attenuate wave forces. Their ability to reduce storm 
surge heights by up to 66%, as observed in regions like the Philippines and Vietnam, 
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underscores their effectiveness in protecting vulnerable coastal zones [58,60]. In El Salva-
dor, areas with continuous mangrove cover experienced fewer floods, reinforcing the hy-
pothesis that intact mangrove ecosystems play a crucial role in flood mitigation. 

While other variables, such as coastline proximity and population density, were also 
crucial in predicting flood risk, their influence was secondary to that of mangroves. The 
results highlight the need to prioritize the preservation and restoring mangrove ecosys-
tems as a nature-based solution for coastal flood risk reduction. This finding is consistent 
with global research underscoring mangroves’ role in reducing flood heights, duration, 
and impacts in low-lying coastal areas [14,59–61]. 

Furthermore, we emphasized the low contribution of ESL (2%) in the coastal flood 
risk prediction. Previous studies have revealed that ESL was one of the key factors influ-
encing the coastal flood hazard between 2000 and 2100 [86,87], although the percentage 
contribution was not mentioned. In this study, we used the point data of ESL, which 
acknowledges the combination of the mean sea level, tides, waves, and storm surges [39]. 
However, our limitation was shown in spatialization into grid-based data format, result-
ing in higher bias, which affects the ESL contribution results in the model. 

Additionally, ESL’s low importance score was also attributed to the local character-
istics of the interaction of ESL with other variables, such as the sole factor of tide and wave, 
as well as geomorphology [33,34,88], which the study has omitted. The absence of wave-
specific data in the current model limits the direct assessment of wave overtopping and 
inundation as contributing factors. The waves were recognized as one of the main physical 
drivers of wave overtopping and inundation in El Salvador [46]. For instance, the case of 
sea swell events from April to May 2015 led to extreme coastal flooding in El Salvador, 
with 268 m of inundation and extreme erosion of 268 m [46]. As mentioned earlier, the 
inter-play between waves and tides could influence nearshore wave heights, increasing 
the danger of flooding at elevated water levels [33,34]. Moreover, previous studies have 
found that mean tide was the second highest contributor to compound flood in coastal 
zones in addition to rainfall [7]. Therefore, further research should explore the concept of 
calculating the contribution of wave dynamics, tide and surge heights [7,74], to provide a 
more comprehensive analysis of physical drivers influencing coastal flooding. 

5. Conclusions 
This study provides critical insights into the role of GeoAI models, particularly RF, 

in predicting coastal flood risks in El Salvador, revealing their advantages over traditional 
methods like the IPCC approach. The research successfully identified key coastal flood 
pathways and areas of heightened vulnerability by integrating key variables such as ESL, 
elevation, slope, coastal proximity, mangrove ecosystems, population, and settlement 
types to predict coastal flood occurrences. The incorporation of mangrove proximity into 
the model highlighted the significant protective role of mangroves as natural barriers, 
consistent with existing research that underscores their effectiveness in reducing flood 
risks. Additionally, the study demonstrates that low-lying, low-gradient areas with lim-
ited natural defenses are particularly susceptible to flooding, underscoring the importance 
of detailed topographic and geographic data in flood risk assessments. The model’s inclu-
sion of socioeconomic variables, such as population density and settlement type, offers a 
more nuanced understanding of flood exposure and potential future impacts under vari-
ous climate change scenarios. In particular, the research emphasizes the importance of 
considering future urbanization trends and population growth in flood risk management 
strategies. 

Comparison results showed that the RF model outperformed the kNN and ANN 
models in predicting coastal flood risk accuracy and spatial distribution. However, its ten-
dency to produce false negatives underscores the need for further refinement, possibly by 
including additional variables such as land-use changes and climate variability. Despite 
these limitations, the RF model’s ability to integrate diverse data sources and its flexibility 
in handling complex datasets make it a valuable tool for coastal flood risk assessments. 
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Moreover, the spatial-temporal projections indicate that future flood risks are likely to 
increase due to sea-level rise and more frequent extreme weather events, particularly un-
der high-emission scenarios such as RCP8.5. This finding highlights the urgency of imple-
menting proactive adaptation measures, especially in regions projected to face higher 
flood percentages under fossil fuel-driven development scenarios. 

This study’s findings strongly advocate for the preservation and restoring mangrove 
ecosystems as a critical nature-based solution for eco-DRR. Future research should aim to 
improve model accuracy by incorporating dynamic factors such as land-use changes and 
refining the approach to address false negatives. Additionally, integrating climate and so-
cioeconomic scenarios into flood risk assessments will be essential for developing adap-
tive strategies that protect vulnerable coastal populations and infrastructure in the face of 
accelerating climate change. 
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