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Highlights:

What are the main findings?

• Non-stationary design flood estimation considering historical information
• Propose a novel time-varying P-III distribution curve fitting (Tv-P3/CF) model

What is the implication of the main finding?

• Comparative study of reservoir indices and parameter estimation methods helps identify the
most effective methods for estimating design floods in varying hydrological contexts.

• Analyze design flood estimation results in Three Gorges Reservoir operation period for reser-
voir operation

Abstract: Design floods are traditionally estimated based on the at-site annual maximum flood
series, including historical information of hydraulic structures. Nevertheless, the construction and
operation of upstream reservoirs undermine the assumption of stationarity in the downstream flood
data series. This paper investigates non-stationary design flood estimation considering historical
information from the Three Gorges Reservoir (TGR) in the Yangtze River. Based on the property that
the distribution function of a continuous random variable increases monotonically, we proposed
a novel time-varying P-III distribution coupled with the curve fitting method (referred to as the
Tv-P3/CF model) to estimate design floods in the TGR operation period, and we comparatively
studied the reservoir indices and parameter estimation methods. The results indicate that: (1) The
modified reservoir index used as a covariate can effectively capture the non-stationary characteristics
of the flood series; (2) The Tv-P3/CF model emphasizes the fitness of historical information, yielding
superior results compared to time-varying P-III distribution estimated by the maximum likelihood
method; (3) Compared to the original design values, the 1000-year design peak discharge Qm and
3-day and 7-day flood volumes in the TGR operation period are reduced by approximately 20%, while
the 15-day and 30-day flood volumes are reduced by about 16%; (4) The flood-limited water level
of the TGR can be raised from 145 m to 154 m, which can annually generate 0.32 billion kW h more
hydropower (or increase by 6.8%) during flood season without increasing flood prevention risks.

Keywords: cascade reservoirs; non-stationary; time-varying moment; reservoir index; P-III distribution;
curve fitting method; maximum likelihood method; Three Gorges Reservoir

1. Introduction

Traditional design floods for hydraulic structures such as reservoirs are based on the
at-site annual maximum flood data series being stationary hypothesis, and historical flood
events and observed flow discharge data series are used for flood frequency analysis [1].
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According to Specification for Calculating Design Flood of Water Resources and Hydropower
Projects in China [2], Pearson type III (P-III or P3) distribution coupled with the curve fitting
method (referred to as the P3/CF model) is recommended to estimate the design flood for
a given design frequency. The theoretical frequency curve derived using the P3/CF model,
based on the criterion of minimizing the sum of squared deviations between the empirical
and model-based frequency points, is plotted on the Hessian probability graph [3]. This plot
effectively demonstrates the fit of the annual maximum flood data series, with particular
emphasis on the accurate representation of historical flood events. The flood hydrograph of
typical year is selected and used to derive the design flood hydrograph using the peak and
volume amplitude method [3,4]. Then, the design flood hydrograph is used to determine
the reservoir flood prevention storage and characteristic water levels through reservoir
flood routing, of which the flood-limited water level (FLWL) is a key parameter to balance
flood control risk and comprehensive reservoir benefits [5,6]. This type of design flood is
mainly used to determine spillway dimensions and dam height and is referred to as the
“design flood in reservoir construction period” [7,8].

In recent decades, climate change and human activities have altered the hydrological
regime of rivers [9–13]. As a result, the observed hydrological data series may no longer
meet the stationary assumption requirements for the traditional P3/CF model, which
means that the statistical properties (such as mean, variance, and skewness) of the an-
nual maximum flood data series have changed [14,15]. Several studies have shown that,
among all factors, including global climate change and intensified human activities, the
construction and operation of reservoirs is the most significant factor affecting the statistical
characteristics of the flow data series [16–20]. Therefore, considering the regulation effects
of upstream reservoirs and updating the FLWLs based on the “design flood in reservoir
operation period” [8] have significant theoretical and practical value for high-efficient
utilization of flood water resources.

Two approaches, the flood regional composition (FRC) method [8,21,22] and non-
stationary flood frequency analysis method [23,24], have been used to consider the impacts
of upstream reservoirs on downstream design floods. The FRC method relies on a simplified
event-based scheme to represent the flood generation mechanisms at the investigated
reservoir within the river network and to account for the human-defined operation rules
of the reservoirs [8]. The restored natural flood data series used in the FRC method is
stationary, while the non-stationarities of reservoir operation are explicitly addressed by
the reservoir operation rules. However, hydrologic- or hydraulic-based model simulations
generally require a substantial amount of data, which is not always available in practice.
Furthermore, the high computational costs associated with these simulations can impede
their application on large basins [25,26].

On the other hand, non-stationary flood frequency analysis methods in a changing
environment can be classified into three categories. The first one involves the backward
or forward reconstruction method [27,28], which employs specific correction measures
to eliminate the effects of non-stationarities in the hydrological series caused by cascade
reservoirs, thereby the reconstructed stationary series is then used for flood frequency anal-
ysis based on the stationary assumption. However, the causes of non-stationarity are very
complex. Current methods struggle to fully eliminate the non-stationary factors and restore
a stationary series. The second option is to mix multiple distinct distribution functions
to account for the heterogeneous nature of the flow data series [29,30]. Nevertheless, this
approach is not appropriate for basins with relatively homogeneous flood sources, which
represent a special case characterized by a single flood population. An example of such a
basin is the Yangtze River, where extreme floods are predominantly driven by heavy storm
rainfall [31]. The third category is the time-varying moment method, which embeds certain
covariates (time variables and physical predictors that have a causal relationship with the
hydrological sequence) to explain the variation in the probability distribution parameters
for describing the non-stationary characteristics [32–34]. Rigby and Stasinopoulos (2005)
and Stasinopoulos and Rigby (2007) introduced the Generalized Additive Models for Lo-
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cation, Scale, and Shape (GAMLSS) model, an efficient tool that enhances the clarity and
intuitiveness of time-varying parameter models [35,36]. This development has significantly
advanced the field of non-stationary flood frequency analysis in recent years [15,20,37–39],
which generally necessitates simplified indices that facilitate a low-cost, implicit quantifi-
cation of reservoir impact, focusing on a limited number of system characteristics based
on the observed behavior. One such index is the reservoir index [40,41], which evaluates
the reservoir impact in proportion to the ratio of the total reservoir capacity to the annual
mean runoff at the catchment control section.

The GAMLSS model typically employs the maximum likelihood method to estimate
time-varying parameter models [42–45]. However, the validity of parameter estimation
methods for P-III distribution based on the likelihood function, such as the maximum
likelihood and Bayesian methods, is restricted to samples with absolute skewness not
greater than two [46]. Furthermore, during the initial design stage of reservoirs based
on the stationary assumption, design flood estimation thoroughly incorporates historical
flood events, including the magnitude and rank of historical information. The maximum
likelihood method, however, accounts for the historical information by assuming that the
observed series shares the same order moments as the series from the entire investigation
period, excluding extraordinary floods, which potentially increases the uncertainty in
design flood estimates [47–49].

The aim of this study is to investigate non-stationary design flood estimation con-
sidering historical information in the reservoir operation period and propose a novel
time-varying P-III distribution coupled with the curve fitting method (referred to as the
Tv-P3/CF model). This approach uniquely emphasizes the integration of time-varying P-III
distribution with the curve fitting method, thereby filling a critical gap in the application
of the existing maximum likelihood method in non-stationary flood frequency analysis.
Furthermore, the consideration of historical flood information can enhance the accuracy of
design flood estimates. Moreover, a comparative analysis of various reservoir indices and
parameter estimation techniques are conducted to evaluate the model performance. The
present paper is structured as follows. Section 2 describes the methodology used in this
study. In Section 3, the study area and the material are briefly introduced. Section 4 presents
the Three Gorges Reservoir (TGR) on the Yangtze River in China, the world’s largest reser-
voir, selected as a case study. The last two sections are dedicated to the discussion and
conclusion of this study, respectively.

2. Methodology

Figure 1 shows the flowchart of non-stationary design flood estimation in the reservoir
operation period considering historical information, which comprises four main mod-
ules. The first module conducts a preliminary analysis of non-stationarity in the annual
maximum flood series by trend analysis and change point detection. The second module
constructs the time-varying parameters of P-III distribution with covariates based on the
generalized linear additive model and uses the maximum likelihood method to estimate the
parameters. In the third module, the Tv-P3/CF model is proposed to estimate design floods
in the reservoir operation period. The fourth module derives the design flood hydrograph
and analyzes benefits and risks of the TGR.

2.1. Preliminary Analysis of Non-Stationarity Annual Maximum Flood Data Series

Non-stationarity is the opposite of stationarity, meaning that a non-stationary hydro-
logical series can be understood as one that contains trends, discontinuities, or periodicities.
Considering that periodicity typically occurs within a year rather than inter-annually, the
preliminary diagnosis of non-stationarity in the annual maximum flood series generally
does not include periodicity [20]. This module preliminary analyzes the non-stationarity
in the annual maximum flood data series using the Mann–Kendall trend test [50–52] and
Pettitt’s test [53] for change point detection.
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Figure 1. Flowchart of non-stationary design flood estimation in the reservoir operation period
considering historical information.

2.1.1. Mann–Kendall Trend Test

For the time series x1, x2, . . ., xn (n is the sample number), the Mann–Kendall test is
based on testing the Sk statistic, defined as follows:

Sk =
k

∑
i=1

i

∑
j=1

γij (k = 1, 2, 3, · · · , n) & γij =

{
1 xi > xj
0 xi < xj

(1)

Assuming that the samples are independent and after standardizing Sk, the statistic
UFk of the Mann–Kendall test is calculated as follows:

UFk =
Sk − E(Sk)√

Var(Sk)
(2)

where E(Sk) and Var(Sk) are the mean and variance of Sk, respectively.
Applying the above steps to the inverse sequence of the time series, the inverse

sequence xn, xn−1, . . ., x1 is denoted as x′1, x′2, · · · , x′n, then UFk of the inverse sequence is
defined as follows: {

UBk = −UFk′

k = n + 1 − k′ k = 1, 2, · · · n
(3)

If UFk is greater than 0, the series has an upward trend; otherwise, the series has a
downward trend. Given a significance level α, UFk > Uα means a significant trend change
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in the series. Moreover, if the curves of UFk and UFk intersect within the interval of the
significance level, then the intersection point is the moment when the mutation begins.

2.1.2. Pettitt’s Test for Change Point Detection

Based on the assumption that there is no mutation in the sequence, the moment τ
satisfies the following relationships:

Kτ = |Uτ,n| = max(|Ut,n|) & Ut,n =
t

∑
i=1

n

∑
j=t+1

sgn(xj − xi) 1 ≤ t ≤ n (4)

where, xi and xj are the variables in the sequence to be examined; n is the length of the
sample sequence; and Ut,n is the new sequence formed based on the number of times the
first sample sequence exceeds the second sample sequence.

Then, τ is the point at which the mutation occurs, and the approximate probability for
a two-sided test is calculated according to the following:

p = 2 exp
(

−6K2
τ

T2 + T3

)
(5)

If the p-value is less equal to 0.05, it means that the detected mutation point
is significant.

2.2. Current Stationary Design Flood Estimation Method in China

P-III (P3) distribution, a generalized Gamma distribution, is one of the most popular
distributions for fitting annual maximum flood magnitudes [54–56], and it has been rec-
ommended by the Ministry of Water Resources, China [2], as the standard distribution for
stationary flood frequency analysis in China. Let the stationary annual maximum flood
data series X follow a P-III distribution with a density function f (x), as follows:

f (x) = βα

Γ(α) (x − a0)
α−1 exp[−β(x − a0)]

a0 < x < +∞, 0 < β < +∞, 0 < α < +∞
(6)

where Γ(•) is the Gamma function; x is a realization of X; and a0, β, and α are the location,
scale, and shape parameters of the P-III distribution, respectively.

The curve fitting method, recommended by the Ministry of Water Resources in China
for parameter estimation of P-III distribution, utilizes the sum of squared deviations (SSD)
criterion to minimize the discrepancy between the empirical data and model points [2,57].
As a result, P-III distribution coupled with the curve fitting method (P3/CF model) provides
a widely applicable approach for estimating design floods under the stationary assumption.

It should be noted that the magnitude of historical flood events significantly exceeds
that of observed floods, with their return periods being much longer than those of observed
floods. However, extreme values in observed floods can also reach the magnitude of
historical flood events. Therefore, both observed extraordinary floods and historically
investigated flood events form an extraordinary non-continuous flood series, which requires
special treatment in frequency analysis [58]. The plotting position formula for a non-
continuous annual maximum flood data series is expressed as follows [57,59]:

F̃Yt(yt) =

{
PM = M

N+1 M = 1, 2, . . . , a

Pm = 1
N+1

[
a + N−a+1

n−l+1 (m − l)
]

m = l + 1, l + 2, . . . , n
(7)

where PM and Pm are the empirical frequency of the Mth extraordinary floods and the
mth observed floods, respectively; M represents the flood rank in the extraordinary flood
sequence (M = 1, 2, . . . , a; a is the number of extraordinary floods); N denotes the length of
the entire investigation period, which covers the historical information and observed floods;
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m denotes the flood rank in the observed flood sequence; n is the number of observed floods;
and l represents the number of floods identified as extraordinary from the observed floods.

2.3. Non-Stationary Design Flood Estimation Method

In non-stationary flood frequency analysis, time-varying moment models for flood
variables are typically constructed using the GAMLSS model [60], with parameters cur-
rently estimated by the maximum likelihood method [35].

2.3.1. Reservoir Index as Covariates

There are various indicators proposed to implicitly measure the impact of reservoir
regulation on the downstream flow regime and flood data series. For example, Batalla
et al. (2004) quantified the reservoir impact using the ratio of the total reservoir capacity
upstream of a hydrological station to the station’s annual average runoff [61]. López and
Francés (2013) introduced the reservoir index (RI) based on the drainage area controlled
by the reservoir and its regulation capacity [40]. B. Xiong et al. (2019) developed the
reservoir–rainfall coupling coefficient based on multi-day antecedent rainfall inputs [62].
The performance of time-varying parameter models varies with different evaluation in-
dicators, which also affects the results of flood frequency analysis. Due to the difficulty
of obtaining rainfall data corresponding to historical information and to account for the
spatial distribution of upstream reservoirs, the reservoir index (RI) was chosen in this
study to measure the impact of reservoirs on the annual maximum flood series, which is
expressed as follows:

RI =
J

∑
j=1

( Aj

A

)
·
(Vtol,j

R

)
(8)

where J is the number of upstream reservoirs at the design section; Aj and A denote the
catchment area of each reservoir and the design section (km2), respectively; Vtol,j represents
the total capacity of each reservoir (billion m3); and R is the mean annual runoff at the
design section (billion m3).

In reservoir flood control operation, it is reservoir flood regulation storage rather than
its total storage capacity that plays a crucial role in mitigating the flood process [6]. Given
that the annual runoff distribution at hydrological stations varies throughout the year,
the average annual runoff R might not provide an accurate measure of the flood volume
during the flood season. Cui et al. (2023) suggested the flood regulation storage Vfr,j and
multi-year average runoff during the flood season Rf to substitute Vtol,j and R in Equation
(9), respectively, resulting in the modified reservoir index (MRI), as follows [63]:

MRI =
J

∑
j=1

( Aj

A

)
·
(Vfr,j

Rf

)
(9)

2.3.2. Time-Varying P-III Distribution Coupled with the Maximum Likelihood Method

1. Time-varying P-III distribution
For the non-stationary annual maximum flood data series, it is assumed that the

parameters of the distribution function vary with the covariates. Let flood variable Yt
follow the time-varying P-III distribution with a density function fYt(•), as follows:

fYt(yt|RI; Ω) =
β

αt
t

Γ(αt)
(yt − a0t)αt − 1 exp[−βt(yt − a0t)]

a0t < yt < +∞, 0 < βt < +∞, 0 < αt < +∞
(10)

where yt is a realization of Yt; a0t, βt, and αt are the location, scale, and shape parameters
of the time-varying P-III distribution, respectively; RI denotes the reservoir index, which
serves as a covariate in the model; and Ω represents the parameter set of the time-varying
P-III distribution.
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2. Relationship between covariates and time-varying moments
Presuming that the non-stationarity of the flood series can be explained by the changes

in statistical characteristics [54,64], the time-varying moments model can be established
by constructing the generalized linear additive formulation of the distribution parameters
with respect to a vector of covariates based on the GAMLSS model [35,36]. For time-varying
P-III distribution, the following points should be noted:

(1) The shape parameter αt, which controls the tail behavior of the P-III distribution
frequency curve, is highly sensitive to historical flood events [65,66]. It is challenging to
determine its causal relationship with the reservoir index when the historical information
is limited and the TGR has not been influenced by the regulation of upstream cascade
reservoir during those historical flood events. Therefore, the shape parameter of P-III
distribution generally remains constant.

(2) The impact of cascade reservoirs on downstream hydrological regimes indicates that
reservoir regulation reduces the mean value of the annual maximum flood series [62,66,67].
Given the relationship between the location, scale parameters, and the mean value of
the sample, EYt = αtβ

−1
t + a0t, the mean value is inversely proportional to the location

parameter and the reciprocal of the scale parameter. Therefore, the location and scale
parameters of P-III distribution can be expressed as functions of the reservoir index [7,60].

(3) To meet sample space constraints and facilitate parameter estimation, the natural
logarithm function ln(•) is chosen as the link function ga0(•) and gβ(•) for a0t and β−1

t ,
respectively, while the identity function is chosen for the shape parameter αt [7,66].

In short, let Ω = {ω10, ω11, ω20, ω21, ω30}, each parameter can be expressed as a
function of the (modified) reservoir index via a link function as follows:

ga0(a0t) = ln(a0t) = ω10 + ω11 × RI
gβ

(
β−1

t

)
= ln

(
β−1

t

)
= ω20 + ω21 × RI

gα(αt) = α = ω30

(11)

3. Maximum likelihood estimation method
The maximum likelihood method, which estimates parameters by maximizing the

probability distribution’s likelihood function, is one of the most commonly used approaches
for solving time-varying moment models [35,66]. When incorporating historical flood
information, it is generally assumed that the n − l items of the observed flood series
correspond to the moments of the same order as the N − a items, excluding an item
of extraordinary floods. This assumption equates the geometric mean of the likelihood
functions of both the n − l observed series and the N − a series [47,48,58]. Consequently,
the maximization of the logarithmic likelihood function, ln L, can be formulated as follows:

max ln L =
a

∑
t=1

ln fYt(yt|RI; Ω) +
N − a
n − l

n+a−l

∑
t=a+1

ln fYt(yt|RI; Ω) (12)

Time-varying P-III distribution coupled with the maximum likelihood estimation
method is referred as the Tv-P3/ML model in this study. Obviously, when αt < 1, i.e.,
skewness ≤ 2, the lnL for a0t is the minimum ordered sample yt(1) = min{y1, y2, y3, . . .,
yT}, then βt and αt have no estimates by the maximum likelihood method; the likelihood
function goes to infinity as yt(1) →αt [68].

2.3.3. Time-Varying P-III Distribution Coupled with the Curve Fitting Method

This module purposes time-varying P-III distribution coupled with the curve fit-
ting method (Tv-P3/CF model) based on the property that the distribution function of a
continuous random variable increases monotonically with the random variable itself.

Under non-stationary conditions, the P3/CF model cannot capture the time-varying
parameter characteristics. This study proposes a time-varying P-III distribution coupled
with the curve fitting method (Tv-P3/CF model), which acknowledges that despite the
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time-varying parameters of P-III distribution not being fixed, the cumulative distribution
function FYt(yt|RI; Ω) continues to increase monotonically with the increase in the annual
maximum flood variable yt. Let Zt = FYt(Yt|RI; Ω) , then

FZt(zt) =



0 zt ≤ 0
P(FYt(Yt) ≤ zt|RI; Ω) = P

(
Yt ≤ F−1

Yt
(zt|RI; Ω)

)
= FYt

(
F−1

Yt
(zt|RI; Ω)

∣∣∣RI; Ω
)

0 < zt < 1
= zt

1 zt ≥ 1

(13)

Thus, FYt(yt|RI; Ω) follows the standard uniform distribution, i.e., FYt(yt|RI; Ω) ∼
U(0, 1). Based on Equation (13), the process of fitting the empirical frequency points of
annual maximum flood samples to the theoretical distribution quantiles of the time-varying
P-III distribution is outlined, then the time-varying parameters of P-III distribution are
estimated using the curve fitting method.

1. Calculate the theoretical and empirical cumulative probabilities of flood variables
From Equation (13), it is evident that the theoretical cumulative probability of the

random variable Zt is equal to itself, i.e., FZt(zt) = zt. From Zt = FYt(Yt|RI; Ω) , it follows
that zt = FYt(yt|RI; Ω) and FZt(zt) = FYt(yt|RI; Ω) . Similarly, the empirical cumulative
probability of Zt can be determined by F̃Zt(zt) = z̃t = F̃Yt(yt), according to Equation (13).
F̃Yt(yt) is based on the specific values of flood variates yt in the non-continuous flood data
series, sorted in descending order. The empirical cumulative probabilities of flood variables
are calculated by plotting position formulas in Equation (7).

2. Q–Q plot of theoretical and empirical cumulative probabilities
The Q–Q plot (quantile–quantile plot) is a probability plot used to compare two

probability distributions by plotting their quantiles against each other [69], which can
also be used as a graphical tool for estimating the parameters in a location-scale family
of distributions [70]. Then, the Q–Q plot can be utilized to assess the fitness between the
empirical frequency and the quantiles of the distribution model, which aids in determining
whether the two flood datasets exhibit the same distribution.

To meet the requirements of design flood estimation, which emphatically focuses on
observing extreme events based on the historical information in the right tail [2,58], the
axes of the Q–Q plot can be adjusted to widen the frequency intervals in the tail region.
Given the similarity between the Gamma distribution and the P-III distribution, the inverse
cumulative distribution function of the Gamma distribution is used as the coordinate scale.
The Q–Q plot is then obtained by plotting the non-continuous sequence points with a
length of n + a − l, as shown in following equation:{

G−1(z̃t|α, β), G−1(zt|α, β); t = 1, 2, . . . , n + a − l
}

(14)

where G−1(zt|α, β) is the inverse cumulative distribution function of the Gamma distribu-
tion when the distribution function value equals zt; and α and β are the shape and scale
parameters of the Gamma distribution, respectively. To ensure that the Gamma distribution
retains its bell-shaped and right-skewed density curve, which emphasizes the fitting of
extraordinary floods, α and β are set to be consistent with those of the P-III distribution
frequency curve from the initial design flood results.

3. Estimate the parameters of time-varying P-III distribution using the curve fit-
ting method

In the curve fitting method, it is important to ensure that the curve passes through
the center of the points and more emphasis should be placed on the extreme flood points,
making the curve as close as possible to the most accurate points [2]. The 1:1 reference line
(y = x) in the Q–Q plot represents the curve corresponding to the theoretical distribution
function. If this reference line passes through the center of the points in the Q–Q plot shown
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in Equation (14) (especially the extraordinary flood points), it indicates a good fitness of
the distribution function to the empirical frequency. Given the features of linear fitting,
this study uses the sum of squares of deviation (SSD) minimum criterion to estimate the
parameters of the time-varying P-III distribution [2,57], as follows:

min SSD =
n+a−l

∑
t=1

[
G−1(zt|α, β)− G−1(z̃t|α, β)

]2
(15)

The P-III distribution parameters estimated by the P3/CF model in the reservoir
construction period served as the initial values for the Tv-P3/CF model in this study.

2.3.4. Model Diagnostics and Evaluation

1. Two-Sample Kolmogorov–Smirnov Test
The Kolmogorov–Smirnov test (K–S test) is a nonparametric statistical test used to

assess the equality of one-dimensional probability distributions. It determines whether a
sample originates from a given reference probability distribution, known as the one-sample
K–S test [71], or whether two samples come from the same distribution, referred to as
the two-sample K–S test [29]. This study employs the two-sample K–S test to verify if
the distribution function of the theoretical distribution, i.e., Zt, adheres to the standard
uniform distribution. The analysis assumes Zt ∼ U(0, 1) as the null hypothesis with
a significance level set at 0.05. The null hypothesis is accepted if the p-value from the
Kolmogorov–Smirnov test exceeds 0.05. Acceptance of the null hypothesis confirms the
validity of the theoretical base presented in Equation (15) for parameter estimation of the
Tv-P3/CF model.

2. Akaike information criterion
The Akaike information criterion (AIC) is an estimator of prediction error and thus

assesses the relative quality of statistical models for a given dataset [72]. A smaller AIC
value signifies better fitness of the time-varying P-III distribution than the empirical distri-
bution. Since the P3/CF model measures fitness based on the deviation (or error) between
the observed data points and the theoretical distribution curve, it is generally assumed that
the deviation follows an independent normal distribution. Consequently, the error-based
AIC (referred as AICE) can be expressed using least squares model fitting, as follows:

AICE = 2k + (n + a − l) ln

n+a−l
∑

t=1

(
yt − F−1

Yt

(
F̃Yt(yt) | RI; Ω

))2

n + a − l
(16)

where k represents the number of parameters of the generalized linear additive formulation
Ω.

Since the AIC has different versions, the likelihood-based AIC (referred as AICL) [35]
is also compared in this study.

3. Centile curve
The centile curve plots the centiles for the distributions derived from the time-varying

moment model [35,73], which provides a visual assessment of how well the non-continuous
flood points align within the estimated percentile ranges of the theoretical time-varying
moment model. The calculation formula for the estimated flood variables corresponding to
the percentile p is expressed as follows:

ŷt = F−1
Yt

(p|RI; Ω) (17)

2.4. Hydroelectric Benefit and Risk Assessment

This module mainly derives the design flood hydrograph, analyzes the hydroelectric
benefits, and assesses the flood control risks of the TGR. In the reservoir operation period,
the design flood hydrograph of the TGR is derived using the peak and volume amplitude
method [3,4] based on the design flood results. Then, the FLWL in the operation period
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is determined through an iterative calculation approach [74], which ensures that flood
prevention standards remain unchanged [75].

2.4.1. Hydroelectric Benefit Analysis

Based on the FLWL derived in the operation period, the reservoir operation model
during flood season for the TGR was constructed. Subsequently, the analysis of flood
control risk and hydropower benefits was compared against the FLWL in the construction
period. The reservoir operation model is presented as follows: E =

M
∑

i=1

T
∑

t=1
Ni(t) · ∆t/M

Ni(t) = K · Qi(t) · Hi(t)
(18)

where E is the multi-year average power generation (kW·h) during flood season; Ni(t)
denotes the power output of the ith year in period t, MW; ∆t is the time step, day; M
presents the number of years; K represents hydropower efficiency of the ith reservoir,
constant; Qi(t) denotes discharge release from turbines of the ith reservoir in period t,
m3/s; and Hi(t) is the average hydropower head of the ith reservoir in period t, m.

In addition, a series of physical and operational constraints are imposed on the reser-
voir operation model in the interest of reservoir management and downstream stakeholders,
such as the water balance equation, reservoir water level limits, water level fluctuation rate,
reservoir outflow limits, and boundary conditions [76,77], as follows:

Vi(t + 1)− Vi(t) = (Ii(t)− Oi(t)) · ∆t − ESi(t) = 0 (19)

Omin ≤ Oi(t) ≤ Omax (20)

Nmin ≤ Ni(t) ≤ Nmax (21)

Zi(t) = ZFLWL, t = 1, . . . , T&i = 1, . . . , M (22)

where Vi(t), Zi(t), and Ii(t) denote the reservoir storage (m3), water level (m), and inflow
(m3/s) of the ith year in period t, respectively; ESi(t) is the sum of evaporation and seepage
from the ith year in period t, m3; Oi(t) presents the discharge (m3/s) of the ith year in
period t, which is between the allowable minimum and maximum discharges, i.e., Omin

and Omax (m3/s); Nmin and Nmax are the allowable minimum and maximum hydropower
outputs, MW, respectively; and ZFLWL denotes the flood-limited water level.

2.4.2. Flood Control Risk Assessment

The TGR’s primary flood control responsibility encompasses the downstream Jing
River reach and Chenglingji section, which serves as the outlet control station of the
Dongting Lake Basin. The designed operation rules of the TGR require that the FLWL is
set at 145 m from June to September, reserving 5.65 billion m3 of flood prevention storage
between 145 m and 155 m especially for the Chenglingji section. When the flood in the
Dongting Lake Basin is below 15,000 m3/s and the water level of the Chenglingji station
remains under 28.5 m, the available 7 billion m3 storage of the Dongting Lake Basin is
sufficient to manage its own flood waters [78] and does not need to utilize TGR’s flood
prevention storage. Additionally, the 16.5 billion m3 of flood prevention storage between
155 m and 175 m in the TGR is allocated solely for the Jing River reach. Therefore, when
(1) the inflow into the Dongting Lake Basin is below 15,000 m3/s and the water level at
Chenglingji is under 28.5 m, and (2) TGR’s water level remains below 155 m, there is no
elevated flood control risk of the TGR.



Hydrology 2024, 11, 203 11 of 27

3. Study Basin and Materials
3.1. Study Basin and Reservoirs

The Yangtze River is the longest river in Asia and the third longest in the world,
stretching approximately 6418 km from its source in the Tanggula Mountains of the Tibetan
Plateau to its river mouth in the East China Sea. Upstream of the Yichang hydrological
station, known as the upper reaches of the Yangtze River, spans 4504 km, encompasses
a catchment area of 1 million km2, and traverses the first and second steps of China’s
geographical terrain, which is abundant in water and hydro-energy resources. There are
over 40,000 reservoirs with various types that have been constructed on the main and
tributary streams in the upper Yangtze River, including the Jinsha River, Yalong River, Min
River, Jialing River, Wu River, and the Yangtze River main stream. Among these, more
than 300 are large reservoirs with a total regulation capacity exceeding 180 billion m3 and
a flood control capacity of approximately 80 billion m3. Figure 2 shows the topological
map and spatial pattern of the major controlling reservoirs in the upper Yangtze River and
hydrological stations. Table 1 details the characteristic parameters of the major controlling
reservoirs that have been built in the upper Yangtze River Basin.

The TGR is a multipurpose hydro-junction project located at Yichang city, Hubei
province. It has a total storage capacity of 39.3 billion m3, with 22.15 billion m3 designated
for flood prevention. The TGR’s flood prevention storage can effectively mitigate flood
risks in the downstream Jing River reach and Chenglingji flood control areas, which are
historically prone to frequent and devastating flood damages. Additionally, the TGR has a
firm output of 4990 MW, a total installed hydropower capacity of 22.5 GW, and generates
about 88.2 billion kW·h of hydroelectricity annually.

3.2. Dataset

The Yangtze River Water Resources Commission (YWRC) has conducted extensive
investigations of historical flood events in the Yangtze River Basin through both field
surveys and literature verification. The information gathered from gauging authority
records, historical documents, archives, flood marks, and stone inscriptions accurately
indicate the specific locations of recorded high water stages [59]. To ensure that the
design of the TGR was both reasonable and reliable, the YWRC and other relevant entities
quantitatively extended the record of annual peak discharge at the Yichang station, the dam
site gauging hydrologic station of the TGR, back to the early twelfth century. This extension
included nine historical flood events that occurred in 1153, 1227, 1560, 1613, 1788, 1796,
1860, and 1870, which are summarized in Table 2 [57,79]. The annual maximum flood series,
including peak flood discharge (Qm), 3-day (W3d), 7-day (W7d), 15-day (W15d), and 30-day
(W30d) flood volumes at the Yichang hydrological station for the years 1877 to 1990, along
with the eight historical flood events, were used to determine the design flood at the dam
site during the design and planning stage of the TGR [79]. Since the construction of the
TGR in 2003, inflow data have been consistently recorded. However, the transition of the
dam site from a riverine to a lacustrine environment has made direct flow measurements
at the dam site unfeasible. This study adopts the approach outlined by Shu et al. (2017),
which employed a straightforward linear relationship equation between inflow and dam
site floods to estimate the post-2003 annual maximum flood peaks and flood volumes at
the dam site [80].

Since observations began at the Yichang hydrological station, three significant Yangtze
River floods occurred in 1954, 1998, and 2020, and the latter presented the largest incoming
inflow of the TGR since its construction and operation periods. Comparative studies
conducted with the reconstructed flood data of the Yangtze River [31,81,82] indicated that
the annual maximum 15-day and 30-day flood volumes in 1954 and the annual maximum
30-day flood volume in 1998 exceeded historical flood magnitude levels and were classified
as extraordinary floods. By contrast, the flood in 2020 did not surpass historical magnitudes
and was therefore treated as an observed flood rather than as an extraordinary flood.
Table 2 also provides the annual maximum flood values of the TGR’s dam site in 1954, 1998,
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and 2020, respectively. In this study, the annual maximum flood data series for the TGR is
derived based on the observed flow discharge from 1877 to 2022 and the historical flood
events mentioned above in Table 2.
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Table 1. List of the characteristic parameters of the major controlling reservoirs in the Upper Yangtze River.

River Basin Reservoir
Name

Reservoir
Number

Catchment Area
(104 km2)

Normal Pool
Level
(m)

Total Storage
(Billion m3)

Regulation
Storage

(Billion m3)

Flood
Prevention

Storage
(Billion m3)

Installed
Hydropower

capacity (GW)

Operation
Year

Upper Jinsha River
Basin

Boluo 1 16.05 2989 0.837 0.099 / 0.96 2022
Batang 2 17.64 2545 0.158 0.026 / 0.74 2022

Suwalong 3 18.38 2475 0.674 0.084 / 1.20 2021

Middle
Jinsha River

Basin

Liyuan 4 22.00 1618 0.805 0.173 0.173 2.40 2016
Ahai 5 23.54 1504 0.885 0.238 0.215 2.00 2014

Jinanqiao 6 23.74 1418 0.913 0.346 0.158 2.40 2012
Longkaikou 7 24.00 1298 0.558 0.113 0.126 1.80 2014

Ludila 8 24.73 1223 1.718 0.376 0.564 2.16 2014
Guanyinyan 9 25.65 1134 2.25 0.555 0.542 3.00 2016

Yalong River
Basin

Lianghekou 10 6.57 2865 10.8 6.56 2.144 3.00 2022
Yangfanggou 11 8.09 2094 0.512 0.0538 / 1.50 2022

Jinping-I 12 10.26 1880 7.99 4.911 1.60 3.60 2014
Jinping-II 13 10.27 1646 0.0192 0.005 / 4.80 2014
Guandi 14 11.01 1330 0.76 0.123 / 2.40 2013
Ertan 15 11.64 1200 5.8 3.37 0.90 3.30 1999

Tongzilin 16 12.76 1015 0.091 0.015 / 0.60 2016

Lower Jinsha River
Basin

Wudongde 17 40.61 975 7.408 3.02 2.44 10.20 2021
Baihetan 18 43.03 825 20.627 10.4 7.5 16.00 2022
Xiluodu 19 45.44 600 12.67 6.46 4.65 12.60 2014

Xiangjiaba 20 45.88 380 5.163 0.903 0.903 6.00 2014

Min River Basin
Zipingpu 21 2.27 877 1.112 0.774 0.167 0.76 2006
Pubugou 22 6.85 850 5.332 3.894 1.1 3.60 2010

Jialing River Basin

Bikou 23 2.60 704 0.217 0.146 0.156 0.30 1997
Baozhusi 24 2.84 588 2.55 1.34 0.28 0.70 1998
Tingzikou 25 6.11 458 4.067 1.732 1.44 1.10 2014

Caojie 26 15.61 203 2.218 0.065 0.199 0.50 2011
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Table 1. Cont.

River Basin Reservoir
Name

Reservoir
Number

Catchment Area
(104 km2)

Normal Pool
Level
(m)

Total Storage
(Billion m3)

Regulation
Storage

(Billion m3)

Flood
Prevention

Storage
(Billion m3)

Installed
Hydropower

capacity (GW)

Operation
Year

Wu River Basin

Hongjiadu 27 0.99 1140 4.947 3.361 / 0.60 2005
Dongfeng 28 1.82 970 1.025 0.491 / 0.57 1996

Wujiangdu 29 2.78 760 2.3 0.928 / 1.25 2003
Goupitan 30 4.33 630 6.454 2.902 0.4 3.00 2009

Silin 31 4.86 440 1.593 0.317 0.184 1.05 2010
Shatuo 32 5.45 365 0.921 0.287 0.209 1.12 2013

Pengshui 33 6.90 293 1.465 0.518 0.232 1.75 2009

Upper Yangtze River TGR 34 100.0 175 39.3 27.894 22.15 22.5 2008
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Table 2. List of historical invited and observed floods at TGR dam site.

Hydrological
Data Type Year Qm

(m3/s)
W3d

(Billion m3)
W7d

(Billion m3)
W15d

(Billion m3)
W30d

(Billion m3)

Historical
information

1870 105,000 (1) 26.50 (1) 53.66 (1) 97.51 (1) 165.0 (1)
1860 92,500 (2) 23.20 (2) 47.38 (2) 83.57 (5) 145.4 (5)
1788 86,000 (3) 21.56 (3) 44.19 (3) 78.50 (7) 136.8 (8)
1153 92,800 (4) 23.27 (4) 47.53 (4) / /
1227 96,300 (5) 24.16 (5) 49.25 (5) / /
1560 93,600 (6) 23.48 (6) 47.92 (6) / /
1796 82,200 (7) 20.60 (7) 42.32 (7) / /
1613 81,000 (8) 20.30 (8) 41.73 (8) / /

Observed
major floods

1954 66,100 17.01 38.53 78.51 (6) 138.7 (6)
1998 61,700 15.13 34.78 72.82 138.0 (7)
2020 65,600 16.70 35.78 62.74 102.7

Note: The data in parentheses indicate the ranks of the extraordinary floods.

4. Result Analysis
4.1. Preliminary Analysis of Non-Stationarity Flood Data Series

At a significance level of 0.05, both the Mann–Kendall trend test and Pettitt’s change
point test were administered to the annual maximum of the Qm, W3d, W7d, W15d, and W30d
series at the TGR dam site, respectively. The Mann–Kendall trend test yielded statistic
values UFk of −2.71, −2.44, −2.26, −2.58, and −2.61, with corresponding p-values of
0.006, 0.014, 0.023, 0.009, and 0.009, respectively, showcasing a prevalent and significant
downward trend in the annual maximum flood series. Concurrently, Pettitt’s test for
detecting change points in the annual maximum series produced statistics U* of 1720, 1655,
1705, 1787, and 1762, with corresponding p-values of 0.007, 0.010, 0.007, 0.004, and 0.005,
respectively, highlighting significant change points in 1967. These trends, clearly depicted
in Figure 3, emphasized the declining patterns for the annual maximum flood peak Qm
and 15-day flood volume W15d.

4.2. Non-Stationary Flood Frequency Analysis

During flood season, the reservoir flood prevention storage is reserved for flood
control purpose. Figure 4 displays the reservoir index (RI, calculated by Equation (8))
and the modified reservoir index (MRI, calculated by Equation (9)) for the key controlling
reservoirs in the upper Yangtze River Basin. The chart demonstrates that the construction of
major reservoirs in the upper Yangtze River Basin started in the late 1870s and has exerted
the strongest influence on the RI and MRI. The large-scale reservoirs constructed after 2014,
including Jinping-I, Xiluodu, Xiangjiaba, Lianghekou, and Baihetan, have significantly
contributed to the RI and MRI. Overall, the operation of upstream cascade reservoirs
has a considerable influence on the downstream annual maximum peak discharge and
flood volumes.

For the non-stationary flood frequency analysis of the TGR, the data series included
historical flood events and observed floods. It is crucial to recognize that, in the time-
varying P-III distribution model, although the annual maximum flood variates and the
covariate series are predetermined, the values of parameters ω11 and ω21 significantly affect
the model’s functional outcomes. As a result, the rank associated with each flood varies
with the values of ω11 and ω21. To accurately control the influence of the reservoir index
covariate on flood frequency, this study ensured that the number of extraordinary floods
and their respective rankings remained unchanged, as detailed in Equation (7) and Table 2,
throughout the parameter estimation process for the time-varying P-III distribution.
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Figure 4. Reservoir index (RI) and the modified reservoir index (MRI) for the key controlling
reservoirs in the upper Yangtze River Basin.

A generalized additive model was developed to associate the time-varying P-III
distribution with the covariates, including the RI and MRI. The skewness (Cs) from the
preliminary design flood results for the TGR were generally below 1.0, which ensured
that the maximum likelihood method could be used for parameter estimation of the time-
varying P-III distribution. It should be noted that, when performing parameter estimation,
no restrictions are imposed on the parameter limits to ensure that the final optimized
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parameters do not converge at the boundaries. Tables 3 and 4 present a comparative
analysis of parameter estimates and goodness-of-fit metrics between the Tv-P3/ML and
Tv-P3/CF models using the RI and MRI as covariates, respectively. The results showed:
(a) All the p-values of K-S test exceeded 0.05, supporting the null hypothesis that both the
empirical frequency distribution of measured flood variates and the time-varying P-III
distribution conformed to a uniform distribution across the (0, 1) interval, thus affirming
the effectiveness of the Tv-P3/CF model for parameter estimation. (b) The estimates for
parameters ω11 and ω21 from both the Tv-P3/ML and Tv-P3/CF models were negative,
indicating that the RI had a reducing effect on the mean values of the flood variates, in
line with the relationship between the location, scale parameters, and the overall sample
mean. (c) The AICE (AICL) values for the Tv-P3/CF model were consistently lower (higher)
than those of the Tv-P3/ML model across the distribution parameter estimates for the
flood peaks Qm, W3d, W7d, W15d, and W30d, signifying a superior fitness compared to the
empirical data in terms of the deviation between observed data points and the theoretical
distribution curve. (d) The AICE values for the Tv-P3/CF model using the MRI as a
covariate were lower than those using RI, indicating that the MRI provided a better fit for
the flood series.

Table 3. Estimated parameters and test results of Tv-P3/CF and Tv-P3/ML with RI covariate.

Model
Flood

Variates
Parameter

K-S Test SSD AICE AICL
ω10 ω11 ω20 ω21 ω30

Tv-
P3/ML

Qm 6.32 −8.05 7.59 −9.83 25.28 0.32 1.50 × 109 2455.62 −9229.34
W3d 3.02 −4.60 1.59 −4.32 21.25 0.15 1.75 × 104 684.03 −4040.92
W7d 2.04 −8.89 2.30 −9.94 26.02 0.37 1.83 × 104 781.87 −4653.52
W15d 3.42 −4.94 2.87 −5.93 26.85 0.37 2.52 × 104 841.81 −5166.65
W30d 4.24 −4.57 3.39 −4.84 27.90 0.36 5.15 × 104 1022.02 −5657.35

Tv-
P3/CF

Qm 9.42 −7.06 8.22 −9.57 10.19 0.08 3.47 × 108 2428.29 −9258.79
W3d 4.26 −14.95 2.59 −14.47 4.22 0.07 1.70 × 103 551.92 −4049.05
W7d 4.32 −12.15 2.88 −13.43 10.87 0.11 4.20 × 103 710.06 −4662.87
W15d 5.18 −7.96 3.37 −8.90 11.32 0.35 1.11 × 104 818.09 −5173.46
W30d 5.50 −7.40 3.72 −7.67 15.90 0.25 2.96 × 104 1011.60 −5662.91

Table 4. Estimated parameters and test results of Tv-P3/CF and Tv-P3/ML with MRI covariate.

Model
Flood

Variates
Parameter

K-S Test SSD AICE AICL
ω10 ω11 ω20 ω21 ω30

Tv-
P3/ML

Qm 6.53 −33.34 7.58 −37.80 25.46 0.32 1.56 × 109 2458.69 −9229.25
W3d 3.24 −24.09 1.84 −29.20 16.02 0.46 6.76 × 103 593.31 −4039.87
W7d 2.16 −21.83 2.31 −29.72 25.81 0.31 1.87 × 104 786.10 −4653.28
W15d 3.60 −22.99 2.90 −23.86 25.78 0.44 2.28 × 104 834.19 −5165.66
W30d 4.31 −17.58 3.44 −19.88 26.60 0.31 4.39 × 104 1012.47 −5657.14

Tv-
P3/CF

Qm 9.91 −41.52 8.36 −47.70 7.10 0.17 3.03 × 108 2398.03 −9258.61
W3d 4.01 −57.55 2.45 −52.26 6.13 0.08 1.43 × 103 533.93 −4048.75
W7d 4.31 −56.07 2.87 −56.86 10.92 0.10 4.17 × 103 708.22 −4662.78
W15d 5.26 −34.18 3.39 −33.95 10.54 0.32 1.09 × 104 817.12 −5173.37
W30d 5.79 −28.76 3.84 −29.27 12.47 0.28 2.77 × 104 1003.88 −5662.94

It should be noted that the error-based AIC was chosen in this paper for the following
reasons: (a) According to the Specification for Calculating Design Flood of Water Resources
and Hydropower Projects in China, the sum of squared deviations is recommended as the
goodness-of-fit measure for design flood estimation. (b) The error-based AIC places a
stronger emphasis on historical flood data than the likelihood-based AIC, especially when
using the inverse cumulative distribution function of the Gamma distribution as the axes
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scale in the Q-Q plot. (c) The likelihood-based AIC lacks universality in practical applica-
tions. As indicated in Section 2.3.2, the application of the maximum likelihood method to
P-III distribution may result in an unsolvable situation.

To more intuitively demonstrate the goodness-of-fit of the results estimated by the Tv-
P3/ML and Tv-P3/CF models with the MRI as the covariate, respectively, Figures 5 and 6
present the Q–Q plots and centile curve graphs based on the annual maximum peak flow
Qm, flood volume W7d and W30d, with the inverse cumulative distribution of the Gamma
distribution as the axis scales. Comparative analysis shows: (a) The Q–Q plots reveal
that the empirical and frequency quantiles estimated by the Tv-P3/CF model aligned
more closely with the 1:1 reference line than those obtained through the Tv-P3/ML model,
especially for historical flood events, which suggests that the former more effectively
captured the right-tail characteristics of the P-III distribution. (b) The quantile curves
indicate that, during the observation period, the flood data series generally fell within the
model’s quantile range, and the trend in quantile changes was consistent with the observed
data trend. This consistency implied that the non-stationary time-varying moment model
successfully detected the decreasing trends in the annual maximum Qm, W7d, and W30
at the TGR since the 1990s. Additionally, the 97.5% quantile line derived from the Tv-
P3/CF model was higher than that from the Tv-P3/ML model, further indicating its more
comprehensive consideration of historical flood events.
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4.3. Comparative Analysis of Design Floods

The flood data series was restored and extended to 2022, and the design flood was
re-checked based on the P3/CF model with the minimum SSD criterion applied during
the initial design period. Based on the characteristic parameters of the upstream reservoirs
of the TGR, as listed in Table 1, the MRI in 2022 was calculated as 0.0046. Then, using the
generalized additive model parameters of the time-varying P-III distribution estimated
by Tv-P3/ML and TV-P3/CF models, as shown in Table 4, the estimated design floods
are presented in Table 5. The key findings include: (a) The Cv and Cs derived from the
Tv-P3/ML model were lower than those from the P3/CF and Tv-P3/CF models, resulting
in a flatter frequency curve that did not emphasize the fitting of historical flood events (as
shown in Figure 7). Conversely, the Tv-P3/CF model primarily adjusted the mean value
of the design flood peak and volumes, with minor changes in Cv and Cs compared to the
initial design outcomes. (b) The percentages in Table 4 represent the reduction rate of the
design values relative to the P3/CF results. The non-stationary flood frequency analysis,
with the MRI as the covariate, showed a reduction in the design floods. Specifically, the
design flood peak Qm and the 3-day and 7-day flood volumes W3d and W7d, were reduced
by approximately 20%, while the 15-day and 30-day flood volumes W15d and W30d were
reduced by about 16%.
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Table 5. Comparison of design flood estimation results for the TGR (flood peak: m3/s, flood volume:
108 m3).

Method/
Model

Flood
Variable

Parameter Design Value

Mean Cv Cs 0.01% 0.10% 1% 2% 5% 10%

Stationary
flood

frequency
analysis
(P3/CF
model)

Qm 52,000 0.21 0.84 113,000 98,800 83,900 78,800 72,300 66,500

W3d 130 0.21 0.84 282.1 247 209.3 197.5 180.7 166.5

W7d 275 0.19 0.665 547.2 486.8 420.8 399.9 368.5 344.6

W15d 524 0.19 0.57 1022 911.8 796.5 757.5 702.2 656.1

W30d 935 0.18 0.54 1767 1590 1393 1327 1234 1158

Non-
stationary

flood
frequency
analysis

(Tv-P3/ML
model)

Qm 42,700 0.195 0.396 80,900 73,200 64,400 61,500 57,200 53,600

−28.41% −25.91% −23.24% −21.95% −20.89% −19.40%

W3d 111.1 0.199 0.500 217.4 195.1 170.3 162.0 150.2 140.3

−22.94% −21.01% −18.63% −17.97% −16.88% −15.74%

W7d 234.0 0.190 0.394 438.0 396.8 350.2 334.5 311.9 292.6

−19.96% −18.49% −16.78% −16.35% −15.36% −15.09%

W15d 452.5 0.183 0.394 831.1 754.6 668.2 639.1 597.0 561.3

−18.68% −17.24% −16.11% −15.63% −14.98% −14.45%

W30d 822.9 0.178 0.388 1491 1356 1204 1153 1078 1015

−15.62% −14.72% −13.57% −13.11% −12.64% −12.35%

Non-
stationary

flood
frequency
analysis

(Tv-P3/CF
model)

Qm 41,100 0.223 0.751 90,400 79,300 67,200 63,300 57,800 53,300

−20.00% −19.74% −19.90% −19.67% −20.06% −19.85%

W3d 98.1 0.230 0.808 222.4 193.9 163.3 153.4 139.5 128.2

−21.16% −21.50% −21.98% −22.33% −22.80% −23.00%

W7d 206.8 0.218 0.605 435.2 385.7 331.3 313.4 288.0 266.8

−20.47% −20.77% −21.27% −21.63% −21.85% −22.58%

W15d 433.3 0.191 0.616 854.3 762.8 662.4 629.3 582.4 543.4

−16.41% −16.34% −16.84% −16.92% −17.06% −17.18%

W30d 792.0 0.181 0.566 1503 1351 1183 1127 1048 982

−14.94% −15.03% −15.08% −15.07% −15.07% −15.20%

Taking the series of annual maximum design flood peak Qm as an example, Figure 7
presents the P-III distribution frequency curves derived from the stationary P3/CF model
and the non-stationary Tv-P3/ML and Tv-P3/CF models, respectively, all plotted on a
Hessian probability graph [3]. It is important to note that the black data points in Figure 7
refer to empirical data that meet the stationary assumption and are used solely to illustrate
the fitness of the P3/CF model. However, since the parameters of the P-III frequency curve
under the non-stationary assumption varied with the MRI series, it was not possible to
plot the corresponding empirical data points for the theoretical frequency curve. Therefore,
Figure 7 only displays the time-varying P-III frequency curve after the operation of the
key cascade reservoirs upstream of the TGR (i.e., MRI = 0.01843). Figure 7 shows: (a)
The non-stationary time-varying P-III frequency curves lay below the stationary P3/CF
results, further highlighting the significant reduction effect of upstream reservoir regulation
on design floods. (b) The right tail of the curve derived from the Tv-P3/ML model was
relatively flat, suggesting that it did not adequately account for the historical information in
design flood estimation. (c) The TV-P3/CF model could be coupled with specific covariates
(MRI) to forecast design floods in subsequent years in the event of the construction of
new large reservoirs upstream of the study section in the future. Furthermore, the 95%
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confidence intervals (CIs) of the models were computed using the bootstrap method [83].
The width of the CIs indicated that the stationary P3/CF model exhibited the smallest
uncertainty, followed by the Tv-P3/CF model, while the Tv-P3/ML model had the largest
uncertainty. Moreover, the Tv-P3/CF model could be used to estimate future design floods
in the reservoir operation period by incorporating projected values of the modified reservoir
index (MRI) for upcoming years. This approach allows for the calculation of design floods
in scenarios involving the construction of new large reservoirs upstream. Furthermore,
based on design floods in the reservoir operation period, the reservoir operation water
level can be adjusted for management practices.

Severe floods occurred in both the main stream and main tributaries of the upper
Yangtze River during the 1954 flood season [84]. Consequently, the 1954 flood hydrograph
was selected as the typical flood hydrograph in this study. Using the peak and volume
amplitude method, the flood variables obtained from the Tv-P3/CF model were amplified
to derive the 1000-year return period design flood hydrograph in the reservoir operation
period. The results, juxtaposed with the initial design flood hydrograph, are presented
in Figure 8, which clearly demonstrates a significant reduction in the TGR’s design flood
hydrograph due to the regulation effects of the upstream cascade reservoirs. According
to the reservoir operation rules, the flood control water level (FCWL) in the operation
period is 154 m, which is higher than the flood-limited water level (FLWL) of 145 m in
the construction period. Subsequently, we used the 1877–2022 daily flow discharge data
from June to September to evaluate the reservoir operation risk and benefits of applying
FCWL (FLWL). The results showed that the TGR could produce 5.02 (4.70) billion kW·h of
hydropower in the operation (construction) period from June to September, increasing by
0.32 billion kW·h (+6.8%), and the flood prevention standards for the Jing River reach and
Chenglingji section remained unchanged.
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Figure 8. Comparison of the 1000-year design flood hydrographs in the construction and operation
periods.

5. Discussion

Non-stationary flood frequency analysis applies a distribution function directly to
the measured non-stationarity flood series, thus obviating the restoration of the observed
flow series. However, this approach can only assess the effects of reservoirs on the flood
series by integrating certain metrics that measure these impacts [85]. It does not explicitly
incorporate the specific factors essential to reservoir operation, such as operation strategies,
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characteristic parameters, and rule curves [86–88]. Therefore, this process is referred to as
an “implicit” consideration of the reservoir’s regulation influence. By contrast, the flood
regional composition method employs the restored, stationary series of annual maximum
floods and design flood hydrographs at the dam site for calculations. After analyzing the
flood generation mechanism of the investigated reservoir, the design flood hydrograph
is amplified according to the flood volumes in each sub-region and then progressively
routed from upstream to downstream [8,21,89]. This approach strictly incorporates specific
factors required in reservoir operation, thus providing an “explicit” consideration of the
reservoir’s regulation effects.

Both non-stationary flood frequency analysis and flood regional composition method
indicated a reduction in the design flood hydrograph for downstream reservoirs, at-
tributable to the regulation influence of upstream cascade reservoirs in the operation
period. This reduction arose because the flood prevention storage of upstream reservoirs
impounds a portion of the flood volume, thereby taking on part of the flood mitigation
responsibilities [78]. This fundamental concept was explicitly represented in the flood
regional composition method while the inherent structural limitations prevented this
principle from being directly represented in the non-stationary flood frequency analysis.
Although the non-stationary approach simplifies the calculations, it may lead to results
that contradict the physical reality—such as a reduction in the design flood hydrograph
that exceeds the collective flood prevention storage of the upstream reservoirs. Therefore,
it is crucial to impose constraints to ensure that the outcomes remain consistent with the
underlying hydrological processes.

6. Conclusions

This study presented a novel approach for non-stationary flood frequency analysis by
incorporating historical information. Based on the monotonically increasing property of
the distribution function of the continuous flood variables, a novel Tv-P3/CF model was
proposed and compared with the Tv-P3/ML model. The non-stationary design floods in
the TGR operation period were estimated and discussed. The main findings revealed:

(a) Both the reservoir index (RI) and modified reservoir index (MRI) can effectively
capture the non-stationarity of the flood series, functioning as a covariate of the time-
varying P-III distribution. The MRI provides a better fit for the flood series than the RI,
with a small Akaike information criterion (AIC) value.

(b) The Q–Q plot-based curve fitting method produces a lower AIC value than the
maximum likelihood method. The performance of the Tv-P3/CF model is superior to that
of the Tv-P3/ML model, particular in fitting historical flood events.

(c) Compared to the original design floods of the TGR in the construction period, the
non-stationary design flood peak and the 3-day and 7-day flood volumes are reduced by
approximately 20%, while the 15-day and 30-day flood volumes are reduced by around 16%.

(d) The FLWL in the TGR operation period can be raised from 145 m to 154 m compared
with the design value in the construction period. The economic benefits obtained from the
new FLWL scheme are 0.32 billion kW·h (or increase by 6.8%) annually during flood season
without increasing the flood prevention risks.

This study demonstrates that incorporating historical flood events can enhance the
robustness of design flood estimation, especially in capturing the tail behavior of ex-
treme flood events. The comparison with traditional stationary flood frequency methods
underscores the necessity of adaptive management strategies that align with evolving
hydrological conditions. We recommend further research to integrate non-stationary flood
frequency results with reservoir management systems for decision making.
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