A Modified Rational Method Approach for Calculating First Flush Design Flow Rates to Mitigate Nonpoint Source Pollution from Stormwater Runoff
Abstract
:1. Introduction
2. Treating the First Flush of Stormwater Runoff
3. MRM Hydrology
4. Rainfall Intensity–Duration Relation
5. Calculating the First Flush Design Flow Rate
6. Application Procedure
- Step 1.
- With specified values of , calculate using Equations (1)–(3) and then .
- Step 2.
- Calculate from Equation (4).
- Step 3.
- If ; otherwise, proceed to Step 4.
- Step 4.
- Step 5.
- Calculate and the corresponding rainfall duration .
7. Example Applications
7.1. Example A
- Step 1.
- With td = tc = 0.200 h, , , Equation (3) gives.With Ac = A = 2.43 ha, from Equation (1), which gives
- Step 2.
- From Equation (4), .
- Step 3.
- Because , proceed to Step 4.
- Step 4.
- The iterative solution of Equation (7) gives tdf* = 0.733, which gives Qf* = 0.811 from Equation (6).
- Step 5.
- The first flush design discharge and the corresponding rainfall duration
7.2. Example B
- Step 1.
- With td = tc = 0.250 h, and , Equation (3) then gives.With Ac = A = 3.24 ha, from Equation (1), which gives
- Step 2.
- From Equation (4), .
- Step 3.
- Because , proceed to Step 4.
- Step 4.
- Step 5.
- The first flush design discharge and the corresponding storm duration
8. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Bang, K.W.; Ketcham, L.H., Jr.; Choe, J.S.C.; Yu, M.J. First flush analysis of urban storm runoff. Sci. Total Environ. 2002, 293, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.M.; McCarthy, D.T.; Deletic, A. Redefining the stormwater first flush phenomenon. Water Res. 2010, 44, 2487–2498. [Google Scholar] [CrossRef]
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadas, K.; Goonetilleke, A. Catchment-based estimation of pollutant event mean concentration (EMC) and implications for first flush assessment. J. Environ. Manag. 2021, 279, 111737. [Google Scholar] [CrossRef]
- Barrett, M.E.; Irish, L.B., Jr.; Malina, J.F., Jr.; Charbeneau, R.J. Characterization of highway runoff in Austin, Texas, area. J. Environ. Eng. 1998, 124, 131–137. [Google Scholar] [CrossRef]
- Birch, G.; Matthai, C.; Fazeli, M. Efficiency of a retention/detention basin to remove contaminants from urban stormwater. Urban Water J. 2006, 3, 69–77. [Google Scholar] [CrossRef]
- Lenhart, J.H.; Calvert, P.P. Mass loading and mass load design of stormwater filtration systems. In Proceedings of the World Environmental and Water Resources Congress 2007 Proceedings, Tampa, FL, USA, 15–19 May 2007; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 243–255. [Google Scholar]
- Saget, A.; Chebbo, G.; Desbordes, M. Urban discharges during wet weather: What volumes have to be treated? Water Sci. Technol. 1995, 32, 225–232. [Google Scholar] [CrossRef]
- Saget, A.; Chebbo, G.; Bertrand-Krajewski, J.L. The first flush in sewer systems. Water Sci. Technol. 1996, 33, 101–108. [Google Scholar] [CrossRef]
- Bertrand-Krajewski, J.; Chebbo, G.; Saget, A. Distribution of pollutant mass vs. volume in stormwater discharges and the first flush phenomenon. Water Resour. 1998, 32, 2341–2356. [Google Scholar] [CrossRef]
- Hager, M.C. Evaluating first-flush runoff. Stormwater 2001, 2, 23–29. [Google Scholar]
- Taebi, A.; Droste, R.L. First flush pollution load of urban stormwater runoff. J. Environ. Eng. Sci. 2004, 3, 301–309. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P. American Sewerage Practice—Volume—I—Design of Sewers; McGraw-Hill: New York, NY, USA, 1914. [Google Scholar]
- Mamoon, A.; Jahan, S.; Jahan He, X.; Joergensen, N.E.; Rahma, A. First flush analysis using a rainfall simulator on a micro catchment in an arid climate. Sci. Total Environ. 2019, 693, 133552. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, Q.; Li, J.; Wang, Y.; Dzakpasu, M.; Wang, X.C. First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures. J. Environ. Manag. 2023, 340, 117976. [Google Scholar] [CrossRef]
- Mastouri, R.; Pourfallah, H.; Khaledian, M. The first flush analysis of stormwater runoff in a humid climate. J. Environ. Eng. Landsc. Manag. 2023, 31, 82–91. [Google Scholar] [CrossRef]
- Wang, S.; Feng, L.; Min, F. Optimizing first flush diverter for urban stormwater pollution load reduction by most efficiently utilizing first flush phenomena. J. Environ. Manag. 2023, 33, 117563. [Google Scholar] [CrossRef]
- Froehlich, D.C. Graphical calculation of first-flush flow rates for stormwater quality control. J. Irrig. Drain. Eng. 2009, 135, 68–75. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Zhu, J. Design of a diversion system to manage the first flush. J. Am. Water Resour. Assoc. 1989, 25, 517–525. [Google Scholar] [CrossRef]
- Guo, J.C.Y. Design of off-line detention systems. In Stormwater Collection Systems Design Handbook; Mays, L.W., Ed.; McGraw-Hill: New York, NY, USA, 2001; Chapter 8. [Google Scholar]
- Contech. StormGate design guide. In Engineering Guidelines; Contech Engineered Solutions LLC: West Chester, OH, USA, 2018. [Google Scholar]
- Lenhart, J.H. Methods of sizing water quality facilities. Stormwater 2004, 5, 4–7. [Google Scholar]
- Lenhart, J.H. Evaluation of stormwater filtration systems. C.E. News 2007, 1. PDH 1–7. [Google Scholar]
- Contech. StormFilter configuration guide. In Engineering Guidelines RS-0040; Contech Engineered Solutions LLC: West Chester, OH, USA, 2015. [Google Scholar]
- Contech. Sizing methodologies for the stormwater management StormFilter. In Engineering Guidelines RS-0041; Contech Engineered Solutions LLC: West Chester, OH, USA, 2015. [Google Scholar]
- Ahlfeld, D.P.; Minihane, M. Storm flow from first-flush precipitation in stormwater design. J. Irrig. Drain. Eng. 2004, 130, 269–276. [Google Scholar] [CrossRef]
- Adams, T.R. Storm water facility design: Calculating the first flush. Pollut. Eng. 1998, 30, 44–48. [Google Scholar]
- Ogintz, J.B. Sizing stormwater BMPs. Chem. Eng. News 2005, 17, 34–39. [Google Scholar]
- Froehlich, D.C. Graphical Sizing of Small Single-Outlet Detention Basins in the Semi-arid Southwest. J. Irrig. Drain. Eng. 2009, 135, 779–790. [Google Scholar] [CrossRef]
- Baker, W.R. Stormwater detention basin design for small drainage areas. Public Work. 1977, 17, 75–79. [Google Scholar]
- Wanielista, M.P. Stormwater Management-Quantity and Quality; Ann Arbor Science: Ann Arbor, MI, USA, 1978. [Google Scholar]
- Tourbier, J.T.; Westmacott, R. Water Resources Protection Technology; The Urban Land Institute: Washington, DC, USA, 1981. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Walesh, S.G. Urban Surface Water Management; John Wiley: New York, NY, USA, 1989. [Google Scholar]
- Froehlich, D.C. Short-duration rainfall-intensity equations for urban drainage design. J. Irrig. Drain. Eng. 2010, 136, 519–526. [Google Scholar] [CrossRef]
- American Society of Civil Engineers. Design and construction of urban stormwater management systems. In ASCE Manuals and Reports of Engineering Practice No. 77; American Society of Civil Engineers: New York, NY, USA, 1992. [Google Scholar]
- Mulvaney, T.J. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. In Transactions and Minutes of Proceedings; Institution of Civil Engineers of Ireland: Dublin, Ireland, 1851; Volume 4, Session 1850-1. [Google Scholar]
- Horner, W.W.; Flynt, F.L. Relation between rainfall and runoff from small urban areas. Trans. Am. Soc. Civ. Eng. 1936, 101, 140–206. [Google Scholar]
- Schaake, J.G.; Geyer, J.C.; Knapp, J.W. Experimental examination of the rational method. J. Hydraul. Div. ASCE 1967, 93, 353–370. [Google Scholar] [CrossRef]
- Dooge, J.C.I. Linear theory of hydrologic systems. In Technical Bulletin 1468; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1973. [Google Scholar]
- Kuichling, E. The relation between the rainfall and the discharge of sewers in populous districts. Trans. ASCE 1889, 20, 1–56. [Google Scholar] [CrossRef]
- Pilgrim, D.H.; Cordery, I. Flood runoff. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1992; Chapter 9. [Google Scholar]
- Hotchkiss, R.H.; McCallum, B.E. Peak discharge for small agricultural watersheds. J. Hydraul. Eng. 1995, 121, 36–48. [Google Scholar] [CrossRef]
- American Public Works Association. Urban stormwater management. In Special Report No. 49; National Academies Press: Chicago, IL, USA, 1981. [Google Scholar]
- Westphal, J.A. Hydrology for drainage system design and analysis. In Stormwater Collection Systems Design Handbook; Mays, L.W., Ed.; McGraw-Hill: New York, NY, USA, 2001; Chapter 4. [Google Scholar]
- ASCE/EWRI 45-05; Standard guidelines for the design of urban stormwater systems. American Society of Civil Engineers: Reston, VA, USA, 2006.
- Wang, S.; Wang, H. Extending the rational method for assessing and developing sustainable urban drainage systems. Water Res. 2018, 144, 112–125. [Google Scholar] [CrossRef]
- Drumond, P.P.; Moura, P.M.; Coelho, M.M.L.P. Improving the understanding of on-site stormwater detention performances. Urban Water J. 2023, 20, 1271–1289. [Google Scholar] [CrossRef]
- Iowa Center for Transportation Research and Education. Statewide Urban Design and Specifications (SUDAS), Design Manual, Chapter 2, Stormwater; Iowa State University: Ames, Iowa, 2007; 2C-9-6. [Google Scholar]
- Virginia Department of Conservation and Recreation. Virginia Stormwater Management Handbook; Division of Soil and Water Conservation: Richmond, VA, USA, 1981. [Google Scholar]
- Atlanta Regional Commission. Georgia Stormwater Management Manual–Vol. 2: Technical Handbook; Atlanta Regional Commission: Atlanta, GA, USA, 2001. [Google Scholar]
- Bonnin, G.M.; Martin, D.; Lin, B.; Parzybok, T.; Yekta, M.; Riley, D. Precipitation-frequency atlas of the United States, volume 1, version 4: Semi-arid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah). In NOAA Atlas 14; Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 2006; Volume 1. [Google Scholar]
- Bonnin, G.M.; Martin, D.; Lin, B.; Parzybok, T.; Yekta, M.; Riley, D. Precipitation-frequency atlas of the United States, volume 2, version 3: Delaware, District of Columbia, Illinois, Indiana, Kentucky, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, West Virginia. In NOAA Atlas 14; Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 2006; Volume 2. [Google Scholar]
- Bonnin, G.M.; Martin, D.; Parzybok, T.; Lin, B.; Riley, D.; Yekta, M. Precipitation-frequency atlas of the United States, volume 3, version 3, Puerto Rico and the U.S. Virgin Islands. In NOAA Atlas 14; Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 2006; Volume 3. [Google Scholar]
- Perica, S.; Martin, D.; Lin, B.; Parzybok, T.; Riley, D.; Yekta, M.; Hiner, L.; Chen, L.; Brewer, D.; Yan, F.; et al. Precipitation frequency atlas of the United States, volume 4, version 2, Hawaiian Islands. In NOAA Atlas 14; Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 2009; Volume 4. [Google Scholar]
- Guo, J.C.Y.; Urbonas, R.B. Maximized detention volume determined by runoff capture rate. J. Water Resour. Plan. Manag. 1996, 22, 123–456. [Google Scholar]
- Guo, J.C.Y.; Urbonas, R.B. Runoff capture and delivery curves for storm water quality control designs. J. Water Resour. Plan. Manag. 2002, 128, 123–456. [Google Scholar] [CrossRef]
- Davis, A.P.; McCuen, R.H. Stormwater Management for Smart Growth; Springer: New York, NY, USA, 2010. [Google Scholar]
tc (min) | tc (h) | Coefficients | ||
---|---|---|---|---|
a | b | c | ||
1 | 0.0167 | 0.4955 | −0.0205 | 0.2899 |
2 | 0.0333 | 0.4951 | −0.0207 | 0.3030 |
5 | 0.0833 | 0.4878 | −0.0515 | 0.3240 |
10 | 0.1667 | 0.4762 | −0.1000 | 0.3377 |
15 | 0.2500 | 0.4673 | −0.1436 | 0.3351 |
20 | 0.3333 | 0.4627 | −0.1813 | 0.3170 |
25 | 0.4167 | 0.4643 | −0.2141 | 0.2855 |
30 | 0.5000 | 0.4750 | −0.2454 | 0.2435 |
35 | 0.5833 | 0.5010 | −0.2832 | 0.1934 |
40 | 0.6667 | 0.5595 | −0.3468 | 0.1377 |
45 | 0.7500 | 0.7277 | −0.5150 | 0.0776 |
50 | 0.8333 | 1.4305 | −1.2156 | 0.0275 |
55 | 0.9167 | 2.6341 | −2.4175 | 0.0124 |
60 | 1.0000 | 3.9862 | −3.7667 | 0.0072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froehlich, D.C. A Modified Rational Method Approach for Calculating First Flush Design Flow Rates to Mitigate Nonpoint Source Pollution from Stormwater Runoff. Hydrology 2024, 11, 21. https://doi.org/10.3390/hydrology11020021
Froehlich DC. A Modified Rational Method Approach for Calculating First Flush Design Flow Rates to Mitigate Nonpoint Source Pollution from Stormwater Runoff. Hydrology. 2024; 11(2):21. https://doi.org/10.3390/hydrology11020021
Chicago/Turabian StyleFroehlich, David C. 2024. "A Modified Rational Method Approach for Calculating First Flush Design Flow Rates to Mitigate Nonpoint Source Pollution from Stormwater Runoff" Hydrology 11, no. 2: 21. https://doi.org/10.3390/hydrology11020021
APA StyleFroehlich, D. C. (2024). A Modified Rational Method Approach for Calculating First Flush Design Flow Rates to Mitigate Nonpoint Source Pollution from Stormwater Runoff. Hydrology, 11(2), 21. https://doi.org/10.3390/hydrology11020021