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Abstract: The effectiveness of existing and potential best management practices (BMPs) to cropped
lands in the Jeannette Creek watershed (Thames River basin, Ontario, Canada) in reducing P loads at
its pumped outlets was assessed using the Soil and Water Assessment Tool (SWAT). Existing BMPs
consisted of banded, incorporated, and variable phosphorus (P)-rate application, conservation tillage,
cover crops, and vegetative buffer strips. Potential BMPs consisted of banded P application, no-till,
and a cover crop following winter wheat. Two separately delineated sub-watersheds, J1 and J2,
characterized by a flat topography and distinct pumped outlets, were selected for analysis. Despite
challenges in delineation, the SWAT model was successfully set up to assess the impact of BMPs in
reducing P loads in these sub-watersheds. Each BMP was systematically removed, and the resulting
simulated P loads were compared with the baseline scenario. Compared to cover crops or vegetative
buffer strips, the implementation of conservation tillage and no-till, along with altering the mode of
P application, offered superior effectiveness in reducing the P load. On average, the annual reduction
in total P (Ptot) loads under existing BMPs was 9.2% in J1 and 11.3% in J2, whereas, under potential
BMPs, this reduction exceeded 60% in both watersheds.

Keywords: best management practices; SWAT; flatland; pumped outlet; phosphorus

1. Introduction

An unmatched treasure of Ontario, Canada, the Great Lakes bear one-fifth of the
world’s fresh water [1]. The Great Lakes’ health, particularly that of Lake Erie, is under
a serious threat due to increased levels of harmful contaminants and escalating levels of
phosphorus [2,3]. Presenting a major environmental issue, elevated levels of phosphorus
(P) in their waters has been linked to the rapid growth (blooming) of blue-green algae
(cyanobacteria) [4,5]. Phosphorus loading has been reported to be associated with runoff,
and to originate primarily from agricultural areas [6–8].

Inadequate agronomic management practices result in serious environmental threats,
especially in terms of promoting blue-green algal blooms in downstream lakes (e.g., Lake
Erie) [5,9,10]. Various agronomic best management practices (BMPs) have been reported
to be effective in limiting P loading [11–16]. While the implementation of appropriate
BMPs can reduce Ptot losses [17], the optimal manner to evaluate the effectiveness and
viability of BMPs within a given watershed remain poorly documented [18]. Moreover, the
application of non-integrated practices within a watershed can generate the majority of
the P load the watershed contributes to downstream bodies of water [19,20]. Accordingly,
collaborative efforts between Canada and the United States have targeted the reduction of
P loads reaching Lake Erie. A recent initiative, the Great Lakes Agricultural Stewardship
Initiative (GLASI), has placed a major emphasis on P load reduction [21].
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Designed to simulate complex hydrological processes and evaluate BMPs, the Soil
and Water Assessment Tool (SWAT) model [22,23] has seldom been applied to simulate
watersheds with a flat topography [24,25] and never those combining a flat topography and
pumped outlets. Donmez et al. [26] used the SWAT model to simulate a flat watershed. To
address the associated conditions, they subdivided their watershed into sub-basins based
on topography, then further split the sub-basins into hydrologic response units (HRUs).
Accordingly, the SWAT model was selected for use in this study given its ability to simulate
different watershed topologies and scales [27].

In this study, the Jeannette Creek watershed, acknowledged as a priority watershed
under GLASI, displays distinctive features, including a flat topography, Brookston clay
soils, cash cropping, and a tile drainage management system. The flat topography hinders
natural outflow of water, compelling the use of a sump pump structure to pump water
out of the watershed and into the stream. Recognizing the potential of using the SWAT
model to effect a time-saving analysis of the impact of BMPs on P load reduction in a
flatland watershed with a pumped outlet, the following objectives were targeted: (i) build
a SWAT model using hydro-meteorological datasets for a watershed with a pumped outlet,
(ii) calibrate the SWAT model(s) with available but limited monitoring data, (iii) investigate
the effectiveness of existing and potential BMPs in reducing P loads.

2. Materials and Methods
2.1. Description of Study Area

The Jeannette Creek watershed, located near Chatham, ON, has priority status in
the GLASI program. Covering 37,600 ha, with 1866.92 ha studied, it comprises two sub-
watersheds, J1 (914.34 ha) and J2 (952.58 ha), draining into Lake Erie. Predominantly flat
with Clyde soils, 97% is dedicated to agriculture (corn and soybeans). The flat topography
requires pumped outlets to discharge water into the Thames River. Because of flat topogra-
phy, the watercourse outlets are below the creek level, and the watershed outlet is not a
natural one. Pumped outlet systems are employed to discharge water from the Jeannette
Creek watersheds into the Thames River. This summary provides a concise overview of
the J1 and J2 watersheds, detailing their location, extent, topography, soil, land use, and
water management practices. (Figure 1).
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Data required for simulating the Jeannette Creek Watershed were obtained from the
Lower Thames Valley Conservation Authority (LTVCA), Ontario Ministry of Agriculture,
Food and Rural Affairs (OMAFRA, https://omafra.gov.on.ca/English) (accessed on 5 May
2017), and Environment Canada Climate Change (ECCC). To set up the SWAT model,
various datasets were required, including climate data, spatial data (viz., elevation data,
soil data, land use, and crop and management practices data) (Table 1). To validate the
model for surface water hydrology required observed streamflow, sediment, and P load
datasets for nutrient modelling (Table 1).

Table 1. Data available for Jeannette Creek watershed.

Data Type Source Description

Digital Elevation Model Raster file LTVCA, 2017 0.5 m × 0.5 m LIDAR image
Precipitation, Relative

Humidity, Solar Radiation,
Maximum and Minimum

Temperature

Excel LTVCA, 2017;
ECCC, 2017

Obtained from light house Cove,
Merlinb (LTVCA stations) and

Chatham (ECCC station)

Soil Shape file OMAFRA soils Soil Landscapes of Canada (SLC)
version 3.2

Land Use Shape file LTVCA, 2017 Plot-wise crop date spatial map

Stream Network Shape file University of Guelph
(UOG), 2017 Prepared based on ground truth survey

Land Management Shape file and Excel LTVCA, 2018 5-year farmer survey report
Stream Flow Excel LTVCA, 2017 Instantaneous data

Sediment Excel LTVCA, 2017 Instantaneous concentration data
Phosphorus Excel LTVCA, 2017 Instantaneous concentration data

2.2. Model Input Datasets

The precision of hydrological model predictions depends on the input of variables
that accurately characterize watershed features. Accordingly, to successfully run the SWAT
model, a wide set of data is vital. The fact that the J1 and J2 watersheds were flat, and each
equipped with a pumping outlet, presented a challenge in developing a representative
SWAT model. The data needed to implement the SWAT model includes a Digital Elevation
Model (DEM), climate data (precipitation and temperature), soil, and land use, along with
flow, sediment, and P load data at the watershed pump outlet [28]. Accordingly, the input
data were analyzed and processed prior to their use as a model input, then used to create
various thematic maps and their associated databases.

2.2.1. DEM

In lieu of the Jeannette Creek watershed (J1 and J2), a 0.50 m × 0.50 m (resolution)
DEM was developed from contour data. Elevation of the full (J1 + J2) watershed varies
from 174 m to 186 m above mean sea level (AMSL), with the J1 sub-watershed ranging
from 173 m to 179 m AMSL south-east to north-west, and the J2 watershed ranging from
174 m to 186 m AMSL in the opposite direction (Figure 2). To validate the projection of
horizontal and vertical units of the procedures, DEM properties were set up for the J1 and
J2 watersheds.

2.2.2. Climate Data

Meteorological data are essential as inputs in setting up the SWAT model. Climate data
for seven years (2011 to 2017) were obtained from two sources: (i) five years (2011–2015)
from nearby Environment Canada Climate Change stations and (ii) the remaining two
years (2016–2017) from the Lower Thames Valley Conservation Authority (LTVCA) for the
Jeannette Creek watershed. Two-year data (2016 to 2017) of precipitation and temperature
for J1 and J2 were collected from the Lighthouse Cove and Merlinb stations, respectively.

https://omafra.gov.on.ca/English
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Preliminary analysis showed roughly 55% of observed precipitation occurred during
the crop growing season (April to October) and 45% fell as rain/snow over the non-
growing seasons. Over the 2011–2017 period, some precipitation data values were missing;
these were generated using SWAT’s weather simulator. Over the period of 2011–2017, the
average (±standard deviation) annual observed precipitation on the J1 and J2 watersheds
was 792 ± 183 mm and 797.6 ± 173 mm, respectively, indicating that these watersheds
showed substantial variation (Coeff. of Variation > 20%) in total annual precipitation
during the period of study. Over the same period, the maximum annual precipitation was
827 mm on the J1 watershed and 823 mm on the J2 watershed, both in 2013. In contrast,
2012 was a relatively dry year with annual precipitation of 636 mm and 652 mm for J1 and
J2, respectively.

The average annual temperature (Tmean) for J1 was 10.1 ± 1.2 ◦C [range from 8.2 ◦C
(2014) to 11.9 ◦C (2017)] and, for J2, 9.9 ± 1.1 ◦C [range from 8.1 ◦C (2014) to 11.4 ◦C (2017)].
A summary was established of monthly average precipitation and Tmean, for the Jeannette
Creek watershed from January 2016 to December 2017

2.2.3. Soils

To prepare the Jeannette Creek (J1 and J2) watersheds’ soil input data for the SWAT
model, soil data was drawn from Soil Landscapes of Canada (SLC) version 3.2 (Soil Land-
scapes of Canada Working Group, 2007, https://sis.agr.gc.ca/cansis/nsdb/slc/index.html,
accessed on 20 May 2018) and used as a field database. The SLC data encompasses a soil
map of Canada as well as key features of soils for the whole country. The SLC exists at a
scale of 1:1 million (~1 km spatial resolution), with each polygon on the map describing a
distinct type of soil and its associated characteristics. Figure 3 displays the soil coverage
map of the J1 and J2 portions of the Jeannette Creek watershed.

Soil properties are important factors in controlling infiltration and soil water movement
and play a key role in surface runoff, groundwater recharge, evapotranspiration, soil
erosion, and the transport of chemicals. For the Jeannette Creek watersheds (J1 and J2), soil
map and data were downloaded from Soil Landscapes of Canada (SLC) and, using ArcGIS
10.3.1 software, subsequently integrated to create the soil attribute datasets necessary to
build up the SWAT model. J1 watershed major type soil is Ontario Clyde (ONCYDA) and
J2 watershed is Ontario Brookston clay (ONBKN).

https://sis.agr.gc.ca/cansis/nsdb/slc/index.html
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2.2.4. Land Use and Land Cover (LULC)

To create a land use spatial map for both watersheds, a plot-wise crop classification was
undertaken based on ground-truth cropping pattern data drawn from a 5-year crop rotation
survey report provided by the LTVCA. On this basis, the J1 watershed was classified into
49 land use polygons/specific classes, whereas the J2 watershed was categorized into
54 land use classes.

When modelling agricultural watersheds with the SWAT model, accurate land man-
agement data inputs play a significant role in ensuring the accurate simulation of runoff,
sediment, and nutrient loads. Land management information includes date/month of
tillage operations, sowing/planting dates, type and rates of fertilizer application, har-
vest/kill date, etc. Field-by-field information from the farmers of the cropped areas in
the J1 and J2 (Jeannette Creek) watersheds (Table S1) was similarly drawn from a 5-year
farmer land management survey report provided by the LTVCA. To represent the land
management data on a field-wise basis, land use maps were again classified, such that each
field was assigned a particular land use code (Figure 4).

For the J1 watershed, data collection between 2013 and 2016 was only carried out for 5
of the 49 specified fields (viz., J161, J162, J163, J165, J175). For the J2 watershed, over the
course of five years, the LTVCA collected detailed information for 13 fields (specifically,
J204, J2E4, J205, J207, J212, J213, J224, J232, J233, J238, J239, J241, J244) out of a total of 54.
Based on the data collected, a seven-year rotation database was created to serve as input for
the SWAT model. Land management data for the remaining fields in both the watersheds
was taken from the land-use data description files (windshield survey) of 2016–2017, a
product of the LTVCA. Information collected from the land management survey was
extrapolated to fields with missing data using the adjacency principle. This approach
enabled the creation and synthesis of wide-ranging land management datasets. Preparation
of land management datasets involved 4 steps: (i) planting details for 3 growing seasons,
(ii) fertilizer application details, (iii) harvest/kill details, and (iv) tillage operation details
(Table S1).
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and Jeannette Creek—J2, (Right) watersheds.

3. SWAT Model Built-up and BMP Implementation

A process-based watershed model, SWAT is widely recognized for its capacity to
accurately assess land management impacts on water, sediment, nutrient (phosphorus),
and associated agrichemicals arising in a watershed under conditions of changing soil, land
use, and management. The model performs semi-distributed, continuous-time hydrological
simulations at a daily time step [29–31].

3.1. Delineation of Flow Paths

The initial challenge in establishing the model centered around delineating flow paths.
Traditionally, watershed models require a natural free-flow outlet, but the Jeannette Creek
J1 and J2 watersheds presented an obstacle with a dam/wall and a pumped outlet system.
This posed challenges, such as defining streams and sub-watersheds, accommodating
flat topography, incorporating pump stations, and assuming a pumped outlet. Similar
challenges were encountered by Donmez et al. [26]. To address these issues, the study
independently set up the two sub-watersheds (J1 and J2) within the larger Jeannette Creek
watershed. The delineation of natural streams was performed at different resolutions,
but due to limitations, pre-defined streams and sub-watersheds were applied to ensure
comprehensive coverage. The methodology aligns with Donmez et al.’s approach, where
pre-defined streams were crucial for accurately delineating the stream network in the model.
This process was repeated for both the J1 and J2 watersheds to overcome the complexities
arising from flat topography and multiple outlets.

For instance, Figure 5a,b show that the model was clearly unable to delineate the
pattern of streams with the 30 m × 30 m DEM. In the case of Figure 5c, the natural streams
were burned based on a 0.5 m × 0.5 m Hydro-Enforced DEM, but the model remained
unable to delineate some portions of the watershed, as highlighted by the red circles.
Figure 5d displays an appropriate delineation of the stream network, with pre-defined
streams within sub-watersheds, allowing the routing of streams node to node. Thus, the
pre-defined approach was applied to delineate the watershed.
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Figure 5. Stream delineation of Jeannette (J2) creek watersheds: (a) natural streams generated by
0.5 m × 0.5 m Hydro-Enforced DEM; (b) modified streams burned on 30 m × 30 m DEM; (c) modified
streams burned on 0.5 m × 0.5 m Hydro-Enforced DEM; (d) pre-defined streams and sub watershed
burned on 0.5 m × 0.5 m Hydro-Enforced DEM.

3.2. Incorporation a Pumping Outlet in SWAT Model

The J1 and J2 watersheds function as pump catchments, with Dauphin in J1 and
Dreary and Boudreau in J2 serving as pumped outlets. Each outlet is equipped with a
sump and pump system. To ensure efficient operational control of the pumps, these pumps
were designed to operate through an automated float mechanism. In the case of J2 Dreary,
the pump outlet was functional throughout, whereas the Boudreau pump station was
not functional due a misfunctioning automated float sensor. Therefore, among the three
stations monitored under the GLASI program, two stations provided the majority of data
for this study. The system could not be simulated as a continuous flow system, as, for
these watersheds, sediment and P load data were not available on the channel. Pumped
discharge, flow, sediment, and P load data were used during the model calibration.

Within the SWAT environment, pump outlet chambers were represented as reservoirs
positioned at ground level. The implementation of a reservoir in SWAT requires the reser-
voir surface area and reservoir volume to be specified for different stages (i.e., emergency
and principal spillway) [32,33]. To address this difficulty, the maximum surface area and
corresponding volume of the reservoir were evaluated using the ArcGIS spatial analyst tool.
To compute streamflow, sediment, and P loads at the reservoir (i.e., the pump) outlet, we
assumed that the pumped discharge corresponded to the depth of the reservoir. Therefore,
the amount of flow, sediment, and P discharged by the pump was taken as equal to the flow,
sediment, and nutrients entering the channel from the watershed. In technical terms, we
calibrated the J1 and J2 watersheds by estimating the reservoir area through a combination
of Google Earth analysis and ground truthing, employing ArcGIS 10.3.1 software. Later,
applying sensor depth (m) obtained from level logger data, we estimated the volume of
the reservoir (m3) as the product of depth (m) and reservoir area (m2). This information
enabled us to estimate the flow rate by dividing the volume by the time duration (m3 sec−1)
for a specific day.

3.3. Delineation of Watersheds and Sub-Watersheds, and Generation of HRUs

The J1 watershed was delineated into 24 sub-watersheds based on stream networks.
To achieve this delineation, the ground truth flow paths (streams) were overlaid on a
0.5 m × 0.5 m DEM through the SWAT model’s burning process. The total delineated area
of the watershed for the Dauphin pump outlet was 900.2 ha (Figure 6, J1). Single slope,
land use (containing 186 polygon data), and soil (3 soil groups, detailed data) input maps
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were then overlain to generate HRUs. With a combination of all these inputs, the model
generated 200 HRUs for the J1 watershed. In contrast, the J2 watershed was delineated into
32 sub-watersheds based on a 0.5 m × 0.5 m DEM by burning the ground-truthed flow
paths (streams). This included three outlets, two of which were pumping outlets and a
third that operated in a particular sub-watershed (Field ID 30) (Figure 6, J2).
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3.4. Model Calibration

For the J1 and J2 portions of the Jeannette Creek watershed, the SWAT model was
calibrated with data from the period of 1 January 2011 to 31 December 2017, followed by a
5-year (2011–2015) warmup period and 2 years (2016–2017) for the simulation of streamflow,
sediment, and Ptot loads at the watersheds’ pumped outlets. Streamflow calibration focused
on improving model performance for the flow measured by monitoring stations at pump
outlets. Various parameters related to flow hydrology (i.e., snow and snowmelt-related
parameters, groundwater parameters, and relative parameters like CN2, SOL_K, SOL_ALB,
SOL_AWC, etc.) were considered. Special emphasis was given to the parameters that
may have spatial patterns that differ from HRU to HRU at the field level. To analyse the
model’s sensitivity, parameter ranges were assigned to the SWAT CUP function to run for
500 simulations based on the upper and lower limits. Then, based on the Nash–Sutcliffe
model efficiency coefficient (NSE), along with p- and r-stats pertaining to the uncertainty
band, a final range of parameter values was obtained for both watersheds (J1 and J2).

To simulate the sediment at the pump outlet, the SWAT model implemented for the
J1 and J2 (Jeannette Creek) watersheds was calibrated for the period of 1 January 2016 to
31 December 2017. The availability of sediment data was a challenge as only 71 and 85
sediment concentration sampling data (on daily basis) were available for the J1 and J2 pump
outlets, respectively. The available data were used to accomplish this daily basis calibration
through manual and auto SWAT Calibration and Uncertainty Procedures (SWAT-CUP) by
comparing the simulated sediment loads to the measured loads. Special attention was
given to the calibration for high flow periods during which large sediment loads were
generated. Prior to manual calibration, auto calibration and sensitivity analysis were also
performed though the SWAT-CUP model by giving the parameters ranges as described in
the SWAT-CUP manual. The SWAT-CUP was then set to run for 500 simulations, with a
uniform distribution of the parameters based on the upper and lower limits. Simulation
was also conducted, if required, as per the new parameter sets recommended by the SUFI-
2 algorithm [34]. This exercise narrowed down the ranges of new parameter sets and
confirmed fast conversion.
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3.5. Best Management Practices (BMPs)

A land management survey was conducted by LTVCA to collect field-by-field infor-
mation from the farmers of the cropped area in the J1 and J2 watersheds. Information
available in the land management survey was extrapolated to the fields with missing data.
Land management datasets were completed by synthesizing data based on the adjacency
principle, to create synthesized and complete datasets. The land management datasets’
preparation involved four steps: (i) planting details for three growing seasons, (ii) fertilizer
application details, (iii) harvest/kill details, and (iv) tillage operations details. SWAT land
use codes were allocated to represent field-wise land management data. The SWAT mod-
elling gauged the main BMPs promoted and applied in the watershed. The main BMPs
included conservation tillage, fertilizer incorporation, precision nutrient management,
cover cropping, vegetative buffer strip establishment, and extensive tile drainage. Some
possible BMPs (banding P, no-till, cover crop) were applied in the J1 and J2 watersheds to
test their effectiveness. The emphasis was to test their impact on reducing P loads at the
watershed outlets.

3.5.1. Implementation of BMPs

The baseline model was set up with BMPs implemented in the J1 and J2 watersheds
for the period of 2016–2017 (i.e., banding and incorporation of P, variable rate P application,
below canopy application of P, variable rate of P + incorporation of P, and conservation
tillage and cover crops). Historical land management practices and crop rotation data for
seven years (2011–2017) provided to the model for such fields as J165, 61, 62, 63, and 75,
and J204, J2E4, J205, J207, J212, J213, J224, J232, J233, J238, J239, J241, and J244, while, for
the remaining fields, the two-year land use datasets (2016–2017) were used. Details of the
BMPs that were practiced in the Jeannette Creek watershed in 2016 and 2017 are given
in Table S2. This table also provides a field-wise description, along with their modified
parameters used during the model built-up for existing BMPs.

3.5.2. Potential BMPs for J1 and J2 Watersheds

An additional scenario was evaluated to show the possible impacts on P load reduction
of expanding the existing BMP effort. Hence, some possible BMPs (i.e., banding P, no-till,
cover crops) were also applied on the J1 and J2 watersheds to test their effectiveness. Firstly,
fertilizer banding was applied to all the fields in both watersheds, to test its potential
impact on P load reduction. For this, the parameter FERT_SURFACE (a fraction of the
fertilizer applied to the first 10 mm of the soil layer) was set to 0.01, indicating that 99%
of the fertilizer was applied beneath the top 10 mm of soil. It was hypothesized that a
lesser availability of fertilizer in the topsoil would lead to less P being transported from flat
lowland fields/watersheds to the stream.

Secondly, tillage practice was such that soybean [Glycine max (L.) Merr.] and winter
wheat (Triticum aestivum L.) were planted under no-till practices, whereas corn (Zea mays
L.) would be planted under vertical tillage (a.k.a. zero-till). A new tillage ID (#108) was
assigned to vertical tillage operations, with the depth of tillage and mixing efficiency both
set to zero. Lastly, cover crops were applied to all the fields after the harvest of winter
wheat to assess how much amount of reduction in P exports was achieved just before
reaching (i.e., just upstream of) the watershed’s pumping outlet.

4. Results and Discussion
4.1. Flow Calibration

Streamflow calibration for the Jeannette Creek J1 and J2 sub-watersheds focused on
improving model performance at the flow monitoring stations at pump outlets. Table S3
lists the various parameters related to flow hydrology (i.e., snow and snowmelt-related
parameters, groundwater parameters, and relative parameters like CN2, SOL_K, SOL_ALB,
SOL_AWC, etc.) which may have spatial patterns that vary from HRU to HRUs at the field



Hydrology 2024, 11, 22 10 of 21

level. Hence, these parameters were selected for the stream flow model calibration, and the
final specified parameter best values, ranges, and sensitivity are listed in Table S3.

In this case, the SWAT model default value was 0.5, and the range was −2 to 2 for
both J1 and J2. The best values were −1.38 and −0.6 for J1 and J2, respectively. For the case
of the soil and evaporation compensation factor, the most sensitive SWAT parameter, its
default value and range were ESCO, 0.95, and 0.9–1.0, respectively, while the best values
were 0.9795 for J1 and 0.955 for J2. These results fell into the high-sensitivity category. In
the calibration exercise, the baseline for the relative changes ranged from −0.1% to +0.1%
or −10% to +10% of the parameter value. A similar training was conducted for multiple
case parameters until the calibration of the SWAT model was completed.

Figure 7 shows a time series plot for the J1 watershed, showing stream flow and precip-
itation with a 95% parameter predictive uncertainty (PPU) band, generated by SWAT-CUP
and based on the range of the parameter value for the J1 watershed. The low and high
peaks of streamflow in the watershed are commensurate with precipitation amounts. Mori-
asi et al. [35] suggests that the overall qualitative rating can be considered unsatisfactory
if PBIAS > 15%, NSE < 0.5, and R2 < 0.6. However, while the model predictions for J1
tended to follow the trend of observations, the goodness-of-fit statistics reflected the central
tendency—the PBIAS was quite high (48.20%), while values of NSE = 0.23 and R2 = 0.33
were found to be reasonable.

Hydrology 2024, 11, x FOR PEER REVIEW 10 of 22 
 

 

both set to zero. Lastly, cover crops were applied to all the fields after the harvest of winter 

wheat to assess how much amount of reduction in P exports was achieved just before 

reaching (i.e., just upstream of) the watershed’s pumping outlet. 

4. Results and Discussion 

4.1. Flow Calibration 

Streamflow calibration for the Jeannette Creek J1 and J2 sub-watersheds focused on 

improving model performance at the flow monitoring stations at pump outlets. Table S3 

lists the various parameters related to flow hydrology (i.e., snow and snowmelt-related pa-

rameters, groundwater parameters, and relative parameters like CN2, SOL_K, SOL_ALB, 

SOL_AWC, etc.) which may have spatial patterns that vary from HRU to HRUs at the field 

level. Hence, these parameters were selected for the stream flow model calibration, and the 

final specified parameter best values, ranges, and sensitivity are listed in Table S3. 

In this case, the SWAT model default value was 0.5, and the range was −2 to 2 for both 

J1 and J2. The best values were −1.38 and −0.6 for J1 and J2, respectively. For the case of 

the soil and evaporation compensation factor, the most sensitive SWAT parameter, its de-

fault value and range were ESCO, 0.95, and 0.9–1.0, respectively, while the best values 

were 0.9795 for J1 and 0.955 for J2. These results fell into the high-sensitivity category. In 

the calibration exercise, the baseline for the relative changes ranged from −0.1% to +0.1% 

or −10% to +10% of the parameter value. A similar training was conducted for multiple 

case parameters until the calibration of the SWAT model was completed. 

Figure 7 shows a time series plot for the J1 watershed, showing stream flow and pre-

cipitation with a 95% parameter predictive uncertainty (PPU) band, generated by SWAT-

CUP and based on the range of the parameter value for the J1 watershed. The low and 

high peaks of streamflow in the watershed are commensurate with precipitation amounts. 

Moriasi et al. [35] suggests that the overall qualitative rating can be considered unsatisfac-

tory if PBIAS > 15%, NSE < 0.5, and R2 < 0.6. However, while the model predictions for J1 

tended to follow the trend of observations, the goodness-of-fit statistics reflected the cen-

tral tendency—the PBIAS was quite high (48.20%), while values of NSE = 0.23 and R2 = 

0.33 were found to be reasonable. 

 

 

 

Figure 7. Comparison of observed and simulated streamflow during the period of 1 January 2016 to 

31 December 2017 for J1 watershed. 

The unreasonable values (i.e., substantial (48%) over estimations) generated by the 

model could be attributed to the non-continuity in observed streamflow at the watershed’s 

pump station outlet. On the other hand, the 95% PPU and a p-stat equal to 0.33 indicates 

that 33% of the observations were compressed within a comparatively thin band (r-stat 

0.22). This further indicates that although model performance statistics were in the 

Figure 7. Comparison of observed and simulated streamflow during the period of 1 January 2016 to
31 December 2017 for J1 watershed.

The unreasonable values (i.e., substantial (48%) over estimations) generated by the
model could be attributed to the non-continuity in observed streamflow at the watershed’s
pump station outlet. On the other hand, the 95% PPU and a p-stat equal to 0.33 indicates
that 33% of the observations were compressed within a comparatively thin band (r-stat 0.22).
This further indicates that although model performance statistics were in the unacceptable
range, the stochastic-based calibration indicated a reasonable prediction of streamflow.

Figure 8 displays a time series plot of stream flow and precipitation, with the 95%
PPU band, generated from the SWAT-CUP based on the range of parameter value for the
J2 watershed. In this plot, the final range of streamflow parameter values were used in
an uncertainty analysis. The low and high peaks of streamflow from the watershed corre-
sponded with precipitation amounts. Showing model performance parameter statistics,
Table S4 reflects an overall qualitative rating that can be considered as ‘good,’ based on the
values of PBIAS (9%), NSE (0.6), and R2 (0.71) [35]. In addition, the 95% PPU indicates that
30% of the observations (p-stat = 0.3) were compressed within a comparatively thin band
(r-stat 0.12), which further confirms that the model performance statistics are within the
acceptable range.
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Figure 8. Comparison of observed precipitation with simulated and observed streamflow during the
period of 1 January 2016 to 31 December 2017 for J2 watershed.

4.2. Sediment Calibration

The results displayed in Figures 9 and 10 represent time series plots featuring simu-
lated sediment concentration and precipitation, with a 95% PPU band for both watersheds.
The low and high peaks of streamflow in the watershed corresponded with a similarly high
precipitation amount. While a thorough model validation was hindered by the unavailabil-
ity of continuous observations, the plot indeed shows that the model simulations captured
the trend of observations during the calibration periods.
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The simulation results show a very low (0.02 Mg ha−1) annual sediment load, which
means the simulated sediment concentration was near zero. A low annual sediment
load can be linked with low moisture conditions during the growing season, such that
summer rainfall events generate localized and insignificant runoff (Figure 9). The high
observed sediment concentrations were indeed unexpected, but might be attributed to a
very localized event covering a small area around the rain gauge or potential issues in the
sampling techniques employed. Further detailed investigation is necessary to address and
understand this issue.

The model performance statistics displayed a ‘very good’ PBIAS value of −5.5%
(<10%), coupled with ‘unsatisfactory’ NSE (0.14) and R2 (0.1) values (Table S5). Overall,
based on the PBIAS sediment simulation, the results for the pump outlet were deemed
‘reasonable’. Lower values of NSE and R2 were indeed expected, as the observations were
instantaneous, while the SWAT simulations were generated on a daily time frame. As
for the uncertainty band, 44% of the observations (p-stat = 0.44) were encapsulated in
a relatively thick (r-stat = 1.05) uncertainty band. The calibrated J1 model indicated the
average annual simulated sediment load to be 0.76 Mg ha−1 over the simulation period
(2016–2017).

The SWAT model was also set up and run for the J2 watershed for the period of
1 January 2016 to 31 December 2017. The simulated average annual sediment yield was
0.39 Mg ha−1 at the pump outlet. Over the simulation period, the high and low sediment
loads corresponded with the simulated streamflow pattern. The simulated sediment
loads for J2 were found to be very low during the summer season (Figure 10). Model
performance statistics showed a ‘very good’ PBIAS value of 8.3% (<10%, Moriasi et al. [35])
and ‘unsatisfactory’ NSE (0.13) and R2 (0.14) values at the pump outlet. Based on the PBIAS
and instantaneous observed sediment concentration, the performance of SWAT to simulate
sediment loads appeared to be reasonable.

4.3. Phosphorus Calibration

Supplementary Table S2 presents the SWAT model parameters for P loads for the
J1 and J2 watersheds. Beyond listing the parameters, the table provides comprehensive
information such as descriptions, model ranges, optimal values, and sensitivities.

Following the calibration for streamflow and sediment, the SWAT model was further
calibrated for P in the J1 and J2 watersheds using SWAT-CUP. The calibrated J1 model
results indicated that the 2016 annual organic and mineral P (Porg and Pmin) were about
0.14 kg ha−1 and 0.09 kg ha−1, respectively, whereas, in 2017, Pmin was 0.18 kg ha−1 and
Pmin was 0.11 kg ha−1. Low and high Porg and Pmin corresponded with increases and
decreases in streamflow during the simulation period (Figures 11 and 12). The simulated
average annual Ptot load from this watershed was 0.26 kg ha−1 (Table S6).
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Figure 12. Comparison of observed precipitation with simulated and observed Pmin concentration
for the period of 1 January 2016 to 31 December 2017, Jeannette (J1) Creek at Dauphin pump outlet.

Model performance statistics for Porg and Pmin calibration at the pump outlet of the J1
watershed monitoring station showed a PBIAS of 15.7% for Porg and of −17.4% for Pmin.
The PBIAS value for Pmin fell within the range of ‘good’ qualitative rating criteria, whereas
NSE and R2 were deemed unsatisfactory [35–37]. For Porg, the 95% PPU band summarized
42% of the observations in a relatively thick band (r-stat = 1.04). For Pmin, the uncertainty
band encapsulated only 48% of the observations (p-stat = 0.48) in a relatively thick band
(r-stat = 1.18), which again highlights the difficulty in comparing observed instantaneous P
concentrations with daily simulated SWAT results (Figure 13, Figure 14 and Table S6).

For the J2 watershed, the time series plot was generated by comparing simulated
and observed Porg and Pmin and plotting a 95% PPU band. The simulated values of Porg
were 0.10 kg ha−1 for 2016 and 0.11 kg ha−1 for 2017. The simulated values of Pmin were
0.08 kg ha−1 for 2016 and 0.13 kg ha−1 for 2017.

The overall average annual Ptot yield over the period of two years was 0.20 kg ha−1.
The low and high Porg and Pmin corresponded well with high and low streamflow patterns
at the pump outlet. The model performance statistics showed a very good PBIAS (6%) for
Porg and a satisfactory one (22%) for Pmin. The NSE for Porg (0.15) and Pmin (−0.03), along
with the R2 for Porg (0.16) and Pmin (0.03), were found to be ‘unsatisfactory.’ Thus, for Porg, the
uncertainty band summarized only 62% of the observations (p-stat = 0.62) and was compressed
in a relatively thick band (r-stat = 1.82), whereas, for Pmin, the 95% PPU band summarized 77%
of the observations in a relatively thick band (r-stat = 1.94). Based on the PBIAS, the model’s
performance in predicting temporal trends was satisfactory, but it was unsatisfactory for
concentrations. Again, this is due to the comparison of instantaneous observed concentration
with the daily simulated concentrations. Overall, based on the trends, the performance of the
model to simulated P was poor but approaching a reasonable range [35–37].
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the period of 1 January 2016 to 31 December 2017, Jeannette (J2) Creek at Dreary pump outlet.
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Figure 14. Comparison of observed precipitation with simulated and observed Pmin concentration
for the period of 1 January 2016 to 31 December 2017, Jeannette (J2) Creek at Dreary pump outlet.

Considering existing land management conditions, average yearly sediment and
nutrient yield were simulated. Sediment loads at the J1 and J2 outlets were 82.77 Mg yr−1

and 84.9 tons, respectively, representing sediment yields of 0.54 and 0.39 Mg yr−1 ha−1. The
Porg for J1 and J2 were 261.5 kg yr−1 and 93.17 kg yr−1, respectively, corresponding to yields
of Porg of 0.165 kg yr−1 ha−1 and 0.1 kg yr−1 ha−1. Additionally, the Pmin for J1 and J2
were 99.7 kg yr−1 and 269.5 kg yr−1, respectively, with associated yields of 95 g yr−1 ha−1

and 90 g yr−1 ha−1. The Ptot loads for J1 and J2 were 361.2 kg yr−1 and 362.6 kg yr−1,
respectively, with corresponding yields of 0.26 kg yr−1 ha−1 and 0.19 kg yr−1 ha−1.

4.4. BMP Scenarios
4.4.1. Effectiveness of Current BMPs

Assessing the effectiveness of current BMPs using the SWAT model was undertaken
by considering the baseline (existing) BMP scenarios employed in building up the model
for the J1 and J2 (Jeannette creek) watersheds. The effectiveness of each individual BMP
scenario was assessed by comparing it against the baseline scenario with respect to flow,
sediment, and P yields (Figure 15).

Table 2 shows the simulation results for the change in P loads under the existing BMPs
applied in the J1 and J2 watersheds and when all present BMPs are removed. The 2016 and
2017 mean simulated Ptot discharge (i.e., upstream, just before pump outlet) from the J1 and
J2 watersheds was 361.2 kg yr−1 and 362.7 kg yr−1, respectively, representing Porg loads
of 261.5 kg yr−1 and 93.2 kg yr−1 (J2), and Pmin loads of 99.7 kg yr−1 and 269.5 kg yr−1.
For the J1 watershed, the average non-growing season (November to April) Ptot load was
196.8 kg yr−1, significantly greater than that over the growing season (May to October;
164.3 kg yr−1). Simulation results suggest that the existing BMPs were more effective
during the non-growing season months (17% reduction in the transportation load of Ptot)
compared to growing season months (2%).

The J2 watershed saw average Ptot loads of 214.2 kg yr−1 transported during the
non-growing season (November to April) compared to 148.5 kg yr−1 during the growing
season (May to October). The simulation results suggest that the existing BMPs were more
effective during the non-growing season months (21% reduction in the transportation load
of TP) compared to growing season months (7% reduction). The simulation results also
suggest that the effectiveness of the existing BMPs was greater during spring and summer
compared to winter and fall.
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Figure 15. Seasonal and growing/non-growing total phosphorus load exported to upstream just
before Dreary pump outlet of J1 and J2 watersheds under existing BMPs and no BMPs (retiring all
the present BMPS).

Table 2. Modelling results showing effectiveness of existing BMPs just upstream of the Dauphin (J1)
and Deary pump (J2) outlets (2016–2017).

Scenario Year Watershed
Flow Sediment Porg Pmin Ptot

(m3 s−1) (Mg yr−1) (kg yr−1) (kg yr−1) (kg yr−1)

All BMPs Applied
2016

J1 0.08151 93.02 243.5 89.9 333.4
J2 0.052 63.21 76.25 199.6 275.85

2017
J1 0.06243 72.54 279.5 109.5 389
J2 0.080 106.6 110.1 339.4 449.5

All BMPs Removed
2016

J1 0.082 93.18 249.8 122.1 371.9
J2 0.053 64.66 105 204.6 309.6

2017
J1 0.064 73.97 287.2 135.8 423
J2 0.082 110.3 169.2 340.4 509.6

Reduction

Effective Reduction
2016

J1 0.0002 0.16 6.3 32.2 38.5
J2 0.001 1.45 28.75 5 33.75

2017
J1 0.0015 1.43 7.7 26.3 34
J2 0.003 3.7 59.1 1 60.1

Relative Reduction (%)

Effective Relative
Reduction

2016
J1 0.22 0.17 2.52 26.37 10.35
J2 1.50 2.24 27.38 2.44 10.90

2017
J1 2.38 1.93 2.68 19.37 8.04
J2 3.15 3.35 34.93 0.29 11.79
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4.4.2. Scenarios for Existing BMPs
Retiring the P Application BMP from the Existing BMPs for J1 and J2 Watersheds

In the J1 watershed, P application as a BMP was implemented on 14 of 49 fields.
Figure 16 (J1) shows the result of retiring this BMP on P loads in the J1 watershed. On an
annual scale, the effectiveness of this BMP was found to be 0.4%. Simulation results also
suggest that under a seasonal retirement of P application, Ptot would increase by 1% during
the growing season, whereas no change would occur during the non-growing season.
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Figure 16. Seasonal (conventional and growing/non-growing) total phosphorus load exported to
upstream just before pump outlet of J1 and J2 watersheds in current and retiring current P application
cases. Note: DJF (December, January, and February), MAM (March, April, and May), JJA (June, July,
and August) and SON (September, October, and November).

On the J2 watershed, the banding of P was applied to all 54 fields, but P incorporation
was implemented in only 6 fields, while variable application with incorporation was
applied to only 3 fields. One remaining field employed below-canopy application as a BMP.
Figure 16 (J2) shows that retiring existing P application BMPs from the baseline model
resulted in a moderate effect on the transportation load of Ptot. Retiring these BMPs led to
no change in P loads during the non-growing season and a 10% increase during the growing
season. However, the greatest increase in P loads occurred during the winter season.

Retiring Conservation Tillage from the Existing BMPs

In the J1 watershed, 7 out of 49 fields were subject to conservation tillage. Retiring
existing conservational tillage from the baseline model increased the annual Ptot losses to
375.1 kg from 361.2 kg. This limited increase (3.84%) can be linked with the fact that only
14% (by area) of the fields in the watershed were under conservation tillage. Thus, retiring
this BMP increased the Ptot loads by 2% during the growing season and 5% during the
non-growing season. The retirement of conservational tillage in the J2 watershed increased
the annual P loads to 366.2 kg from 362.6 kg. Roughly 1% increases in the P loads were
observed during the growing and non-growing seasons. This small increase can be linked
to the fact that only 4% of the fields in this watershed were under conservation tillage.
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Retiring the Cover Crop from the Existing BMPs

In the J1 watershed, 2 of 49 fields during 2016 and 5 of 49 fields during 2017 were
under cover crops. Retiring the existing cover crops in the J1 watershed did not show
any significant impact (change was within the range of ± 0.11%) on the total annual and
seasonal P loads. The change in annual and seasonal Ptot loads achieved by retiring the
existing cover crop BMPs in the J2 watershed was very similar to that observed for the
J1 watershed.

Retiring Vegetative Buffer Strips from the Existing BMPs

In 2016, the J1 watershed had 2 of 49 fields under Vegetative Buffer Strips (VBS), while
watershed J2 had none. Retiring the existing VBS resulted in a less than 2% increase in total
annual P loads and no more than a 3% increase in seasonal Ptot loads. Retiring VFS in the
J1 watershed led to an increase in the export of annual Ptot loads from 361.2 kg to 367.7 kg.
This slight increase in P load can be linked with the small fraction of fields (around 4%)
under the VFS BMP.

4.4.3. Scenarios for Possible BMPs

The calibrated model was used to evaluate the potential effectiveness of possible BMPs
(e.g., banding P, no-till, and cover crops) on reducing P loads just upstream from the pump
outlets. These BMPs were applied in all the fields in the J1 and J2 watersheds, and the
export of Ptot was documented for both watersheds. Each potential scenario was compared
with the baseline scenario, and its effectiveness was computed at various temporal scales
(e.g., annual, seasonal). The application of banded fertilizer, undertaken for all fields in
both watersheds, was compared with broadcast fertilizer application. Under the banded
application, the fertilizer was placed 10 mm below the soil layer at a rate inferior to that
of a surface application by spreading [21]. In the J1 watershed, export of Ptot was reduced
from 361 kgyr−1 (base case value) to 343.1 kg yr−1 (banded application of fertilizer case),
reflecting an estimated reduction of up to 5% on an annual scale, with reductions of 8%
and 3% in the growing and non-growing seasons, respectively. The reductions in Ptot loads
were of 4%, 8%, 3%, and 1% for the winter, spring, summer, and fall seasons, respectively.
For the J2 watershed, the banded fertilizer resulted in almost the same reduction (8%) in the
export of Ptot on an annual scale, growing season, and non-growing season. The reduction
in Ptot loads during the four seasons were 6% in winter, 7% in spring, and 6% in summer,
with the maximum reduction (11%) occurring during the fall season.

The simulation results presented in Figure 17 (J1 and J2) for no-tillage show a more
than 60% reduction in annual Ptot loads in both watersheds, making it the most efficient
BMP among all the BMPs under consideration. The annual Ptot loads were reduced from
361 kg to 103 kg in watershed J1 and from 362 kg to 114 kg in watershed J2. No-till reduced
soil compactibility (Proctor bulk density) and increased the stability of wet aggregates and
water infiltration [38]. No-till also enhances biological activities [39,40]. These physical
properties of undisturbed soil might have contributed to reducing surface runoff, decreased
the rate of soil erosion, and thereby reduced the transport of Porg to the streams.

The Ptot load reduction pattern in the growing and non-growing seasons was similar
for both watersheds. For the non-growing season, the reduction in P transport was 76%
in J1 and 66% in J2, whereas, in the growing season, the rate of reduction was 67% for
J1, and 52% for J2. In the J1 watershed, the maximum reduction (82%) occurred during
winter, followed by the spring (76%), fall (75%), and summer (37%) seasons. For the J2
watershed, the maximum reduction (69%) occurred during the fall, followed by the spring
(64%), winter (55%), and summer (24%) seasons (Figure 17).

The cover crop BMP—cereal rye/red clover planted after winter wheat—was applied
to all fields in both the J1 and J2 watersheds. For J1, the cover crop offered a small reduction
(2%) in annual Ptot loads (Figure 18). The seasonal pattern in Ptot load reduction was
different than for other BMPs: a 15% decrease in Ptot loads during the non-growing season,
but a 15% increase in Ptot loads during the growing season. Most of the increase (93%)
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occurred during the summer season. For other seasons, the maximum absolute change in
Ptot loads under cover cropping occurred during the winter (−39%), followed by the spring
(−12%) and fall (−2%) seasons. Moreover, the annual Porg and Pmin loads just upstream of
the pump outlet decreased on average by 6% and 7%, respectively.
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Figure 17. Total phosphorus load exported to upstream just before pump outlets of J1 and J2
watersheds in current and applying “No Tillage” in all the fields.
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upstream just before pump outlets of J1 and J2 watersheds, making a case of cover crop after winter
wheat harvest.
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5. Conclusions

The SWAT model can evaluate the performance of BMPs in reducing P loads in
flatland watersheds with pumped outlets. The model was applied to two (J1 and J2) small
flatland watersheds in southern Ontario, in the Canadian Great Lakes basin. The BMP
evaluation included banded fertilizer and variable rate application, conservation tillage,
no-till, and a post-winter-wheat cover crop. The calibration performance for stream flow
was in the acceptable range for both the watersheds, with watershed J2 performing slightly
better than J1. However, the performance for the simulation of sediment concentration
remained below the acceptable range due to the limited availability of measured sediment
concentration data. The SWAT model successfully predicted temporal P trends but had
difficulty estimating Porg and Pmin concentrations. Again, this was due to the limited
availability of water quality data. The existing BMPs resulted in an average annual total P
load reduction of 9% (36.25 kg) for J1 and 11% (46.9 kg) for J2. The P application rate and
conservation tillage proved to be more effective in reducing Ptot loads than cover crops after
winter wheat. Altering the P application rate resulted in 0.5% (J1) to 4% (J2) reductions in
Ptot loads. Conservation tillage decreased Ptot loads by 3.8% in J1 and 1% in J2. Among the
BMPs that could potentially be applied in the watersheds under study, banded P application
resulted in a 5% reduction in P loads for J1 and 8% for J2. However, the implementation of
no-till was found to be the most effective in reducing P loads (>60%) in both watersheds.
This evaluation is critical for successful implementation and assessment of effectiveness
of BMPs in flatland agricultural landscapes where water management through a series
of pumped outlets plays a pivotal role. The findings of this research have far-reaching
implications for future agricultural practices and water resource management, such as
(a) enhancing the water resource management in similar watersheds by identifying and
recommending suitable BMPs for improving water quality; and (b) developing appropriate
land management strategies to target resources in areas contributing relatively higher
sediment and nutrient losses.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/hydrology11020022/s1: Table S1: Land/ crop management data field wise;
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with their modification parameters applied in the Jeannette Creek watershed SWAT model; Table S3.
Calibrated Flow, Sediment and Phosphorous parameters for the Jeannette Creek watershed SWAT
modelling; Table S4. Model performance for streamflow simulation at dauphin and deary pump
outlet of J1 and J2 (Jeannette Creek) watershed monitoring stations; Table S5. Model performance
for sediment simulation at dauphin and deary pump outlet and also at upstream outlet of J1 and
J2 (Jeannette Creek) watershed monitoring stations; Table S6. Model performance for phosphorus
(organic and Mineral) calibration at dauphin and deary pump outlet of J1 and J2 (Jeannette Creek)
watershed monitoring stations.
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