Groundwater Flow Model Calibration Using Variable Density Modeling for Coastal Aquifer Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Investigation of Seawater Intrusion Pattern and Mechanism through Modeling
2.2.1. Modeling and Calibration Codes
2.2.2. Sensitivity Analysis and Calibration Code
2.2.3. Conceptual Model and Boundary Conditions
- 1.
- Dirichlet boundary conditions
- Coastline (Time-Variant Specified-Head package—CHD) at 0 m;
- Makaria Spring (Time-Variant Specified-Head package—CHD) at 2 m;
- Coastal Wetland (Time-Variant Specified-Head package—CHD) ranging from −1.2 m to 0.6 m to obtain observations in the vicinity of the wetland.
- 2.
- Neuman boundary conditions
- Abstraction wells and boreholes (Well package–WEL). Due to a lack of pumping rate data from the wells and drills, the pumping rate was determined based on data from the study of the Ministry of Agriculture [35] with an annual pumping rate of about 2 × 106 m3;
- Percolation from precipitation (Recharge package—RCH). The distribution of rainwater percolation throughout the year was calculated through a model by employing different hydrological methods [38]. The model includes the Soil Conservation Service Curve Number (SCS-CN) approach [39], the Penman–Monteith method [40]) for Potential Evapotranspiration (PET), while the Soil Moisture Balance (SMB) [41] method was utilized to estimate the Actual Evapotranspiration and rainfall percolation in the aquifer.
- 3.
- Cauchy boundary conditions
- Inflows from the surrounding marble (General Head Boundary–GHB). For the boundary head of the GHB, several hydraulic head measurements were gathered during the field campaign (from October 2028 to September 2019). The hydraulic head of the karstic formation in the area varied from 2.5 m (during the dry season) up to 4 m (during the wet season);
- Drain canal (Drain package—DRN). For the elevation of the drain canal in the area, a Digital Elevation Model (DEM) was utilized.
- Haradros stream (River package—RIV). Since the stream has an ephemeral flow, a river stage of up to 1 m above the river bottom was utilized, according to the sparse observation data that were obtained during the field campaigns.
2.2.4. Parametrization
3. Results
3.1. Sensitivity Analysis of MODFLOW Parameters
3.2. MODFLOW Model Calibration and Results
3.3. Parameter Fitting in SEAWAT Model
3.4. The Mechanism of Seawater Intrusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiao, J.; Post, V. Coastal Hydrogeology; Cambridge University Press: Cambridge, UK, 2019; Volume 44, ISBN 9781139344142. [Google Scholar]
- Apostolopoulos, G.; Pouliaris, C.; Karizonis, S.; Perdikaki, M.; Kallioras, A. Integrated Analysis of the Coastal Aquifer System of Thorikos Valley, Attica, Greece. In Proceedings of the NSG2021 1st Conference on Hydrogeophysics, Bordeaux, France and Online, 29 August–2 September 2021; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2021; pp. 1–5. [Google Scholar]
- Cosentino, P.; Capizzi, P.; Fiandaca, G.; Martorana, R.; Messina, P.; Pellerito, S. Study And Monitoring Of Salt Water Intrusion In The Coastal Area Between Mazara Del Vallo And Marsala (South-Western Sicily). In Methods and Tools for Drought Analysis and Management; Springer: Dordrecht, The Netherlands, 2007; pp. 303–321. [Google Scholar]
- Águila, J.F.; McDonnell, M.C.; Flynn, R.; Hamill, G.A.; Ruffell, A.; Benner, E.M.; Etsias, G.; Donohue, S. Characterizing Groundwater Salinity Patterns in a Coastal Sand Aquifer at Magilligan, Northern Ireland, Using Geophysical and Geotechnical Methods. Environ. Earth Sci. 2022, 81, 231. [Google Scholar] [CrossRef]
- Wilson, E.A.; Wells, A.J.; Hewitt, I.J.; Cenedese, C. The Dynamics of a Subglacial Salt Wedge. J. Fluid Mech. 2020, 895, A20. [Google Scholar] [CrossRef]
- Narayanan, D.; Eldho, T.I. Validation of Boundary Layer Solution for Assessing Mixing Zone Dynamics of Saltwater Wedge in a Coastal Aquifer. J. Hydrol. 2023, 617, 128899. [Google Scholar] [CrossRef]
- Torres-Bejarano, F.; González-Martínez, J.; Rodríguez-Pérez, J.; Rodríguez-Cuevas, C.; Mathis, T.J.; Tran, D.K. Characterization of Salt Wedge Intrusion Process in a Geographically Complex Microtidal Deltaic Estuarine System. J. S. Am. Earth Sci. 2023, 131, 104646. [Google Scholar] [CrossRef]
- Ke, S.; Chen, J.; Zheng, X. Influence of the Subsurface Physical Barrier on Nitrate Contamination and Seawater Intrusion in an Unconfined Aquifer. Environ. Pollut. 2021, 284, 117528. [Google Scholar] [CrossRef] [PubMed]
- Dokou, Z.; Karatzas, G.P. Saltwater Intrusion Estimation in a Karstified Coastal System Using Density-Dependent Modelling and Comparison with the Sharp-Interface Approach. Hydrol. Sci. J. 2012, 57, 985–999. [Google Scholar] [CrossRef]
- Diersch, H.-J.G. FEFLOW; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9783642387, ISBN 978-3-642-38738-8. [Google Scholar]
- Stoeckl, L.; Walther, M.; Morgan, L.K. Physical and Numerical Modelling of Post-Pumping Seawater Intrusion. Geofluids 2019, 2019, 7191370. [Google Scholar] [CrossRef]
- Na, J.; Chi, B.; Zhang, Y.; Li, J.; Jiang, X. Study on the Influence of Seawater Density Variation on Sea Water Intrusion in Confined Coastal Aquifers. Environ. Earth Sci. 2019, 78, 669. [Google Scholar] [CrossRef]
- Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT User’s Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008. [Google Scholar]
- Langevin, C.D.; Thorne, D.T., Jr.; Dausman, A.M.; Sukop, M.C.; Guo, W. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport; U.S. Geological Survey Techniques and Methods Book 6; U.S. Geological Survey: Reston, VA, USA, 2007; 39p.
- Dunlop, G.; Palanichamy, J.; Kokkat, A.; EJ, J.; Palani, S. Simulation of Saltwater Intrusion into Coastal Aquifer of Nagapattinam in the Lower Cauvery Basin Using SEAWAT. Groundw. Sustain. Dev. 2019, 8, 294–301. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Abd-Elaty, I.; Sherif, M.M. Effects of Aquifer Bed Slope and Sea Level on Saltwater Intrusion in Coastal Aquifers. Hydrology 2019, 7, 5. [Google Scholar] [CrossRef]
- Gopinath, S.; Srinivasamoorthy, K.; Saravanan, K.; Prakash, R.; Karunanidhi, D. Characterizing Groundwater Quality and Seawater Intrusion in Coastal Aquifers of Nagapattinam and Karaikal, South India Using Hydrogeochemistry and Modeling Techniques. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 314–334. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; U.S. Geological Survey Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2005; p. 253. ISBN 6-A16.
- Zheng, C.; Wang, P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems Documentation and User ’s Guide; US Army Engineer Research and Development Center: Vicksburg, MS, USA, 1999. [Google Scholar]
- Akhtar, J.; Sana, A.; Tauseef, S.M.; Tanaka, H. Numerical Modeling of Seawater Intrusion in Wadi Al-Jizi Coastal Aquifer in the Sultanate of Oman. Hydrology 2022, 9, 211. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P. Experimental and Numerical Investigation of Saltwater Intrusion Dynamics in Flux-controlled Groundwater Systems. Water Resour. Res. 2012, 48, W09527. [Google Scholar] [CrossRef]
- Khadim, F.K.; Dokou, Z.; Lazin, R.; Moges, S.; Bagtzoglou, A.C.; Anagnostou, E. Groundwater Modeling in Data Scarce Aquifers: The Case of Gilgel-Abay, Upper Blue Nile, Ethiopia. J. Hydrol. 2020, 590, 125214. [Google Scholar] [CrossRef]
- Carrera, J.; Hidalgo, J.J.; Slooten, L.J.; Vázquez-Suñé, E. Computational and Conceptual Issues in the Calibration of Seawater Intrusion Models. Hydrogeol. J. 2010, 18, 131–145. [Google Scholar] [CrossRef]
- Lyra, A.; Loukas, A.; Sidiropoulos, P.; Tziatzios, G.; Mylopoulos, N. An Integrated Modeling System for the Evaluation of Water Resources in Coastal Agricultural Watersheds: Application in Almyros Basin, Thessaly, Greece. Water 2021, 13, 268. [Google Scholar] [CrossRef]
- Ansarifar, M.-M.; Salarijazi, M.; Ghorbani, K.; Kaboli, A.-R. Simulation of Groundwater Level in a Coastal Aquifer. Mar. Georesources Geotechnol. 2020, 38, 257–265. [Google Scholar] [CrossRef]
- Perdikaki, M.; Makropoulos, C.; Kallioras, A. Participatory Groundwater Modeling for Managed Aquifer Recharge as a Tool for Water Resources Management of a Coastal Aquifer in Greece. Hydrogeol. J. 2022, 30, 37–58. [Google Scholar] [CrossRef]
- Psychoyou, M.; Mimides, T.; Rizos, S.; Sgoubopoulou, A. Groundwater Hydrochemistry at Balkan Coastal Plains—The Case of Marathon of Attica, Greece. Desalination 2007, 213, 230–237. [Google Scholar] [CrossRef]
- Perdikaki, M.; Manjarrez, R.C.; Pouliaris, C.; Rossetto, R.; Kallioras, A. Free and Open-Source GIS-Integrated Hydrogeological Analysis Tool: An Application for Coastal Aquifer Systems. Environ. Earth Sci. 2020, 79, 16. [Google Scholar] [CrossRef]
- Harbaugh, B.A.W.; Banta, E.R.; Hill, M.C.; Mcdonald, M.G. MODFLOW-2000, The U.S. Geological Survey Modular Graound-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; U.S. Geological Survey: Reston, VA, USA, 2000; p. 130.
- Winston, R.B. ModelMuse: A Graphical User Interface for MODFLOW-2005 and PHAST; U.S. Geological Survey Techniques and Methods 6–A29; U.S. Geological Survey: Reston, VA, USA, 2009; p. 52.
- Perdikaki, M. Modelling and Optimized Management in Coastal Aquifer Systems; National Technical University of Athens: Athens, Greece, 2022. [Google Scholar]
- Poeter, E.P.; Hill, M.C.; Lu, D.; Tiedeman, C.R.; Mehl, S. UCODE_2014, with New Capabilities to Define Parameters Unique to Predict Ions, Calculate Weights Using Simulated Values, Estimate Parameters with SVD, Evaluate Uncertainty with MCMC, and More; Integrated Groundwater Modeling Center (IGWMC), of the Colorado School of Mines: Golden, CO, USA, 2014. [Google Scholar]
- Banta, E.R. ModelMate—A Graphical User Interface for Model Analysis. In Techniques and Methods 6–E4; U.S. Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
- Poeter, E.; Hill, M.; Banta, E.; Mehl, S.; Christensen, S. UCODE 2005 and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation; U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Melissaris, P.; Stavropoulos, X. Hydrogeological Study of the Marathon Plain, Atticaq; Ministry of Agricultural Development: Department of Geology–Hydrogeology: Athens, Greece, 1999. [Google Scholar]
- Margoni, S. Research of the Environmental Evolution Processes of the Wetlands and Plain of Marathon during the Holocene with the Use of Geographic Information Systems; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2006. [Google Scholar]
- Lozios, S. Tectonic Analysis of the Metamorphic Units of Northeastern Attica; National and Kapodistrian University of Athens: Athens, Greece, 1994. [Google Scholar]
- Perdikaki, M.; Kallioras, A. Estimating Groundwater Recharge from Precipitation in a Coastal Mediterranean Aquifer: The Case of Marathon. In Proceedings of the 12th World Congress of EWRA on Water Resources and Environment, Thessaloniki, Greece, 27 June–1 July 2023. [Google Scholar]
- Mckeever, V.; Owen, W.; Rallison, R.; Engineers, H. National Engineering Handbook Section 4—Hydrology; Soil Conservation Service: 1972. Available online: https://docslib.org/doc/4839451/national-engineering-handbook-section-4-hydrology (accessed on 22 January 2024).
- Allen, R. Penman–Monteith Equation. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; Volume 4, pp. 180–188. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Drexel Institute of Technology. Laboratory of Climatology. Publ. Climatol. 1957, 10, 181–289. [Google Scholar]
- Siemos, N. Evaluation of Water Resources in Attica and Islands of Argosaronic Gulf; Institute of Geology and Mineral Exploration: Athens, Greece, 2010. [Google Scholar]
- Langevin, C.D.; Shoemaker, W.B.; Guo, W. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model-Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT); U.S. Geological Survey: Reston, VA, USA, 2003.
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Schulze-Makuch, D. Longitudinal Dispersivity Data and Implications for Scaling Behavior. GroundWater 2005, 43, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Oude Essink, G.H.P.; Van Baaren, E.S.; De Louw, P.G.B. Effects of Climate Change on Coastal Groundwater Systems: A Modeling Study in the Netherlands. Water Resour. Res. 2010, 46, W00F04. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M. Saltwater Intrusion Management in Shallow and Deep Coastal Aquifers for High Aridity Regions. J. Hydrol. Reg. Stud. 2022, 40, 101026. [Google Scholar] [CrossRef]
- Tran, D.A.; Tsujimura, M.; Pham, H.V.; Nguyen, T.V.; Ho, L.H.; Le Vo, P.; Ha, K.Q.; Dang, T.D.; Van Binh, D.; Doan, Q.-V. Intensified Salinity Intrusion in Coastal Aquifers Due to Groundwater Overextraction: A Case Study in the Mekong Delta, Vietnam. Environ. Sci. Pollut. Res. 2022, 29, 8996–9010. [Google Scholar] [CrossRef] [PubMed]
- Siarkos, I. Developing a Methodological Framework Using Mathematical Simulation Models in Order to Investigate the Operation of Coastal Aquifer Systems: Application in the Aquifer of N. Moudania; Aristotle University of Thessaloniki, School of Civil Engineering: Thessaloniki, Greece, 2015. [Google Scholar]
- Mabrouk, M.; Jonoski, A.; Oude Essink, G.; Uhlenbrook, S. Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model. Water 2019, 11, 1946. [Google Scholar] [CrossRef]
- Gomaa, S.M.; Hassan, T.M.; Helal, E. Assessment of Seawater Intrusion under Different Pumping Scenarios in Moghra Aquifer, Egypt. Sci. Total Environ. 2021, 781, 146710. [Google Scholar] [CrossRef]
- Nasiri, M.; Moghaddam, H.K.; Hamidi, M. Development of Multi-Criteria Decision Making Methods for Reduction of Seawater Intrusion in Coastal Aquifers Using SEAWAT Code. J. Contam. Hydrol. 2021, 242, 103848. [Google Scholar] [CrossRef]
- Post, V.; Simmons, C. Variable Density Groundwater Flow; The Groundwater Project: Guelph, ON, Canada, 2022; ISBN 9781774700464. [Google Scholar]
- Shoemaker, W.B. Important Observations and Parameters. GroundWater 2004, 42, 829–840. [Google Scholar]
- Werner, A.D. On the Classification of Seawater Intrusion. J. Hydrol. 2017, 551, 619–631. [Google Scholar] [CrossRef]
- Abarca, E.; Vázquez-Suñé, E.; Carrera, J.; Capino, B.; Gámez, D.; Batlle, F. Optimal Design of Measures to Correct Seawater Intrusion. Water Resour. Res. 2006, 42, W09415. [Google Scholar] [CrossRef]
- Kerrou, J.; Renard, P. A Numerical Analysis of Dimensionality and Heterogeneity Effects on Advective Dispersive Seawater Intrusion Processes. Hydrogeol. J. 2010, 18, 55–72. [Google Scholar] [CrossRef]
- Pool, M.; Post, V.E.A.; Simmons, C.T. Effects of Tidal Fluctuations and Spatial Heterogeneity on Mixing and Spreading in Spatially Heterogeneous Coastal Aquifers. Water Resour. Res. 2015, 51, 1570–1585. [Google Scholar] [CrossRef]
- Michael, H.A.; Scott, K.C.; Koneshloo, M.; Yu, X.; Khan, M.R.; Li, K. Geologic Influence on Groundwater Salinity Drives Large Seawater Circulation through the Continental Shelf. Geophys. Res. Lett. 2016, 43, 10782–10791. [Google Scholar] [CrossRef]
Parameter | Parameter Name | Initial Value |
---|---|---|
Hydraulic conductivity of clay zone | HK1 | 0.2 (m/day) |
Hydraulic conductivity of sand–gravel zone | HK2 | 3.312 (m/day) |
Specific yield for the upper layer | Sy | 0.02 |
Conductance of the northern GHB boundary (marble) | Cond_North | 32210 (m2/day) |
Conductance of the western GHB boundary (adjacent aquifer) | Cond_West | 7395.8 (m2/day) |
Conductance of the DRN boundary | Cond_drn | 8.64 (m2/day) |
Specific storage of clay zone | SS_Par1 | 8.24E−3 (m−1) |
Specific storage of sand–gravel zone | SS_Par2 | 8.24E−3 (m−1) |
Pumping rate (WEL package) at the W of the plain | Q_M | −60 (m3/day) |
Pumping rate (WEL package) at the NE of the plain | Q_KS | −170 (m3/day) |
Parameter | Calibrated Value |
---|---|
HK2 | 12.92 (m/day) |
SS_Par2 | 7.79E−05 (m−1) |
SY | 0.03927 |
HK1 | 0.8061 (m/day) |
SS_Par1 | 0.000542 (m−1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdikaki, M.; Chrysanthopoulos, E.; Markantonis, K.; Kallioras, A. Groundwater Flow Model Calibration Using Variable Density Modeling for Coastal Aquifer Management. Hydrology 2024, 11, 59. https://doi.org/10.3390/hydrology11040059
Perdikaki M, Chrysanthopoulos E, Markantonis K, Kallioras A. Groundwater Flow Model Calibration Using Variable Density Modeling for Coastal Aquifer Management. Hydrology. 2024; 11(4):59. https://doi.org/10.3390/hydrology11040059
Chicago/Turabian StylePerdikaki, Martha, Efthymios Chrysanthopoulos, Konstantinos Markantonis, and Andreas Kallioras. 2024. "Groundwater Flow Model Calibration Using Variable Density Modeling for Coastal Aquifer Management" Hydrology 11, no. 4: 59. https://doi.org/10.3390/hydrology11040059
APA StylePerdikaki, M., Chrysanthopoulos, E., Markantonis, K., & Kallioras, A. (2024). Groundwater Flow Model Calibration Using Variable Density Modeling for Coastal Aquifer Management. Hydrology, 11(4), 59. https://doi.org/10.3390/hydrology11040059