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Abstract: The controlling hydrogeochemical processes of an intermontane aquifer in central Mexico
were identified through multivariate statistical analysis. Hierarchical cluster (HCA) and k-means
clustering analyses were applied to Na+, K+, Ca2+, Mg2+, F−, Cl−, SO4

2−, NO3
−, HCO3

−, As, pH
and electrical conductivity in 40 groundwater samples collected from shallow and deep wells, where
As and F− are contaminants of concern. The effectiveness of each hierarchical and k-means clustering
method in explaining solute concentrations within the aquifer and the co-occurrence of arsenic and
fluoride was tested by comparing two datasets containing samples from 40 and 36 wells, the former
including ionic balance outliers (>10%). When tested without outliers, cluster quality improved by
about 5.4% for k-means and 7.3% for HCA, suggesting that HCA is more sensitive to ionic balance
outliers. Both algorithms yielded similar clustering solutions in the outlier-free dataset, aligning
with the k-means solution for all 40 samples, indicating that k-means was the more robust of the
two methods. k-means clustering resolved fluoride and arsenic concentrations into four clusters
(K1 to K4) based on variations in Na+, Ca2+, As, and F−. Cluster K2 was a Na-HCO3 water type
with high concentrations of As and F. Clusters K1, K3, and K4 exhibited a Ca-HCO3, Na-Ca-HCO3,
and Ca-Na-HCO3 water types, respectively, with decreasing As and F concentrations following the
order K2 > K3 > K1 > K4. The weathering of evaporites and silicates and Na-Ca ion exchange with
clays were the main processes controlling groundwater geochemistry. The dissolution of felsic rocks
present in the aquifer fill is a likely source of As and F−, with evaporation acting as an important
concentration factor.

Keywords: groundwater cluster analysis; hydrogeochemical characterization; As and F co-occurrence;
groundwater quality; outlier ionic balance

1. Introduction

Arsenic has been declared a carcinogenic agent, affecting almost all cellular processes
and organs. Long-term arsenic effects on health include hyperkeratosis, skin, lungs, liver,
kidneys, and bladder cancer. Other health issues have been associated, such as diabetes,
cardiovascular diseases, and reproductive and neurological effects [1,2]. Studies of arsenic
in human blood, urine, and other biological indicators in Mexico have revealed constant
exposure to arsenic in the population [3–6]. Fluoride is known to be a cause of dental
and skeletal fluorosis, endocrine diseases like hyperparathyroidism, and cognitive and
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neurological disorders, as well as cardiovascular diseases like arteriosclerosis and arterial
calcification, high blood pressure, reproductive and skin problems, and diabetes [7].

Natural As and F− contamination of groundwater is a worldwide problem. In oxic
aquifers, their presence is commonly associated with volcanic rock and alluvial aquifers [8–10].
Mexico is not an exception: approximately 178 municipalities distributed in 23 states have
aquifers with As and/or F− concentrations surpassing the WHO guidelines of 10 µg L−1 As
and 1.5 mg L−1 F−. In Mexico, states located in the north-central part have been identified
as the most affected [11]. Several studies have been conducted at the local or regional level
on fluoride distribution and health risk assessment [12–15] and the co-occurrence of both
As and F− has been reported in many of these studies, concluding that this pollution has
geological origins, mainly associated with the dissolution of felsic rocks and desorption
from secondary minerals [16–18].

Statistical multivariate techniques applied to water quality studies have successfully
characterized a variety of natural and anthropogenic contaminants under a variety of
scenarios [19,20]. Multivariate analysis studies have multiplied in the past few decades
because of their ability to examine numerous parameters simultaneously and to detect the
source and spread of contaminants in groundwater [20]. Commonly utilized multivariate
techniques include principal component analysis (PCA), factor analysis (FA), hierarchical
cluster analysis (HCA), k-means clustering, self-organized maps (SOM), and fuzzy C-mean
clustering (FCM) for grouping analyses [20–24]. We utilized these techniques in an aquifer
naturally contaminated with arsenic (As) and fluoride (F−) located in north-central Mexico
at the foot of the Sierra Madre Occidental.

Various studies have characterized water quality and hydrogeochemical mechanisms
in north-central Mexico. Some of them include the water quality characterization of the
Comarca Lagunera by Mora [19] and Mahlknecht [6], drinking water sources for the
city of Monterrey [25,26], irrigation areas with salinization problems like Santo Domingo
aquifer [27], and areas affected by wastewater from large urban centers: the Mezquital
Valley [28] and Lake Cajatitlán [29]. All these have applied PCA and cluster analysis
in combination with other approaches such as water quality index [28] or discriminant
analysis [29]. In the above studies, contaminants of concern were salinity, heavy metals,
wastewater irrigation, and municipal treated water. Despite the widespread and serious
health risks posed by As and F−, multivariate techniques have not been applied to the
characterization of As and F− in aquifers where As and F− concentrations represent a
health hazard, such as in Durango, Mexico. In water quality studies supported by multi-
variate analysis like those mentioned above (using HCA, k-means or another technique),
an ionic balance between major cations and anions is carried out to assess the reliability
of the chemical analysis of the samples. An error in ionic balance of 10% is the maximum
accepted value for general purposes, and for samples above that percentage, the data
are discarded prior to hydrogeochemical analysis. Nevertheless, what happens when
the number of sampled wells is small, some of them exceed the ionic balance error, and
wells cannot be resampled? Can they still be part of the cluster analysis? A commonsense
answer is “no”, but studies addressing outlier problems in clustering algorithms have
proved that algorithms like HCA and k-means can withstand outliers and give reason-
able clustering solutions, measuring this through cluster validation indices like Dunn or
Davies–Bouldin indices [22,30].

In this study, multivariate data analyses were applied in conjunction with conventional
hydrogeochemical studies to (1) identify the main processes governing water quality in an
intermontane aquifer highly affected by arsenic and fluoride in the north-central part of
Mexico (the Valle del Guadiana aquifer), and (2) compare the effectiveness of hierarchical
cluster (HCA) and k-means clustering methods in explaining the groundwater composition
of the aquifer under ionic balance outliers.
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2. Materials and Methods
2.1. Study Area

Of Mexico’s 653 aquifers, 157 are overexploited [31]. Valle del Guadiana aquifer operates
with a deficit of −20.82 hm3 y−1 and is the water source for about 700,000 people [32]. The
Valle del Guadiana aquifer is bounded by parallels 23◦27′ N and 24◦29′ N and meridians
104◦19′ W and 105◦8′ W and has a surface area of 4817 km2. The aquifer is located in the
central high plains of Mexico, surrounded by the Sierra Madre Oriental to the immediate
west, and the Sierra Madre Oriental and the Mexican Transvolcanic belt to the northeast
and to the south, respectively. The climate in this area is predominantly semiarid and
temperate, with average annual temperatures of 31 ◦C (max.) and 1.7 ◦C (min.). The
average yearly rainfall is approximately 500 mm during summer, mainly during July,
August, and September. Agricultural, drinking, household, and industrial needs are the
primary groundwater uses, in that order. Despite this being a water-scarce area, about
36% of the wells are used for agriculture and 12.6% are used for livestock. The study
area is confined to the Valle del Guadiana, the productive zone of the Valle del Guadiana
aquifer, which occupies the eastern half of its surface area. Groundwater from this aquifer
is reportedly contaminated with As and F− [33].

2.2. Hydrogeology

The Valle del Guadiana aquifer is an unconfined, heterogeneous, and anisotropic
aquifer. Alluvial, fluvial, lacustrine, and piedmont sediments constitute the upper part
of the aquifer, with polymictic conglomerates in place. Some clay-rich sediments create
localized semi-confinement conditions. A sequence of volcanic rocks (acid tuffs, rhyolites,
ignimbrites, andesites, and basalts) constitute the lower part of the aquifer.

The aquifer is dominated by volcanic rocks and sedimentary material of the
Guadiana Formation (fluvial sequence containing fossils of pre-Wisconsin Pleistocene Age)
and Neogene alluvial fans. Rocks form the Lower Volcanic Complex that surrounds the
valley–composed of lava flows and ignimbrites—which are superimposed by rhyolitic vol-
canic rocks, mainly as ash flows. The latter is superimposed with basalt from the Miocene
in the northern part and gravel and basalt from the Quaternary in the lower parts of the
valley [31]. The Sierra Madre Occidental is a geologically young mountain range that has
tectonic and volcanic origins [34].

Due to clay sediments, there can be local semi-confinement conditions, which, in turn,
leads to different piezometric levels between close wells. At greater depths, limestones con-
stitute deep aquifer systems with secondary permeability caused by fracture and conditions
of semi-confinement and confinement due to alternance between lutites and limolites [31].

The transmissivity values vary between 0.75 × 10−3 and 26.7 × 10−3 m2 s−1, with
a mean value of 6.1 × 10−3 m2 s−1. Hydraulic conductivity ranges from 2.29 × 10−4 to
5.28 × 10−6 m s−1, with a mean value of 6.9 × 10−5 m s−1 associated with sediments of
fine to medium granulometry. Piezometric levels range from 4 m to 75 m. Groundwater
flow shows a preferential west-to-east and northeast-to-southeast direction [31].

2.3. Sampling and Laboratory Analysis

The sampling was conducted in May–June 2022 (dry season). Groundwater samples
were collected from 40 wells distributed in the productive zone of the Valle del Guadiana
aquifer, ranging in depths from 1.6 to 74 m. The sampling sites are shown in Figure 1.
Polyethylene sampling bottles were properly washed and labelled, and water samples
collected at least 10 min after the pumping process started to ensure well purging and
representative groundwater chemical composition. Samples for metal and metalloid anal-
ysis were preserved according to the standard methodology (NOM-AA-051-SCFI-2016).
Samples for ion chromatography were collected according to US EPA Method 300.0. No
headspace clearances were allowed, and samples were kept at 4 ◦C in the dark during
sampling and transport. Na+, K+, Ca2+, Mg2+, SO4

2−, HCO3
−, and CO3

2− were selected as
variables because they are the main constituents of groundwater. As and F were selected
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because they are the main contaminants in this aquifer. Electrical conductivity is a good es-
timator of dissolved solids, and pH is related to pH-dependent reactions that explain some
hydrogeochemical processes. Major cations (Na+, K+, Ca2+, and Mg2+) were quantified
using flame atomic absorption spectrophotometry (GBC Scientific Equipment, Mexico City,
Mexico, XplorAA Dual), and the total arsenic was measured using a graphite furnace
(GBC Scientific Equipment, Mexico City, GF5000). Bicarbonate (HCO3

−) was measured
via titration according to the NMX-AA-036-SCFI-2001 method, and other major anions
(F−, Cl−, SO4

2−, NO3
−) were quantified using ion chromatography (Thermo Fisher Scien-

tific, Guadalajara, Mexico, Dionex Integrion HPIC, AS11-HC column). Electrical conduc-
tivity (EC) and pH were measured in the field using a portable Thermo Fisher Scientific,
Guadalajara, Mexico, Orion Star A329 field meter.
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2.4. Data Analysis
2.4.1. Multivariate Analysis and Hydrogeochemical Diagrams

Two criteria were used for the selection of the two clustering methods: (1) HCA and
k-means are known algorithms that can withstand outliers giving reasonable clustering solutions
and, (2) among other methods, HCA is widely used in hydrogeochemical studies [35–53].

To compare the HCA and k-means clustering methods regarding their effectiveness in
explaining the groundwater composition of the aquifer in terms of ionic balance outliers,
the ionic balance was first calculated according to the following formula [54]:

%error = 100× ∑ cations−∑ anions
∑ cations + ∑ anions

, (1)
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where the concentrations of ions are expressed in milliequivalents per liter. Of the
40 sampled wells, 34 samples (about 15% of the dataset) had less than 10% error in ionic
balance; the other 6 samples ranged between 10% and 28%.

To compare the effectiveness of the hierarchical HCA and non-hierarchical k-means
algorithms, two analyses were performed, using Euclidean distance to measure the nu-
merical distance between two objects: (1) a clustering analysis using HCA and k-means
to identify wells with similar hydrogeochemical processes using the original dataset
(40 wells including ionic balance outliers; referred through the manuscript as the
“40 wells” dataset), and (2) the same analysis with the depurated dataset (34 wells, ionic
balance < 10%; referred to as the “34 wells” dataset). For these clustering analyses,
major cations, anions, total arsenic, fluoride, pH, and electrical conductivity were the
variables utilized.

Statistical analysis was conducted using R 4.2.2 software. As descriptive statistical
analysis showed non-normal distribution and skewness, Box–Cox transformation was
applied to all variables to normalize the data prior to standardization. Saturation indices
(SI) were calculated using Visual MINTEQ 3.1 software [55].

Grouping tendency was tested using Hopkins’ statistic (H) and principal component
analysis (PCA). A H ≤ 0.5 threshold was selected to reject the null hypothesis that the
dataset is uniformly distributed, i.e., no meaningful clusters are present in the dataset/weak
clustering tendency; thus, H > 0.5 means that the dataset contains defined clusters and
H close to 1.0 means a large clustering tendency [56]. Sampling site grouping was carried
out via non-hierarchical k-means clustering with the kmeans function, establishing the
optimal number of clusters from the data obtained via PCA and the fviz_nbclust function
from the factoextra package. Hierarchical clustering (HCA) was performed with Euclidean
distances and four agglomerative distance computations between pairs: average, single,
complete, and Ward using the hclust function. To select the best HCA method, the agnes
function from the cluster package was used to calculate the agglomerative coefficient of
each method, which measures the number of clustering structures found.

Silhouette (Sil), Dunn, and Davies–Bouldin indices were calculated in the clusters
formed with the original and depurated datasets according to the following formulas:

Dunn index (u) = min
1≤i≤k

 min
1≤j≤k,j 6=i

 δ
(
Xi, Xj

)
max

1≤c≤k
(∆Xc)

, (2)

Davies− Bouldin index (u) =
1
k ∑k

i=1 max
i 6=j

{
∆Xi + ∆Xj

δ
(
Xi, Xj

) }, (3)

Silhouette index (u) =
1
N ∑Xc∈C ∑Xi∈Xc

{
b(xi, Xc)− a(xi, Xc)

max[a(xi, Xc), b(xi, Xc)]

}
, (4)

where
a(xi, Xc) =

1
|Xc|∑xj∈Cl

δeuclidean
(
Xi, Xj

)
, (5)

b(xi, Xc) = min
k 6=i

[
1
|Xc|∑Xj∈Xc

δeuclidean
(
Xi, Xj

)]
, (6)

where N is a set of objects represented as vectors in an F-dimensional space
X = {x1, x2, . . . , xN} ⊆ RF, k is the number of clusters, δ

(
Xi, Xj

)
is an intercluster dis-

tance between cluster centroids Ci and Ci, and ∆Xc is an intracluster distance of any cluster
Xc; ∆Xi is the average distance between the points within a Xi cluster, and the same is
true for ∆Xj and cluster Xj. To assess clustering quality using the Silhouette index and
Dunn index, the higher the value, the better. In the case of Davies–Bouldin, the lower,
the better [30,57].
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All diagrams were constructed in R 4.2.2 software. Piper and Stiff diagrams were
constructed using smwrGraphs and smwrData packages from the U.S. Geological Survey.
All plots (bivariate, boxplot, Na-normalized Ca2+ vs. HCO3

−) were constructed using the
ggplot2 package.

2.4.2. Geographical Information Systems (GIS)

Maps of the study area showing the sampling sites and the distribution of contam-
inants were constructed using ArcGIS version 10.8 with a WGS projection and UTM
coordinates (Zone 13). Geologic data were obtained from the data bank (GeoInfoMex) of
the Mexican Geologic Service. Aquifer geographical delimitation was obtained from the
Water National Commission (CONAGUA) site [58].

3. Results and Discussion
3.1. Basic Statistical Analysis and Piper Diagram

The nature of sampled sites is alkaline, with pH values ranging from 7.20 to 8.72. The
chemical composition of major ions shows a dominance of Na+ > Ca2+ > Mg2+ > K+ for
cations and HCO3

− > SO4
2− > NO3

− > Cl− > F− for anions. Descriptive statistics of major
ions (mean, standard deviation, minimum, first quartile, median, third quartile, maximum,
and skewness) are listed in Table 1. The latter statistical analysis revealed that 72.5% of
the sampled sites have concentrations of As and/or F− above 0.01 mg L−1 and 1.0 mg
L−1, respectively, exceeding Mexican regulations for drinking water. A positively skewed
distribution is observed in all parameters. This must be taken into account for multivariate
analysis. The pH values indicated slightly alkaline groundwater. From the Piper diagram
(Figure 2), the main hydrogeochemical facies identified are Ca-Na-HCO3, Na-Ca-HCO3,
Na-HCO3, Na-Ca-HCO3-SO4, and Ca-HCO3.

Table 1. Summarized descriptive statistics of groundwater chemical parameters.

Parameters Mean S.D. Min. Q1 Median Q3 Max. Skewness

Na+ (meq L−1) 2.23 1.90 0.31 0.99 1.67 2.91 8.04 1.57
K+ (meq L−1) 0.14 0.10 0.01 0.06 0.10 0.21 0.42 0.94

Ca2+ (meq L−1) 1.34 1.10 0.05 0.68 0.99 1.71 4.71 1.55
Mg2+ (meq L−1) 0.31 0.54 0.00 0.02 0.11 0.24 2.51 2.72

F− (meq L−1) 0.17 0.15 0.01 0.04 0.17 0.21 0.58 1.32
Cl− (meq L−1) 0.24 0.19 0.01 0.09 0.19 0.37 0.78 1.23

SO4
2− (meq L−1) 0.69 0.81 0.01 0.26 0.42 0.69 4.34 3.01

NO3
− (meq L−1) 0.16 0.15 0.00 0.06 0.11 0.25 0.62 1.40

CO3
2− (meq L−1) 0.05 0.22 0.00 0.00 0.00 0.00 1.29 5.04

HCO3
− (meq L−1) 2.69 1.55 0.51 1.59 1.99 3.62 7.63 1.34

pH 8.11 0.33 7.20 7.92 8.21 8.34 8.72 −0.84
EC (µS cm−1) 380.00 208.30 57.20 245.70 296.90 505.30 967.00 1.22
As (µg L−1) 41.11 49.21 1.50 8.79 31.57 42.65 199.75 2.28

3.2. Grouping Tendency

Hopkins’ statistic (H) of both datasets is close to 1.0 (H = 0.99), meaning that there are
defined clusters in the dataset. PCA analysis shows three to four clusters in the complete
dataset; note that Na+, Ca2+, Mg2+, HCO3

−, As and F− are the major contributors, in
percentage, to the given principal components (Figure 3). The number of clusters resembles
the main hydrogeochemical facies identified in Figure 2.

Table 2 shows three principal components and the explained variance for both subsets
in which eigenvalues were higher than one, according to Kaiser criterion, excluding the rest.
In both cases, cumulative variance seems to be reasonable (>73%). Principal component
1 (Dim1) shows a strong loading of EC, Na+, As, F−, and HCO3

−. Moderate As and
F− loading to EC, Na+, and HCO3

− suggests geological origin [59] and possible ion
exchange processes, since the presence of Na+ and HCO3

− is related to this mechanism.



Hydrology 2024, 11, 76 7 of 20

Principal component 2 (Dim2) is probably related to carbonate dissolution since there are
Ca-HCO3 groundwater-type samples associated. Principal component 3 (Dim3) is lightly
related to K-bearing mineral dissolution, with minor anthropogenic influence, such as
K-rich fertilizers.
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Table 2. Principal component analysis of the two datasets.

40-Well Original Dataset 34-Well Depurated Dataset

Dim1 (33.9%) Dim2 (29.1%) Dim3 (10.52%) Dim1 (35.3%) Dim2 (30.3%) Dim3 (10.4%)

pH 0.521 −0.368 0.199 0.545 −0.348 0.234
EC 0.767 0.574 0.016 0.720 0.634 −0.005
As 0.695 −0.605 −0.125 0.761 −0.532 −0.098

Na+ 0.904 −0.117 −0.035 0.920 −0.042 −0.035
K+ 0.245 0.556 0.569 0.156 0.534 0.628

Ca2+ −0.010 0.810 −0.335 −0.093 0.815 −0.350
Mg2+ 0.004 0.846 0.394 −0.134 0.836 0.378

F− 0.770 −0.516 −0.159 0.819 −0.440 −0.100
Cl− 0.593 0.243 −0.328 0.613 0.277 −0.391

SO4
2− 0.582 0.452 −0.423 0.586 0.561 −0.315

NO3
− −0.271 0.559 −0.336 −0.308 0.623 −0.187

CO3
2− 0.497 −0.168 0.497 0.498 −0.127 0.519

HCO3
− 0.687 0.539 0.121 0.651 0.612 0.143

3.2.1. Hierarchical Clustering Algorithm (40 Wells)

Agglomeration coefficients (from agnes function in R) of the average linkage, single
linkage, complete linkage, and Ward’s minimum variance method are 0.68, 0.60, 0.78,
and 0.88, respectively. Ward’s method generates more homogeneous clusters from these
coefficients than the other linkage methods. The dendrogram obtained using Ward’s
method shows similarities with the grouping found in PCA analysis (Figure 4).

Hydrology 2024, 11, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 4. Dendrogram of sampling sites constructed using Ward’s method and Euclidean distances. 

3.2.2. Dataset k-Means Algorithm (40-Well Original Dataset) 
From the grouping tendencies, the non-hierarchical k-means clustering algorithm 

was evaluated with 𝑘 = 4 clusters. Figure 5 shows some differences for groups formed 
with HCA. In this case, cluster K1 represents mixed waters, where Ca-Na-HCO3. This 
group has a median concentration of arsenic and fluoride of 17 µg L−1 and 2.42 mg L−1, 
respectively. Cluster K2 has a Na-HCO3 composition and the highest median concentra-
tion of arsenic and fluoride. Cluster K3 has a Na-Ca-HCO3 composition, with lower arse-
nic and fluoride concentrations than group K1. Cluster K4 groups sampling sites with Ca-
a HCO3 composition, with the lowest arsenic and fluoride median concentration.  

 
Figure 5. Clusters of sampling sites constructed using the k-means clustering algorithm. Concentra-
tion is expressed as the median value of the group. 

  

Figure 4. Dendrogram of sampling sites constructed using Ward’s method and Euclidean distances.

Cluster HCA1 and cluster HCA2 are characterized by a Na-Ca-HCO3 composition but
a more pronounced Ca concentration in the latter. Cluster HCA3 has a primarily Na-HCO3
composition, with the highest median concentration of arsenic and fluoride. Cluster HCA4
has a mainly Ca-HCO3 composition, with the lowest median concentration of arsenic
and fluoride.

3.2.2. Dataset k-Means Algorithm (40-Well Original Dataset)

From the grouping tendencies, the non-hierarchical k-means clustering algorithm
was evaluated with k = 4 clusters. Figure 5 shows some differences for groups formed
with HCA. In this case, cluster K1 represents mixed waters, where Ca-Na-HCO3. This
group has a median concentration of arsenic and fluoride of 17 µg L−1 and 2.42 mg L−1,
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respectively. Cluster K2 has a Na-HCO3 composition and the highest median concentration
of arsenic and fluoride. Cluster K3 has a Na-Ca-HCO3 composition, with lower arsenic
and fluoride concentrations than group K1. Cluster K4 groups sampling sites with Ca-a
HCO3 composition, with the lowest arsenic and fluoride median concentration.
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3.2.3. Comparison between Clustering Methods (40 Wells)

Figures 4 and 5 suggest discrepancies in clusterization. Only sampling sites with the very
marked characteristic of Na-HCO3 and high arsenic and fluoride concentrations remained in
the same group. Spatial comparison shows an overlap between HCA1 and HCA2, while in
the case of k-means clusterization, a more homogeneous stratification is observed (Figure 6).
Regarding hydrogeochemical data, it seems that k-means clusters are grouped based mainly on
the cation dominance by group Na+ > Na+ + Ca2+ mix > Ca2+ + Na+ mix > Ca2+ + Mg2+, and
the HCO3

− > HCO3
−, SO4

2− + Cl− mix. This grouping trend agrees with PCA analysis,
where Na+, F−, and As are the main variables for principal component 1 (explains 33.9%
of the variance), and Ca2+, Mg2+, HCO3

−, and SO4
2− in principal component 2 (explains

29.1% of the variance). Because the presence of HCO3
− and Na+ is related to the occurrence

of As and F− via ion exchange, principal component 1 could be associated with that process.
Principal component 2 could be associated with the dissolution of carbonates or silicates.

Figures 4 and 5 show that arsenic and fluoride concentrations also contribute sig-
nificantly to cluster formation. They are in the following order: K1 > K3 > K2 > K4.
Cluster K1 key factors on group formation are high concentrations in As, F−, and Na+

and low concentrations (<0.3 meq L−1) of Ca2+ and Mg2+. Cluster K3 seems to have ap-
proximately the same contribution in terms of the variables used; therefore, the formation
considered the lack of Mg2+, lower K+ concerning other groups, and the F− and Cl− con-
centrations. Cluster K4 group formation could be addressed to K+ and low Na+, As, and
F− concentrations. Cluster K2’s main features seem to be high Ca2+, Mg2+, and HCO3

−

concentrations when compared to the rest of the clusters, and its median concentration of
arsenic and fluoride.



Hydrology 2024, 11, 76 10 of 20

Hydrology 2024, 11, x FOR PEER REVIEW 10 of 22 
 

 

3.2.3. Comparison between Clustering Methods (40 Wells) 
Figures 4 and 5 suggest discrepancies in clusterization. Only sampling sites with the 

very marked characteristic of Na-HCO3 and high arsenic and fluoride concentrations re-
mained in the same group. Spatial comparison shows an overlap between HCA1 and 
HCA2, while in the case of k-means clusterization, a more homogeneous stratification is 
observed (Figure 6). Regarding hydrogeochemical data, it seems that k-means clusters are 
grouped based mainly on the cation dominance by group Na+ > Na+ + Ca2+ mix > Ca2+ + 
Na+ mix > Ca2+ + Mg2+, and the HCO3− > HCO3−, SO42− + Cl− mix. This grouping trend agrees 
with PCA analysis, where Na+, F−, and As are the main variables for principal component 
1 (explains 33.9% of the variance), and Ca2+, Mg2+, HCO3−, and SO42− in principal compo-
nent 2 (explains 29.1% of the variance). Because the presence of HCO3− and Na+ is related 
to the occurrence of As and F− via ion exchange, principal component 1 could be associated 
with that process. Principal component 2 could be associated with the dissolution of car-
bonates or silicates. 

 
Figure 6. Piper diagram color-coded by cluster. (left): clusters from k-means algorithm; (right): clus-
ters from hierarchical clustering algorithm. (Note 1: Cluster boundaries are arbitrarily drawn to 
highlight the difference in the clusterization pattern. Note 2: Group colors in this figure were as-
signed for clusters visualization). 

Figures 4 and 5 show that arsenic and fluoride concentrations also contribute signif-
icantly to cluster formation. They are in the following order: K1 > K3 > K2 > K4. Cluster 
K1 key factors on group formation are high concentrations in As, F−, and Na+ and low 
concentrations (<0.3 meq L−1) of Ca2+ and Mg2+. Cluster K3 seems to have approximately 
the same contribution in terms of the variables used; therefore, the formation considered 
the lack of Mg2+, lower K+ concerning other groups, and the F− and Cl− concentrations. 
Cluster K4 group formation could be addressed to K+ and low Na+, As, and F− concentra-
tions. Cluster K2’s main features seem to be high Ca2+, Mg2+, and HCO3− concentrations 
when compared to the rest of the clusters, and its median concentration of arsenic and 
fluoride.  

The homogeneity in groups in the case of the k-means algorithm is because it is iter-
ative and randomly changes the distance assessment between clusters, allowing it to find 
a local minimal squared sum of errors (which does not imply an optimal cluster solution). 

Figure 6. Piper diagram color-coded by cluster. (left): clusters from k-means algorithm; (right):
clusters from hierarchical clustering algorithm. (Note 1: Cluster boundaries are arbitrarily drawn
to highlight the difference in the clusterization pattern. Note 2: Group colors in this figure were
assigned for clusters visualization).

The homogeneity in groups in the case of the k-means algorithm is because it is
iterative and randomly changes the distance assessment between clusters, allowing it
to find a local minimal squared sum of errors (which does not imply an optimal cluster
solution). This circumstance gives an advantage over the HCA method in defining subtle
group differences.

3.2.4. Comparison between Clustering Methods (34 Wells)

When HCA and k-means algorithms were applied to data from the subset with <10%
of error in ionic balance (34 wells), both clustering solutions yielded pretty similar results
(Figure 7). Regarding clustering solutions from the complete dataset, only the k-means
solution agrees with the latter results. From this, it seems that if few points with ≥10%
error in ionic balance are also considered in the analysis (in this case, six points ranging
from 10% to 28%, meaning the 15% of the dataset), k-means is still robust enough to
yield useful grouping solutions. HCA, on the contrary, is more sensitive to deviations in
ionic balance.

3.3. Clustering Quality Computation

Table 3 shows the computation of the Dunn and Davies–Bouldin indices before and
after the removal of the six ionic balance outliers from the original dataset of 40 well
samples for HCA and k-means clustering. For k-means, Dunn and Davies–Bouldin indices
improved by about 18.3% and 5.4%, respectively, but the Silhouette index deteriorated by
−9.6%. HCA shows a deterioration in the Dunn index and Silhouette index, about −2.8%
and −9.8%, but the Davies–Bouldin index improved by about 7.3%.

In this case, discrepancies in cluster validation indices are expected because each
index evaluate different features of data clustering. The degradation of the Silhouette
index can be explained since the index evaluates good clusters by assessing how similar a
data point is with respect to the centroid of its own cluster in relation to its similarity to
centroids of other clusters [60]. The apparently low value obtained possibly comes from
small differences in the main cation concentrations between clusters, making it difficult for
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the index to differentiate small differences. The Dunn index is the ratio of the minimum
distance between clusters to the maximum cluster diameter. It assesses the compactness of
clusters and the distance between clusters (as far apart as possible). An improvement in the
Dunn index means better clusters’ compaction [30]. In contrast, the Davies–Bouldin index
considers good clusters to have low within-cluster variation and high between-cluster
separation. This fact shows the proclivity of the Davies–Bouldin index to be sensitive to
outliers in the dataset [60].
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Table 3. Cluster quality computation for each clustering method before and after the removal of ionic
balance outliers.

Clusterization Algorithm

Cluster Validity Index HCA k-Means

40-well original dataset
Dunn 0.254 0.230

Davies–Bouldin 1.360 1.375
Silhouette 0.253 0.310

34-well depurated dataset
Dunn 0.247 0.272

Davies–Bouldin 1.261 1.301
Silhouette 0.249 0.300

Regarding the Davies–Bouldin index as the adequate cluster validation index for
outlier effect with the best performance [30,57], it can be seen that, after the removal of
outliers, there is a general improvement in the quality of the formed clusters. Despite the
slight improvement in each algorithm, HCA seems to be more sensitive to the presence
of outliers in this case, while k-means seems to be more robust. As seen in Figure 8,
HCA and k-means yield similar clustering solutions after the removal of outliers, giving
more homogeneity to HCA clusters, while in the case of k-means, the clustering remained
practically the same.
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More hydrogeochemical datasets need to be analyzed to support these conclusions, as
k-means have been reported to be more sensitive to data outliers than HCA [30]. Never-
theless, this contradiction could be addressed to the fact that outliers in that kind of study
were detected through algorithms like the Local Outlier Factor and Connectivity-based
Outlier Factor; however, in this study, outliers were identified using the 10% error in ionic
balance threshold, appealing to a chemical consideration more than a mere numeric one.

Various studies address the topic of ionic balance errors from the perspective of the
quality in chemical analysis. However, there are no works comprising the effect of the
outliers in clusterization of groundwater data for hydrogeochemical purposes. Since many
studies rely on clusterization (frequently HCA) to identify processes or pollution sources,
it is of great importance to take into account these outlier effects when datasets are not
depurated (omitting data with ionic balance error > 10%), because the selected clusterization
can lead to the misinterpretation of data and differences with the hydrogeochemical water
classification when using a Piper diagram.

Thus, in terms of management, let us consider a sampling strategy to create a ground-
water monitorization network in the aquifer. In this case, the purpose is to obtain represen-
tative groundwater data from the aquifer using the fewest wells possible. If outliers in ionic
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balance are not eliminated and a non-robust clusterization algorithm is used to establish
monitoring zones, the selected sampling method may not be suitable, and consequently,
the representativity of the results will be compromised.

3.4. Hydrogeochemical Analysis

Regarding the previous multivariate results, 40 well samples were used to identify
the hydrogeochemical processes in the aquifer since previous analysis demonstrated that
general conclusions are less affected by outliers if the k-means algorithm is used.

The dominant anion in the aquifer is HCO3
−. A strong correlation of main cations with

HCO3
− (r = 0.885) was observed, indicating that silicate/carbonate weathering is a main process

(Figure 9a). The Mg2+/(Mg2+ + Ca2+) ratio suggests calcite or dolomite weathering as the source
of Ca2+ and HCO3

− (Figure 9b). Ca2+/(Ca2+ + SO4
2−) suggests a source of calcium different

from gypsum (Figure 9c), probably carbonates or silicates [21,61–63]. This evidence points to the
main sources of HCO3

− being carbonate or silicate weathering/dissolution. The weathering of
silicates like feldspar (Equation (7)) or carbonates like calcite (Equation (8)), common minerals in
Earth’s crust, is a source of HCO3

− [64].
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Feldspar:

2NaAlSi3O8 + 2CO2 + 11H2O→ 2Na2+ + 2HCO−3 + 4H4SiO4(ac) + Al2Si2O5(OH), (7)

Calcite:
CaCO3 + H+ → Ca2+ + HCO−3 , (8)

Nevertheless, Na-normalized Ca2+ vs. HCO3
− and Mg2+ vs. Ca2+ plots (after [65])

show that, for clusters K1, K2, and K3, Ca2+ and Mg2+ come from evaporites, and that for K4,
silicate weathering is the main source. HCO3

− mainly originates from silicate weathering.
In addition, ion exchange processes can occur, as indicated by the Na+/(Na+ + Cl−) > 0.5 ratio

(Figure 9d). The Chloroalkaline indexes CA-I and CA-II in all samples plot in the negative
quadrant (Figure 10), indicating a direct ion exchange process in which Ca2+ and Mg2+ in
aquifer groundwater are exchanged by Na+ and K+ in clays of the aquifer matrix, as shown
in Equation (9) [66]. This is feasible since the main exploitation zone is in the alluvial part
of the aquifer.

Na+
(
K+
)
−Clay + Ca2+(Mg2+)→ 2Na+

(
K+
)
+ Ca2+(Mg2+)Clay (9)
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Summarizing, hydrogeochemical processes involving As and F− were grouped into
four clusters (K1 to K4) based on variations in Na+, Ca2+, As, and F−. Cluster K2 was a
Na-HCO3 water type with high concentrations of As and F. Cluster K1, K3, and K4 exhibited
Ca-HCO3, Na-Ca-HCO3, and Ca-Na-HCO3 water types, respectively, with decreasing As
and F concentrations following the order K2 > K3 > K1 > K4. The groundwater of groups
K2 and K3 are not suitable for drinking since they have greater ion exchange and felsic rock
dissolution than the other two groups, exceeding the allowed limit of NOM-127-SSA-2021
for As and fluoride.

Hydrogeochemical processes of weathering of silicates and evaporites, and Na-Ca ion
exchange with clays are likely the main processes controlling groundwater geochemistry
in the Valle del Guadiana aquifer. The dissolution of felsic rocks present in the aquifer fill
releases As and F−, with evaporation acting as an important concentration factor.
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3.5. As and F Co-Occurrence in the Valle del Guadiana Aquifer

Taking into account the semiarid and volcanic nature of the Valle del Guadiana aquifer,
several mineral sources of fluoride can be considered since it is present in the amorphous
material of rhyolites in the Sierra Madre Occidental [18]. In the Valle del Guadiana aquifer,
two hydrogeochemical processes affecting the fluoride concentration probably take place:
calcite precipitation and ion exchange.

Figure 11a,b show that calcite precipitation can occur in 62.5% of the sampled sites.
However, the magnitude of ion exchange processes could address the difference in fluoride
concentration among groups. In cluster K1, a Na+/Ca2+ ratio of approximately 20 for the
sampled sites (Figure 12) and undersaturation of calcite saturation indices of some of them
suggests that fluoride pollution is caused by a scarcity of Ca2+ ions in groundwater due to
an ion exchange process with clays, enhancing the dissolution of F-bearing minerals like
apatite and micas. In clusters K2 and K4, calcite precipitation due to alkaline conditions
(7 < pH < 9) and high HCO3

− concentration is probable, with some contribution of ion
exchange (K2 > K4), but low concentrations of fluoride in K4 can be assigned to fluoride
adsorption onto precipitated calcium carbonates. Cluster K3 suggest a significant contri-
bution to the ion exchange effect in the dissolution of F-bearing minerals due to low Ca2+

concentrations and higher Na+/Ca2+ with respect to K2 and K4 (Figure 12).
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Regarding arsenic, potential sources are desorption from iron oxides (magnetite,
hematite, and limonite), As-bearing minerals (arsenopyrite, pyrrhotite, and pyrite), and
the weathering of As-containing volcanic glass, all of which are present in the zone [67].
Arsenic and fluoride exhibit a high correlation (r = 0.8381, t =14.026, p < 0.001), which
suggests a common pathway to groundwater. Since pH > 8.0 and the concentration of
HCO3

− is >100 meq L−1 in most samples, arsenic leaching and desorption from aquifer
sediments is feasible [68]. Additionally, there is a poor correlation between arsenic and
sulfate (r = 0.022, t = 0.925, p = 0.361), which means that the oxidation of sulfur minerals is
not a great source of arsenic [63]. Because no significant or barely significant correlation is
observed between As and pH (r = 0.159, t = 0.925, p = 0.011), HCO3

− (r = 0.007, t = 0.540,
p = 0.592) and SO4

2−, arsenic and fluoride groundwater pollution probably comes mainly
from the dissolution of felsic rocks and volcanic glass [69]. Figure 13 shows the arsenic and
fluoride distributions of the sampled sites.

According to an extensive review of the co-occurrence of As and F− in groundwater,
focused on past and contemporary works from around the globe in the field [69], the
mechanisms and sources proposed above are reasonable since the conditions of As-bearing
minerals in the aquifer, oxidizing groundwater conditions, and evidence of ion exchange
processes are present. In addition, according to the same review, this study is consistent
with other works on semiarid regions in Latin America in which the co-occurrence points
towards geological origins, sharing common aspects like being a sedimentary aquifer,
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felsic rocks being present in the zone, a Na-HCO3 groundwater type, aridity, and over-
exploitation, amongst others.

Hydrology 2024, 11, x FOR PEER REVIEW 16 of 22 
 

 

ride adsorption onto precipitated calcium carbonates. Cluster K3 suggest a significant con-
tribution to the ion exchange effect in the dissolution of F-bearing minerals due to low 
Ca2+ concentrations and higher Na+/Ca2+ with respect to K2 and K4 (Figure 12). 

 
Figure 11. (a) Saturation indices for calcite and fluorite as a function of fluoride concentration; (b) 
saturation indices for calcite and fluorite classified by cluster. 

 
Figure 12. Effect of Na+/Ca2+ ratio in fluoride concentration. 

Regarding arsenic, potential sources are desorption from iron oxides (magnetite, 
hematite, and limonite), As-bearing minerals (arsenopyrite, pyrrhotite, and pyrite), and 
the weathering of As-containing volcanic glass, all of which are present in the zone [67]. 
Arsenic and fluoride exhibit a high correlation (r = 0.8381, t =14.026, p < 0.001), which sug-
gests a common pathway to groundwater. Since pH > 8.0 and the concentration of HCO3− 
is >100 meq L−1 in most samples, arsenic leaching and desorption from aquifer sediments 
is feasible [68]. Additionally, there is a poor correlation between arsenic and sulfate (r = 
0.022, t = 0.925, p = 0.361), which means that the oxidation of sulfur minerals is not a great 
source of arsenic [63]. Because no significant or barely significant correlation is observed 
between As and pH (r = 0.159, t = 0.925, p = 0.011), HCO3− (r = 0.007, t = 0.540, p = 0.592) and 

Figure 12. Effect of Na+/Ca2+ ratio in fluoride concentration.

Hydrology 2024, 11, x FOR PEER REVIEW 17 of 22 
 

 

SO42−, arsenic and fluoride groundwater pollution probably comes mainly from the disso-
lution of felsic rocks and volcanic glass [69]. Figure 13 shows the arsenic and fluoride dis-
tributions of the sampled sites. 

 
Figure 13. Spatial distributions of arsenic (left) and fluoride (right) in Valle del Guadiana, May–June 
2022. 

According to an extensive review of the co-occurrence of As and F− in groundwater, 
focused on past and contemporary works from around the globe in the field [69], the 
mechanisms and sources proposed above are reasonable since the conditions of As-bear-
ing minerals in the aquifer, oxidizing groundwater conditions, and evidence of ion ex-
change processes are present. In addition, according to the same review, this study is con-
sistent with other works on semiarid regions in Latin America in which the co-occurrence 
points towards geological origins, sharing common aspects like being a sedimentary aq-
uifer, felsic rocks being present in the zone, a Na-HCO3 groundwater type, aridity, and 
over-exploitation, amongst others.  

3.6. Groundwater Management and Risk Mitigation in the Case of As and F Co-Occurrence 
Groundwater management and risk mitigation strategies become crucial when faced 

with the co-occurrence of arsenic (As) and fluoride (F) in aquifers. Firstly, it is essential to 
delineate the spatial extent of contamination and identify hotspots where concentrations 
exceed regulatory limits. This information can guide targeted remediation efforts and pri-
oritize areas for immediate intervention. Secondly, understanding the geochemical pro-
cesses governing the mobilization of As and F is vital for developing effective treatment 
technologies. Techniques like adsorption, ion exchange, or membrane filtration may be 
employed, but their efficiency can be influenced by factors such as pH, redox conditions, 
and the presence of competing ions. The continuous monitoring of water quality param-
eters is necessary to ensure the long-term effectiveness of treatment systems. Additionally, 
raising public awareness about the health risks associated with As and F exposure is cru-
cial for promoting safe water consumption practices and encouraging community partic-
ipation in water management initiatives. Lastly, implementing sustainable groundwater 
management practices, such as controlled extraction, artificial recharge, and land-use reg-
ulations, can help mitigate further deterioration of water quality and protect this valuable 
resource for future generations. 

Figure 13. Spatial distributions of arsenic (left) and fluoride (right) in Valle del Guadiana,
May–June 2022.

3.6. Groundwater Management and Risk Mitigation in the Case of As and F Co-Occurrence

Groundwater management and risk mitigation strategies become crucial when faced
with the co-occurrence of arsenic (As) and fluoride (F) in aquifers. Firstly, it is essential to
delineate the spatial extent of contamination and identify hotspots where concentrations ex-
ceed regulatory limits. This information can guide targeted remediation efforts and prioritize
areas for immediate intervention. Secondly, understanding the geochemical processes gov-
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erning the mobilization of As and F is vital for developing effective treatment technologies.
Techniques like adsorption, ion exchange, or membrane filtration may be employed, but their
efficiency can be influenced by factors such as pH, redox conditions, and the presence of
competing ions. The continuous monitoring of water quality parameters is necessary to en-
sure the long-term effectiveness of treatment systems. Additionally, raising public awareness
about the health risks associated with As and F exposure is crucial for promoting safe water
consumption practices and encouraging community participation in water management
initiatives. Lastly, implementing sustainable groundwater management practices, such as
controlled extraction, artificial recharge, and land-use regulations, can help mitigate further
deterioration of water quality and protect this valuable resource for future generations.

4. Conclusions

The groundwater in the Valle del Guadiana aquifer exhibits alkaline conditions, with
pH values ranging from 7.20 to 8.72. The chemical composition shows a dominance
of Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3

− > SO4
2− > NO3

− > Cl− > F− for
anions. The main hydrogeochemical facies identified indicate a predominantly bicarbonate-
type groundwater. Multivariate analysis and hydrogeochemical plots revealed that the
k-means clustering algorithm was more robust in terms of ionic balance outliers (15%
of the dataset) than hierarchical cluster analysis (HCA). Both algorithms yielded almost
identical clustering solutions when the dataset was free of ionic balance outliers. These
results suggest that using k-means with the original dataset does not compromise the
identification of hydrogeochemical processes.

Four clusters (K1 to K4) were identified based on variations in Na+, Ca2+, As, and F−.
Cluster K2 was a Na-HCO3 water type with high concentrations of As and F−, probably
due to ion exchange. Cluster K1, K3, and K4 Ca-HCO3, Na-Ca-HCO3, and Ca-Na-HCO3
water types, respectively, had decreasing As and F concentrations following the order
K2 > K3 > K1 > K4, showing a decrease in the ion exchange effect and felsic rock dissolution.
The groundwater of groups K2 and K3 and some of the other clusters are not suitable for
drinking purposes due to their As and F− contents.

The identified hydrogeochemical processes governing groundwater chemistry are
weathering and ion exchange. The dominant anion, HCO3

−, is primarily derived from
silicate/carbonate weathering and the dissolution of minerals like feldspar and calcite. Ion
exchange processes involve the exchange of Ca2+ and Mg2+ in groundwater with Na+ and
K+ in the aquifer matrix clays, particularly in the alluvial part of the aquifer.

The release of fluoride into groundwater is likely due to the dissolution of F-bearing
minerals, facilitated by the removal of Ca2+ through ion exchange and calcite precipitation.
Potential sources of fluoride include amorphous materials in rhyolites and minerals like apatite
and micas. The co-occurrence of arsenic shows a high correlation (r = 0.84) with fluoride but
barely significant correlations with pH, HCO3

−, and SO4
2−. This suggests that the primary

sources of both arsenic and fluoride in the groundwater are the dissolution of felsic rocks in the
aquifer. Potential sources of arsenic include iron oxides, As-bearing minerals like arsenopyrite
and pyrite, and As-containing volcanic glass present in the area. In summary, the groundwater
chemistry in the Valle del Guadiana aquifer is governed by weathering and ion exchange
processes, leading to the release of fluoride and arsenic into the groundwater, primarily from
the dissolution of felsic rocks and F-bearing minerals in the aquifer matrix.
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