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Abstract: In this study, we performed a preliminary soil analysis and collected environmental data
for the Dulcepamba River Basin in Bolivar–Ecuador, before carrying out its hydrological restoration
(HR). A geographic information system (GIS) and the multicriterion Analytical Hierarchy Process
(AHP) decision-making method were used. The comprehensive evaluation included morphological
aspects, soil properties, climatic conditions, vegetation, and land use. The terrain conditions were
investigated using indicators such as the flow capacity, topographic moisture, soil resistance, sediment
transport, current density, curve number, NDVI, precipitation, and distance to rivers. The results
and analysis are presented in a series of maps, which establish a starting point for the HR of the
Dulcepamba watershed. The key factors for assessing soil degradation in the watershed include land
use, vegetation cover, sedimentation, humidity, and precipitation. Of the studied territory, 10.7 do not
require HR, while 20.28% demand HR in the long term. In addition, 30.67% require HR in the short
term, and 33.35% require HR immediately. Based on the findings, it is suggested that authorities
consider the environmental remediation of the watershed and propose various HR measures. This
analytical approach could prove valuable as a tool for the environmental restoration of watersheds
in Ecuador.

Keywords: hydrological restoration; analytical hierarchy process; GIS; soil degradation

1. Introduction

HR is defined as the restoration of river systems adversely affected by either human
activities or natural occurrences. This involves leveraging historical data on precipitation,
temperature, extreme flows, and vegetation cover. The overarching goal is to mitigate the
impacts of intensive agriculture, erosion resulting from natural processes, biodiversity loss,
and poverty, as well as to address the challenges posed by droughts and floods due to
climate change. This is accomplished through the application of morphological analysis,
remote-sensing techniques, GIS, and the Analytic Hierarchy Process (AHP). This study’s
significance is underscored by its adept integration of numerous variables, its capacity
to incorporate the perceptions and preferences of diverse stakeholders into future HR
decision-making processes, and its flexibility in adapting to fluctuations in data availability
and shifts in watershed conditions [1–4].

By implementing the AHP in HR, this research not only provides a robust decision-
making framework but also contributes to the scientific literature by providing a practical
example of how advanced decision-making techniques can be applied in natural resource
management. This may inspire further studies and the adoption of similar methodologies
in other disciplines or in other environmental contexts, increasing the relevance and impact
of the research. The method proposed in this research proposes the use of the scarce
environmental data in developing countries and their HR by adjusting the model for the
future with the interested parties (states, NGOs, and local communities). Unlike other HR
studies, this research integrates seven morphometric variables (the SPI, TWI, TRI, STI, SD,
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CN, and RD); two soil texture–vegetation cover variables (the CN and NDVI), and one
climatological variable (RF). The hypothesis of this study was as follows: The integration
of the GIS and AHP allows for an effective and accurate prioritization of areas requiring
HR in the Dulcepamba River watershed. Areas with high soil erosion, low soil moisture,
and high runoff demand immediate hydrological restoration interventions.

Hydromorphological assessment methods are essential tools for gaining an in-depth
understanding to guide the most appropriate solutions for future restoration projects. The
careful management of water resources is a fundamental pillar for ensuring the sustain-
ability of river landscapes and guaranteeing a continuous supply of quality water [5]. In
recent decades, agricultural intensification has resulted in significant soil degradation [6].
For territorial development planning in the Dulcepamba watershed, it is imperative to
investigate HR areas capable of improving both the ecological environment and quality of
life of local residents [7]. Approximately 19,000 inhabitants depend directly on agriculture
and livestock; 20% live in the urban area in 20 villages [8].

The Analytic Hierarchy Process (AHP) emerges as a multicriterion decision analysis
approach within the field of geographic information systems (GISs) [9–11]. In this context,
two approaches to the application of the AHP are distinguished. First, it can be used to
determine the weights associated with the layers of the attribute map, which can then be
combined in a manner analogous to that of other weighted aggregation methods. This
method is particularly useful when the number of alternatives is considerable and it is
impractical to compare them. Second, the AHP principle can be used to assign priorities
at all levels of the hierarchical structure, including the level representing the alternatives.
In specific situations, a relatively small number of alternatives are assessed [12]. The
AHP approach is predominantly used to integrate independent factors to evaluate the soil
suitability for irrigation, cultivation, and groundwater recharge [13–15]. In addition, this
study introduces a new perspective on the AHP based on matrices and the weighted linear
combination method, relating to soil erosion hazards and the current climatic conditions,
to identify and evaluate ecologically viable agricultural systems [16].

The report of the Intergovernmental Panel on Climate Change (IPCC) defines land degra-
dation as an adverse trend caused by human activity, manifesting itself as the long-term loss
of biological productivity, ecological integrity, and value to society. The United Nations Con-
vention on Combat Desertification (UNCCD), adopted by 195 countries in 1994, recognized
this problem as one of the most pressing environmental challenges [15,17,18]. Table 1 shows
the soil loss in technologically intensive agricultural fields, which is 18–21 tons/ha/year, in
contrast to that in fields tilled by hand, which is 0.8 tons/ha/year. Soil formation in areas
without erosion is limited to only 0.05 tons/ha/year. Soil conservation techniques reduce the
soil loss to between 0.004 and 0.05 tons per hectare per year, especially in stable forest ecosys-
tems where vegetation protects the soil from erosion [19]. A total of 26% of the Dulcepamba
Basin territory is short-cycle crops cultivated by hand; there is no evidence of technologically
intensive agricultural methods [20].

Table 1. Soil formation and loss studies around the world.

Method Soil Formation
without Erosion

Soil Loss in
Agricultural Fields

Soil Loss in
Ploughed Fields Reference

Tn/ha/Year Tn/ha/Year Tn/ha/Year

1673 measurements,
201 items 0.05 18 0.8 [21]

Megastudy,
4000 sites 21 [22]

The urgent need to evaluate HR zones will translate into concrete actions by the
Autonomous Decentralized Governments of Chillanes and San Miguel, who will have
to implement measures to mitigate the hydrological vulnerability in the Dulcepamba
River Basin.
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2. Materials and Methods
2.1. Location

In Figure 1, we observe the spatial extent of the Dulcepamba River Basin, an area of
significant interest in the realm of HR, nestled within the Chillanes and San Miguel cantons
of Bolivar Province, Ecuador. Covering an expansive 395 square kilometers, this basin
represents a crucial ecosystem for restoration efforts. Notably, the hydrological dynamics
of the region exhibit distinct seasonal patterns, with precipitation peaking from December
to May, averaging between 93 and 257 mm per month. Conversely, the dry season from
June to November witnesses a stark reduction in rainfall, with averages ranging from 9 to
31 mm per month [23]. Understanding these precipitation trends is paramount for effective
restoration strategies.

Furthermore, the thermal regimes within the basin exhibit variability across its topo-
graphical gradients. In San Pablo de Atenas, temperatures range from 11 to 21 degrees
Celsius, while in San Pablo de Amalí, they span from 20 to 27 degrees Celsius [24]. These
temperature differentials influence ecological processes, including vegetation growth and
water availability, thereby emphasizing the importance of comprehensive hydrological
management in restoration endeavors within the Dulcepamba Basin.
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Figure 1. Dulcepamba River catchment area (coordinate system: Datum WGS 84—Projection UTM
Zone 17 S) [25].

2.1.1. Average Flow and Hydrological Variability

The monthly flow averages at San Pablo and Amalí are presented in Table 2. The
observed flow at Sicoto of 26.94 cms in March 1983 modeled peak floods of 84.5 cms, with
a continuous flow of 40 cms in 10 days (return interval—25 years), similar to February
2008. The observed flow at Sicoto of 19.2 cms in March 2015 modeled a peak flood of
60 cms (return interval—5 years) (see Table 3). The climatic anomalies in the study area
are reflected in the extreme flow increases in the Dulcepamba River in the Sicoto and San
Pablo de Amalí sectors [26].
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Table 2. Monthly flow averages at San Pablo de Amalí [26].

Monthly Flow Averages at Amalí (cms)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

7.51 10.6 12.13 12.85 8.69 4.91 3.21 2.71 2.82 3.08 3.42 4.42

Table 3. Exceedance flows at San Pablo de Amalí [26].

Observed Flow Hydrologic Model (cms)

Month Year Sicoto San José
del Tambo San Pablo de Amalí

Peak (cms) Peak (cms) Continuous (cms) Time (day)

Apr. 1970 7.4 31.7
Mar. 1983 26.9 84.5 * 40.0 10.0
Mar. 1989 12.5
Jan. 1993 3.0
Feb. 2008 25.8 86.1 * 50.0 15.0
Mar. 2015 19.2 60 **

* 25-year return interval; ** 5-year return interval.

2.1.2. Different Land Uses in the Dulcepamba Basin

Table 4 shows the vegetation cover of the Dulcepamba watershed, with 49.3% planted
pasture, 26.1% short-cycle crops, 9.1% natural forest, 8.4% perennial crops, and 7.1% shrub
vegetation [20]. Urbanization and infrastructure in 2014 were marginal, equivalent to 1332
ha (0.33%) of the entire province of Bolivar [8].

Table 4. Vegetation cover in the Dulcepamba Basin [20].

Vegetation Cover %

Planted grasses 49.3
Short-cycle crops 26.1

Natural forest 8.0
Shrub vegetation 7.1

Sugar cane 4.5
Coffee–cocoa 3.7

Intervened natural forest 1.1
Undifferentiated crops 0.2

Corn 0.1

TOTAL 100.0

2.1.3. Poverty in the Dulcepamba Basin

By utilizing unsatisfied basic needs (UBNs) as a measure of poverty, it becomes evident
that in the cantons of San Miguel and Chillanes, home to the Dulcepamba watershed, the
UBN rate stands at 76.3%, in contrast to the national average of 69.3% [8] (see Table 5).

Table 5. Poverty in the Dulcepamba Basin [8].

Poverty Due to Unmet Basic Needs (UBNs) (%)

Canton

Women in
households with

inadequate
services

Men in
households with

inadequate
services

Women in
households with

economic
dependence

Men in
households with

economic
dependence

San Miguel 69.6 70.1 8.1 7.8
Chillanes 80.9 80.7 9.6 10.3
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2.2. Basic Data

In the field of digital cartography, a detailed map at a scale of 1:50,000 has been
meticulously prepared that outlines the topography of San Miguel de Bolívar, Chillanes,
and Matilde Esther, taking advantage of the data sets housed in the Geoportal of the
Military Geographic Institute from Ecuador [25]. This mapping effort has been enhanced
by the generation of a digital elevation model (DEM) that has a resolution of 10 m per pixel,
as illustrated in Figure 2.
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Figure 2. Digital elevation model (DEM) (10 m pixel) and topographic relief.

To complement this mapping, Sentinel-2 satellite images covering the time window
from 17 April 2018 to 30 August 2019 [27] have been leveraged, along with relevant data
related to texture and vegetation cover from the year 2017 [20].

2.3. Criteria and Spatial Variables for HR in the Research Region

In this study, several variables that influence hydrology were considered to iden-
tify areas where HR is likely to be required. These variables included the following:

SPI Stream Power Index;
TWI Topographic Wetness Index;
TRI Terrain Ruggedness Index;
STI Sediment Transport Index;
SD Stream Density Index;
CN Curve Number Index;
RD Distance from River;
NDVI Normalized Difference Vegetation Index;
RF Rainfall Index.

a. SPI—Stream Power Index

The SPI, or Stream Power Index, is a measure that evaluates the ability of a stream to
transport sediment. Negative SPI values indicate areas prone to sediment accumulation,
whereas positive values indicate areas with steep slopes and an increased risk of erosion.
This index specifically quantifies the erosive power of the surface flow [28]. In the process of
calculating the SPI, we employed a digital elevation model (DEM) of the watershed, along
with ArcGIS tools such as Flow Direction, Flow Accumulation, and Slope. In addition, we
applied Equation (1):

SPI = Ln((Flow Accumulation + 0.001) ∗ (tan (Sloperadians) + 0.001)) (1)
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b. TWI—Topographic Wetness Index

The TWI is an index that reflects the propensity of an area to retain water [29]. To
calculate the TWI, we employed the digital elevation model (DEM) of the watershed along
with SagaGis tools, which included Fill Sinks, Flow Accumulation (top-down), Specific
Catchment Area (SCA), β: slope (radians), and Equation (2):

TWI = loge
SCA
tan β

(2)

c. TRI—Topographic Roughness Index

The TRI, or Terrain Robustness Index, is an objective quantitative metric that assesses
the topographic heterogeneity by calculating the total elevation change between a grid cell
and its eight neighboring cells in a digital elevation model (DEM). This index is important
for predicting the habitats preferred by species and the density at which they are located in
various environments and is often an essential component of the niche of such species [30].
In the process of calculating the TRI, the DEM of the basin was used, as well as the Focal
Statistics tool of ArcGIS [31] and Equation (3):

TRI =
(Smooth Roughness − Minimum Roughness)

(Maximun Roughness − Minimum Roughness)
(3)

d. STI—Sediment Transport Index

The STI, or Sediment Transport Index, is a crucial tool for obtaining essential infor-
mation about the sediment movement in a given basin, and its calculation is based on
Equation (4) [32]:

STI = (
As

22.13
)

0.6
∗ ( sin β

0.0896
)

1.3
(4)

where, As is the Flow Accumulation and β is the slope (percent rise);

e. SD—Stream Density Index

The stream density (SD) is a key indicator of the water supply potential in a watershed
and is able to characterize aspects such as the erosion, permeability, slope, and vegetation
cover in that area [33]. For its calculation, the Line Density tool of ArcGIS was used together
with Equation (5):

SD = ∑ (
Stream lenght

Study area
) (5)

f. CN—Curve Number Index

The curve number (CN) is an indicator related to the amount of runoff and depends on
several factors, such as the soil type, vegetation cover, and slope of the terrain [33] (p. 188);

g. RD—River Distance Index

The RD, which represents the longitudinal distance to the river axis, is closely related
to peak flows in winter and has the potential to induce erosion and mass movements in
soils adjacent to the river;

h. NDVI—Normalized Difference Vegetation Index

Equation (6) and a combination of Sentinel-2 images from 17 April 2018 and 30 August
2019 were used to calculate the NDVI [27]:

NDVI =
(NIR − R)
(NIR + R)

(6)

The NIR (near-infrared) and R (red) values represent the reflectance obtained from
multispectral satellite images. Healthy vegetation, owing to the presence of chlorophyll,
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exhibits a low albedo. The Normalized Difference Vegetation Index (NDVI) ranges from
0.1 to 1, and values close to 1 indicate an optimal state of health for vegetation [34];

i. RF—Rainfall Index

The RF variable corresponds to the monthly precipitation expressed in millimeters in
the region of interest, as shown in Figure 3 [23].
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2.4. Assessment and Categorization of Variables

Table 6 shows the principles based on which weights are assigned to the different HR
variables of the hydrological basin.

Table 6. Principles for assigning weights in the river basin.

Index Values Principles for Assigning Weightings

SPI
Negative Potential deposition areas
Positive Potential erosive areas

TWI
Low Accumulates water
High Does not accumulate water

TRI
Low Level ground surface

Medium Intermediate rough surface
High Extremely rough surface

STI
Low Less sediment transport
High Greater sediment transport

SD
Low Soils very resistant to erosion
High Soils easily eroded

NC
Low Permeable soils
High Impermeable soils

RD
Short Erosion and mass movement × runoff
Long Erosion and low mass movement × runoff

NDVI
0.62–0.94 Healthy vegetation

<0.51 Stressed vegetation

RF
290–478 High rainfall
114–224 Low rainfall
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Table 7 presents the nine HR evaluation criteria in detail, along with their respective
categories and assigned weightings. To determine the levels and classify the information
content according to the definition of the indicator, we used the Jenks Natural Breaks
classification, as proposed in [35].

Table 7. Assessment and categorization of variables.

Canon Weight From To Area (395 km2: 100%) Category

SPI

1 −13.8 −10.1 2.5 High sediment accumulation
2 −10.1 −3.9 10.1 Smooth accumulation of sediment
3 −3.9 0.5 25.4 Medium sediment accumulation
4 0.5 3.0 51.1 Medium erosion
5 3.0 14.4 10.9 Heavy erosion and soil degradation

TWI

1 13.8 25.3 1.1 Flooding
2 8.2 13.8 12.1 Heavy accumulation of water
3 5.5 8.2 44.9 Medium water accumulation
4 4.2 5.5 35.6 Low water accumulation
5 1.4 4.2 6.4 Very low water accumulation

TRI

1 0.0 1.1 12.9 Level ground surface
2 1.1 2.7 31.1 Slightly rough surface
3 2.7 4.1 33.0 Moderately rough surface
4 4.1 6.1 18.4 Very hilly surface
5 6.1 18.3 4.6 Extremely rugged surface

STI

1 0.0 119.7 98.7 No sediment transport
2 119.7 127.4 0.1 Little sediment transport
3 127.4 247.1 0.5 Very little sediment transport
4 247.1 2106.8 0.6 Some sediment transport
5 2106.8 31,004.4 0.1 Increased sediment transport

SD

1 0.2 1.9 15.6 Highly permeable and erosion-resistant soils
2 1.9 2.8 28.6 Moderately permeable soils
3 2.8 3.7 30.5 Poorly permeable soils
4 3.7 4.8 20.0 Moderately impermeable soils
5 4.8 8.1 5.3 Impermeable soils, sparse vegetation cover

CN

1 36.0 59.1 6.1 Soils with very low runoff
2 59.1 71.4 26.2 Low-runoff soils
3 71.4 78.0 31.2 Soils with medium runoff
4 78.0 81.4 15.5 Soils with intermediate runoff
5 81.4 88.0 21.1 High-runoff soils

RD

1 100.0 4000.0 74.4 Very low erosion and mass movement due to runoff
2 60.0 100.0 11.8 Erosion and low mass movement due to runoff
3 30.0 60.0 6.8 Less erosion and mass movement due to runoff
4 15.0 30.0 3.2 Moderate erosion and mass movement due to runoff
5 0.0 15.0 3.8 Potential erosion and mass movement due to runoff

NDVI

1 0.7 0.9 28.6 Healthy vegetation
2 0.6 0.7 29.6 Moderately healthy vegetation
3 0.5 0.6 23.9 Low-stress vegetation
4 0.4 0.5 13.7 Moderately stressed vegetation
5 −0.1 0.4 4.1 Highly stressed vegetation

RF

1 380.0 478.0 6.7 High rainfall (mm)
2 291.0 380.0 13.5 Average high rainfall (mm)
3 224.0 291.0 19.9 Average rainfall (mm)
4 169.0 224.0 31.7 Low average rainfall (mm)
5 114.0 169.0 28.2 Low rainfall (mm)
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2.5. Weighting of Factors Influencing the HR of the Dulcepamba Watershed

The Analytical Hierarchical Process (AHP) is a fundamental analytical method for
addressing complex hydrological decisions. This approach involves weighting the variables
that delineate the phenomenon under study, using a pairwise comparison matrix to derive
a scale of importance and the associated weights (see Figure 4).
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The AHP, initially proposed in [36], is a semi-objective, multi-objective, and multicrite-
rion method. This multicriterion decision-making approach favors the choice of preferences
among several alternatives using single scales [36]. Its application is widely recognized in
the environmental susceptibility research, decision making, and regional planning [34,37]
(refer to Table 8).

Table 8. Nine-point analytical hierarchy scale [38].

Degree of Importance Definition Interpretation

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance Experience and judgment slightly favor one activity over the other

5 Strong importance Experience and judgment strongly favor one activity over the other

7 Very strong or demonstrated One activity is much more favored than the other; its dominance
has been demonstrated in practice

9 Extreme Evidence strongly favors one activity over the other; it is absolute
and completely clear

Scales 2, 4, 6, and 8 Intermediate values A compromise between adjacent values is needed

Reciprocal aij = 1/aji Hypothesis of the method

The AHP involves several steps. In the initial phase, unstructured problems and the
research objectives are defined. The variables that affect the problem are then identified and
organized in a hierarchy (those with higher relative weights are considered more important
relative to the others) [34]. Subsequently, rank values are assigned to assess the relative
importance of each factor, according to their subjective significance (T. L. Saaty & Vargas,
2012, 2013; T. Saaty & Vargas, 2006) [39–41]. In the context of the variables detailed in Table 7,
any aspect linked to environmental sensitivity is interconnected and can be evaluated in a
mutually relevant manner using the pairwise comparison technique of the AHP [42].
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3. Results
3.1. Spatialization of Evaluated Parameters

Upon reviewing the maps presented in Figure 5, the following observations can be
made: SPI: 62% of the territory shows signs of erosion; TWI: 13% of the territory exhibits
areas with significant water accumulation; TRI: 44% of the territory displays a surface
that ranges from level to slightly rough, while 23% has a very rough surface; STI: the
sediment transport in the basin is minimal; SD: 44% of the soils demonstrate generally high
permeability; CN: 33% of the soils have low runoff, while 37% experience from intermediate
to high runoff; RD: 4% of the territory is susceptible to fluvial erosion and mass movements
due to increased river flows; NDVI: 42% of the vegetation shows signs of varying degrees
of stress; RF: 28% of the territory in the upper watershed zone receives lower rainfall
compared to other areas.
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3.2. Evaluation of Elements Using the AHP Method

Considering the results obtained by the AHP method in the present study, where the
SPI, TWI, TRI, STI, SD, CN, RD, NDVI, and RF variables were examined, Tables 9 and 10
present the evaluations of the factor pairs and the results of the weighted variables. To
derive the Consistency Index (CI), Equation (7) was applied, where “n” represents the
number of factors (n = 9) and “λ” denotes the average value of the consistency vector, as
detailed in Table 11. Thus, the CI calculation result was 0.06 [43]:

CI =
(λ − n)
(n − 1)

=
(9.5 − 9)
(9 − 1)

= 0.06 (7)

Table 9. Evaluation of the comparison between nine criteria, using the AHP method.

SPI TWI TRI STI SD CN RD NDVI RF

SPI 1.00 0.25 2.00 1.00 1.00 0.33 0.33 0.33 1.00
TWI 4.00 1.00 3.00 4.00 3.00 1.00 3.00 1.00 1.00
TRI 0.50 0.33 1.00 0.33 0.33 0.25 0.50 0.25 0.33
STI 1.00 0.25 3.00 1.00 1.00 0.25 1.00 0.50 1.00
SD 1.00 0.33 3.00 1.00 1.00 0.50 1.00 0.33 1.00
CN 3.00 1.00 4.00 4.00 2.00 1.00 4.00 1.00 1.00
RD 3.00 0.33 2.00 1.00 1.00 0.25 1.00 1.00 1.00

NDVI 3.00 1.00 4.00 2.00 3.00 1.00 1.00 1.00 1.00
RF 1.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00

Total 17.50 5.50 25.00 15.33 13.33 5.58 12.83 6.42 8.33
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Table 10. Determination of relative criterion weights.

SPI TWI TRI STI SD CN RD NDVI RF RESULT %

SPI 0.06 0.05 0.08 0.07 0.08 0.06 0.03 0.05 0.12 0.06 6.45
TWI 0.23 0.18 0.12 0.26 0.23 0.18 0.23 0.16 0.12 0.19 18.94
TRI 0.03 0.06 0.04 0.02 0.03 0.04 0.04 0.04 0.04 0.04 3.76
STI 0.06 0.05 0.12 0.07 0.08 0.04 0.08 0.08 0.12 0.08 7.59
SD 0.06 0.06 0.12 0.07 0.08 0.09 0.08 0.05 0.12 0.08 7.97
CN 0.17 0.18 0.16 0.26 0.15 0.18 0.31 0.16 0.12 0.19 18.79
RD 0.17 0.06 0.08 0.07 0.08 0.04 0.08 0.16 0.12 0.09 9.45

NDVI 0.17 0.18 0.16 0.13 0.23 0.18 0.08 0.16 0.12 0.16 15.57
RF 0.06 0.18 0.12 0.07 0.08 0.18 0.08 0.16 0.12 0.11 11.47

1.00 100.00

Table 11. Consistency Index (CI) and Consistency Range (CR).

M = NW QUOTIENT = M/W CI = (λ−n)/(n−1) 0.06

0.60 9.36 CR = CI/RI 0.04
1.85 9.74
0.36 9.47
0.71 9.41
0.75 9.42
1.83 9.76
0.90 9.51
1.48 9.49
1.08 9.38

λ= 9.50
n= 9.00

To determine the Consistency Radius (CR), Equation (8) was used [43], where “RI” is
the Random Inconsistency Index, dependent on the number (n) of factors under comparison;
for n = 9, RI = 1.45, as indicated in Table 12 [36,43]. The CR is calculated as follows:

CR =
CI
RI

=
0.06
1.45

= 0.04 (8)

Table 12. Random Index (RI) values [44].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.59 1.67

Following the recommendation in [45], when the CR is less than 0.1, it indicates a
realistic degree of consistency in the pairwise comparison. Consequently, according to the
results (Figure 6), the weights 6.45%, 18.94%, 3.76%, 7.59%, 7.97%, 18.79%, 9.45%, 15.57%,
and 11.47% are assigned to the SPI, TWI, TRI, STI, SD, CN, RD, NDVI, and RF categories,
respectively [43]. The combination of different factors in the nine selected maps, using GIS
tools, revealed that the TWI, CN, NDVI, and RF variables contributed 64.77% to the total
HR parameters in the Dulcepamba watershed.
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Figure 6. Overall contributions of HR parameters.

3.3. Prioritization of Areas of HR

With the following percentages assigned to the respective variables: SPI (6.45%); TWI
(18.94%); TRI (3.76%); STI (7.59%); SD (7.97%); CN (18.79%); RD (9.45%); NDVI (15.57%);
and RF (11.47%), the Raster Calculator and Reclassify tools of ArcGIS were used to obtain
the HR areas in the Dulcepamba River watershed. The results are presented in Table 13. For
cartographic representation, the map was classified into five categories (low, low–medium,
medium, high, and very high) using the Natural Breaks Jenks method [46–48].

Table 13. HR priority.

Weight From To Category

1 122.93 236.24 Low HR
2 236.24 265.93 Low–medium HR
3 265.93 292.28 Average HR
4 292.28 322.17 High HR
5 322.17 461.64 Very high HR

The resulting map, with a resolution of 10 m per pixel, is shown in Figure 7. Table 14
shows the area and percentage corresponding to each HR category.

Table 14. Areas and percentages of HR in the Dulcepamba River Basin.

HR Area (km2) %

Low 42.29 10.70
Low–Medium 99.90 25.28

Medium 121.21 30.67
High 93.13 23.56

Very High 38.70 9.79

Total 395.23 100.00
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4. Discussion

The following is a discussion of the values of the variables analyzed in the maps in
Figure 5: SPI: Most of the territory is experiencing soil loss, which negatively affects the
soil productivity. TWI: The territory is prone to low-humidity conditions, which benefit the
erosion risk but limit the water availability to plants. TRI: Areas with higher roughness
may be more prone to erosion and mass movement. STI: This index indicates that there
is little sediment movement in the watershed, indicating that it is positive for the water
quality. SD: Soils with high permeability allow good water infiltration, which reduces
surface runoff and erosion. CN: Soils with high runoff are at a higher risk of erosion and
should be managed more carefully. RD: A low percentage of susceptibility suggests that
most of the territory is not at high risk of fluvial erosion, but affected areas require specific
attention. NDVI: A significant proportion of vegetation is stressed, which may be indicative
of problems such as lack of water, disease, or unfavorable soil conditions. RF: Areas with
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lower rainfall are more vulnerable to drought and may have greater challenges in terms of
water availability for restoration. The variables causing the spatial patterns in Figure 7 in
order of priority are as follows: the TWI, NC, NDVI, RF, SD, STI, SPI, and TRI.

In the context of topographic indices, the control of soil erosion and sediment transport
can be calculated using empirical methods or simple equations, as highlighted in previous
studies [49]. These indices have demonstrated accurate specificity in delineating shallowly
saturated zones and in determining the soil water content in our study area [50–52]. The
results derived from the Topographic Wetness Index (TWI) indicate high reliability for
vegetation assessment by accounting for the spatial distribution of the soil moisture, a
critical factor in the formation of surface runoff [53,54]. The Soil Loss Index (SPI), which
estimates the amount of erosion on a slope affected by the surface flow, has emerged as a
valuable tool for identifying areas prone to sediment transport and different forms of soil
erosion. Consequently, these areas highlight the suitability of afforestation as an effective
measure for controlling soil erosion [49]. In the initial stages of land rehabilitation, priority
should be given to local and native pioneer species as part of a sustainable development
strategy for natural resource preservation [7].

To prioritize sub-watersheds according to their potential erosion risk and water avail-
ability, we integrated the morphometric parameters, precipitation, NDVI, and soil texture,
based on previous investigations [51,55,56]. Topographic features play a crucial role in soil
erosion and sediment transport processes by influencing the surface flow [7,57]. An analysis
of the secondary topographic indices (the TWI, SPI, and STI) was performed to generate
a relative susceptibility map for hydrogeomorphological restoration. The most promi-
nent reasons for this environmental susceptibility are steep slopes and sparse vegetation
cover [58].

Climate change affects agricultural production by altering the water availability, soil
quality, and nutrient levels [19]. The threat of soil erosion affects agricultural productivity,
ecosystem functionality, and environmental sustainability. This phenomenon leads to a
reduction in organic matter and essential nutrients, such as nitrogen, phosphorus, and
potassium [19]. In addition, it affects ecosystem functions and services, including soil
formation, hydrological cycling, and soil nutrient cycling [59], leading to a reduction in
biodiversity, water quality, and food security [60]. The identification and prioritization
of critical areas can be used to implement land-use planning and development actions
to mitigate the impact of soil erosion [51,61,62]. Table 15 shows that 38% of the soil
on the planet is used for agriculture (1850–2011), and several studies suggest that the
degraded soil on the planet has reached an average of 27% (1983–2015). According to this
study, approximately 33% (130 km2) of the Dulcepamba watershed and less than 40% of
the degraded soil in Bolivar Province (4310 km2) require high–very high restoration [8].
According to [63], agricultural productivity worldwide has decreased by 20% (1999–2013)
due to soil degradation.

Table 15. Agricultural and degraded land on Earth.

Method Years
Agricultural Land Degraded Soil

Reference
% Mkm2 ‡ % Free Ice

-- 1850 2011 38 [64,65]

NDVI, biophysical models, and
a database of abandoned

agricultural land
2015 10–60 8–45 [66]

NDVI 1983 2011 24 [67]

NDVI, biomass, global
vegetation model 1982 2010 17–36 [68]
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Table 15. Cont.

Method Years
Agricultural Land Degraded Soil

Reference
% Mkm2 ‡ % Free Ice

NDVI 1981 2006 29 [69]

-- 2015 2020 4.31 ×
10−3 40 Bolivar

Province [8]

NDVI, AHP 2024 1.3 × 10−4 33 Current study
‡ million km2.

The Analytical Hierarchy Process (AHP) multicriterion spatial assessment method for
assessing land degradation has been widely used in environmental assessments [70–72].
Jain Ref. [70] found efficiency in the calculation of indices and remote-sensing techniques
to investigate the relative vulnerability to soil erosion. Several researchers have attempted
to assess the crop suitability, susceptibility, and hydrologic health of watersheds using
AHP methods [51,71,72]. This study attempts to introduce a new AHP approach based
on matrices and the linear and weighted combination method, in relation to soil erosion
hazards, runoff, infiltration, and land use, to identify and evaluate ecologically viable
agricultural systems [6,13–16].

The AHP effectively integrates variables into a coherent and structured framework,
prioritizes restoration actions, can include stakeholder preferences, allows stakeholders
to understand how and why certain decisions are made (government, NGOs, and local
communities), and can be adjusted according to the data availability, which is limited in
developing countries [6,73,74]. This study also contributes to the scientific literature by
providing a practical example of how advanced decision-making techniques can be applied
in natural resource management.

5. Conclusions and Recommendations

In the rainiest months (March–April), the most affected areas from the hydrological
point of view are located in the high–very high HR zones, as shown in Figure 7. Ap-
proximately one-third of the territory of the Dulcepamba watershed exhibits considerable
degradation in its hydrological conditions, reaching 33.35%. In contrast, 10.7% of the
evaluated area does not require HR intervention, while 20.28% requires this type of action
in the long term. In addition, 30.67% requires short-term interventions, and 33.35% requires
immediate HR; thus, the hypothesis of this study is fulfilled. To address the HR, the de-
cision makers would be as follows: the Prefecture of Bolivar Province, the Dulcepamba
Project [75], and local communities.

When using the maps, the following is recommended: SPI: Reduce erosion with the
intervention of the Prefecture of Bolivar and its Secretariat of Environmental Management
and Natural Risks with training programs for environmental monitoring and evaluation.
TWI: Construct permeable water retention structures to enhance infiltration. TRI: Prioritize
biological restoration in highly rugged areas, using native species. SD: Enhance connectivity
within biological ecosystems. CN: Give precedence to reforestation initiatives with native
species in regions experiencing high runoff. RD: Establish riparian barriers with indigenous
vegetation. NDVI: Utilize drones equipped with multispectral cameras to assess indicators
following interventions in high-risk areas. RF: Develop stormwater management systems
to prepare for extreme events like floods and droughts.

The professional in charge of the HR strategy must possess a deep understanding
of the specific environmental conditions of the location, as well as understand the social
and economic requirements of the region [76]. Achieving HR involves balancing the
hydrological, ecological, and agricultural conditions using techniques such as terracing,
check dams, and native afforestation [76]. Transverse ditches filled with gravel and sand
can be used to effectively increase soil moisture [77]. To improve the sustainability of a
watershed, it is essential to identify aspects such as the water quantity and quality, species,
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ecosystems, resilience to climate change, and local culture [78,79]. Ecological management
aimed at improving the quality of land use involves the transformation of grasslands into
forests. The water conservation capacity (WC) of forests per square kilometer exceeds 600
mm, whereas that of grasslands is approximately 192 mm, and arid lands can result in a
loss of approximately 300 mm of their WC [80].
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