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Abstract: The sagebrush steppe ecosystem plays a critical role in water cycling in arid and semiarid
landscapes of the western United States; yet, there is limited information regarding individual sage-
brush plant water uptake. We used the stem heat balance (SHB) method to measure transpiration
in mountain big sagebrush (Artemisia tridentata subsp. vaseyana) plants in a semiarid rangeland
ecosystem in central Oregon, Pacific Northwest Region, USA. We evaluated the relationship between
sagebrush transpiration and environmental factors from July 2022 to May 2023 for two individual
plants representative of the average sagebrush stand height and crown width at the study site; tran-
spiration rates varied by plant and by season. This study encompassed one below-average (2022;
278 mm) and one above-average (2023; 414 mm) precipitation years. Study results showed that the
average water use during the entire period of study was 2.1 L d~! for Plant 1 and 5.0 L d~ for Plant 2.
During the dry year, maximum transpiration was observed during the summer (Plant 1 =4.8 L.d~};
Plant 2 = 11.1 L. d1). For the wet year, both plants showed maximum transpiration levels at the end
of the recording period in mid-May (Plant 1 = 9.6 . d~!; Plant 2 = 8.6 L. d~1). The highest seasonal
transpiration of both plants occurred in summer (2.87 L d 1), whereas the lowest transpiration was
obtained in winter (0.21 L d—1). For all seasons but winter, soil moisture (SM), soil temperature
(ST), and vapor pressure deficit (VPD) variables generally showed positive correlations with tran-
spiration. Transpiration rates decreased in the summer of 2022 as the surface soil gradually dried.
The two plants” most significant water uptake differences were obtained during the dry year. It is
possible that the larger stem diameter of plant 2 may have contributed to its higher transpiration rates
during times of limited water availability. The study results add to the understanding of water use by
sagebrush and its potential impact on the water balance of cool-climate rangeland ecosystems. The
findings also highlight the sensitivity of sagebrush to variations in seasonal soil moisture availability,
soil temperature, and vapor pressure deficit. Future research should involve studying the combined
effects of water use by various dominant vegetation species and its effects on the water budget at the
watershed scale.

Keywords: semiarid rangelands; mountain big sagebrush; transpiration; soil moisture; soil temperature;
vapor pressure deficit

1. Introduction

The sagebrush steppe ecosystem covers approximately 43 million ha in the arid and
semiarid western United States [1]. It provides essential ecosystem services, including
wildlife habitat, forage provisioning for wildlife and livestock [2—4], water provision-
ing [5,6], carbon sequestration [7,8], and a favorable environment for a diverse set of
herbaceous plant species [9]. Sagebrush plants are known for their ability to survive in
water-limited conditions by physiological adaptation [10]. Sagebrush carries out hydraulic
redistribution, the movement of water upwards [11,12], upwards and downwards [10],
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and in both directions as well as laterally [13] through its roots. Redistributing water from
deeper soil layers to shallower ones increases water availability for the sagebrush and may
also positively affect nearby plants [14].

The sagebrush steppe is among the most threatened landscapes in North America [15].
The loss of sagebrush ecosystems is a significant concern, posing existential threats to
biodiversity and land management in the western United States [16]. Over the past century,
large areas of sagebrush have been removed, modified, or fragmented [16,17] due to
multiple factors, including conversion of these native ecosystems to agriculture [18], energy
extraction activities [19], and expansion of woody vegetation species [20]. Various studies
have shown that reducing woody vegetation stands such as juniper (various species) can
positively influence the recovery of impaired sagebrush-dominated landscapes. Studies
conducted in rangeland ecosystems in Oregon, USA, show that juniper stand reduction
significantly increased grass and sagebrush cover [21,22]. Compared to untreated sites,
higher surface and subsurface water levels were obtained in landscapes where sagebrush
became the dominant overstory species after juniper removal [23].

Water is a critical resource for plant growth in arid and semiarid environments [24].
Various environmental factors influence the amount of water available for plants to use.
Vapor pressure deficit (VPD), indicative of atmospheric water demand, has been identified
as a significant driver of vegetation water use in semiarid sagebrush ecosystems [25,26].
Other factors, such as antecedent soil moisture and precipitation timing and intensity;,
can affect the capacity of the system to capture and redistribute water throughout the
landscape [23].

Due to the typical dry environment where sagebrush plants grow, evapotranspiration
losses can be substantially high, accounting for most or all of the moisture available. A
study conducted by Missik et al. [27], conducted on an upland sagebrush ecosystem in
central Washington, USA, showed that total annual evapotranspiration (250 mm) exceeded
precipitation (224 mm). Durfee and Ochoa [6] estimated evapotranspiration to range
between 210 and 260 mm yr~! (mean of 242 mm yr~!), accounting for the most significant
portion (83%) of the annual water budget in a sagebrush-dominated watershed in central
Oregon, USA. However, these studies did not account for the portioning of plant water use
(transpiration) and direct evaporation losses.

Different sagebrush subspecies can exhibit substantial differences in water uptake.
A study by Sharma et al. [5] showed that Artemisia tridentata subsp. vaseyana transpired
nearly four times more water than Artemisia tridentata subsp. wyomingensis. Mountain
big sagebrush (Artemisia tridentata subsp. vaseyana) is the most widespread sagebrush
subspecies in Oregon and the surrounding region [28], and it is the subspecies present at
our study site.

Despite the importance of sagebrush plant communities in regulating water cycling
and consequently on the ecological function of water-limited regions, the body of literature
on water use by sagebrush plants is limited. Moreover, studies considering the interactions
between the environment and individual sagebrush plant water uptake throughout the
year are practically non-existent. This study evaluated the seasonal dynamics of sagebrush
plant transpiration and various environmental factors of interest in a cool-climate rangeland
ecosystem in central Oregon, USA. The study objectives were to (1) determine the amount
of water uptake by mountain big sagebrush and (2) assess the relationship among mountain
big sagebrush transpiration, soil moisture, soil temperature, and vapor pressure deficit.

2. Materials and Methods
2.1. Study Site

This study was conducted at the Camp Creek Paired Watershed Study (CCPWS) site
(43.96° lat.; —120.34° W long.) established in 1994 to evaluate vegetation and hydrol-
ogy changes following the cutting of western juniper [23]. The CCPWS is located in the
semiarid rangelands of central Oregon, USA, and comprises an area of approximately
500 ha, including a 116 ha watershed where mountain big sagebrush is now the dominant
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overstory vegetation following the removal of approximately 90% of juniper trees in 2005
(Figure 1). Herbaceous vegetation is dominated by Idaho fescue (Festuca idahoensis), blue-
bunch wheatgrass (Pseudoroegneria spicata), and Sandberg bluegrass (Poa secunda). Based on
data collected in 2014 [22] from 143 ten-meter transects (n = 1430) distributed throughout
the treated watershed, sagebrush canopy covered 9.9% of the total area. Sagebrush cover
was much lower (3.4%; n = 1450) in the adjacent 96 ha, juniper-dominated watershed used
as the control. The elevation at CCPWS ranges from 1370 m to 1524 m. The mean annual
precipitation based on onsite data collected from 2005 to 2023 is 312 mm. Most precipitation
in the study site occurs as a mix of rain and snow during fall and winter, with few rainfall
events in spring and summer.

Figure 1. The location of the study site in Crook County, central Oregon, is indicated in the outline
map (not to scale) of the state of Oregon, USA. Images taken in 2023 show the distribution of
sagebrush throughout the study site. In (a), sagebrush now occupies the landscape where juniper
trees were removed in 2005. The study site’s monitoring station for soil moisture, temperature,
precipitation, and plant transpiration variables is shown in (b). The presence of sagebrush plants
next to the stream near the monitoring station is illustrated in (c). The depth of the root zone for a
1.2 m tall sagebrush plant at the study site is shown in (d).

Seasonal streamflow and augmented springflow levels in response to snowmelt runoff
are observed in the spring season in years where enough snowpack accumulation (>15 cm)
allows for soil saturation and percolation past the root zone that ends in lateral flow into
the streams (Figure 1). Following the snowmelt runoff season, the stream network is
considered ephemeral for the rest of the year, responding to infrequent convective storms
occurring primarily in the summer. Soil texture determined from samples collected during
soil moisture sensor installation was classified as sandy loam for all sampling depths [29].
Previous work by Abdallah et al. [8] shows that topsoil (0.25 m) soil carbon content at the
study site is about 2%.
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2.2. Sap Flow Measurements and Estimation of Transpiration

The stem heat balance (SHB) method was used in collecting sap flow data to determine
transpiration values from two sagebrush plants between July 2022 and May 2023. The two
plants were selected based on an average representation of mature sagebrush plants found
at the study site. The plants are located in a hillslope near the outlet of the watershed and
at 23 m distance, 10 m higher, from the nearest stream.

One branch in the two sagebrush plants was equipped with an SHB gauge (models
SGB19 and SGB25, Dynamax Inc., Houston, TX, USA) to monitor sap flow. Sap flow mea-
surements were recorded every 15 min using SapIP dataloggers (Dynamax Inc., Houston,
TX, USA). These sap flow data were computed to obtain daily transpiration values (L d 1)
for each equipped branch.

The ratio of sap flow to branch diameter was calculated. To calculate the transpiration
of the whole plant, we used the branch daily estimates and the diameter of all branches
coming out of the main stem close to the soil surface. For plant 1, the mean diameter for
18 measured branches was 21 mm, ranging from 10 to 33 mm. For plant 2, the mean diame-
ter for 15 measured branches was 28 mm, ranging from 18 to 41 mm. Other morphological
features such as plant height, crown width, and branch length were measured for each
equipped plant (Plant 1 and Plant 2). The two equipped plants were harvested at the end
of the experiment in the fall of 2023. All leaves were removed, oven-dried at 40 °C for
24 h, and weighed. Leaf area cover was calculated using a 2500 mm? grid. This process
was replicated ten times to get average leaf area and dry weight estimates used to estimate
sagebrush leaf biomass (g m~2). The obtained mean leaf biomass value and the total weight
of the dried leaves for each branch were used to calculate the leaf area for each equipped
branch (Table 1).

Table 1. Sensor information and characteristics of sagebrush plants.

Plant 1 Plant 2
SHB sensor model SGB19 SGB25
Plant height (m) 1.37 1.38
Crown area (m?) 1.80 1.70
Equipped branch length (m) 1.26 1.25
Equipped branch diameter (mm) 23.0 32.0
Equipped branch leaf area (m?) 0.26 0.16

2.3. Environmental Variables

Environmental data used in this experiment were obtained from onsite instrumen-
tation (Campbell Scientific, Inc., Logan, UT, USA), including a weather station and a soil
moisture (SM) and soil temperature (ST) station. The weather station is 77 m to the west and
slightly south of the SM and ST station, which is installed next to the monitored sagebrush
plants. An additional rain gauge (Model RG3, Onset Computer, Corp., Bourne, MA, USA)
was installed next to the SM and ST station. Precipitation (Pr) was obtained from the RG3
rain gauge. Relative humidity (RH), air temperature (AT), and solar radiation (SR) data
were obtained from the nearby weather station. The SM and ST data were collected using
sensors (Model CS655, Campbell Scientific, Inc., Logan, UT, USA) installed at 0.2, 0.5, and
0.8 m depths. The values of SM and ST across soil depths (0.2, 0.5, and 0.8 m) were used to
obtain an average SM and ST (SM;y and ST;y) for each monitoring station’s 0 to 0.8 m soil
profile. All data were collected hourly and then used to obtain daily average values. We
calculated vapor pressure deficit (VPD) based on daily averaged values of AT and RH, as
described in Ochoa and Abdallah [26].

2.4. Statistical Analysis

A one-way analysis of variance (ANOVA) was performed to assess SM and ST vari-
ability by soil depth. The ANOVA test was also used to compare mean transpiration by
sagebrush plant (Plant 1 vs. Plant 2) and by seasonal period (summer, autumn, winter, and
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spring). A Spearman rank order correlation test was conducted to evaluate the relationships
between sagebrush transpiration and the environmental variables. All statistical analyses
were performed using SigmaPlot® version 15.0 (Systat Software, Inc., San Jose, CA, USA).

3. Results
3.1. Diurnal Courses of Environmental Variables and Transpiration

Figure 2 shows the diurnal variation in normalized SM;o, STt, VPD, and branch-
level transpiration on four days (19 August, 24 November, 19 February, and 11 May),
representative of environmental conditions in summer 2022, autumn 2022, winter 2023, and
spring 2023, respectively. Generally, SM;o; and ST peaked in the morning and tapered off
throughout the day. Compared to the average environmental conditions of autumn 2022
and winter 2023, greater diurnal normalized SM;o; and ST}, variations occurred in summer
2022 and spring 2023, indicating relatively higher transpiration rates in those seasons.
The VPD increased rapidly in the early morning (between 6:00 and 8:00), peaked at noon
(13:00 for winter 2023 and 15:00 for summer 2022, autumn 2022, and spring 2023), then
dropped until midnight. Dynamics of transpiration reflected VPD values, but they were not
necessarily synchronized. Transpiration increased rapidly in the early morning, reaching
peak values (1.7,1.2,0.6,and 2.0 g mm~! h’l) between 10:00 and 15:00 for summer 2022,
autumn 2022, winter 2023, and spring 2023 average environmental conditions, respectively.
Then, it declined significantly, reaching minimum values of <0.1 g mm ' h!at night.
The relatively lowest transpiration rates recorded for autumn 2022 and winter 2023 were
attributed to the low atmospheric evaporative demand represented by lower normalized
STtgt and VPD.
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Figure 2. Diurnal courses of normalized soil moisture and soil temperature averaged over the upper
0.8 m soil profile (SMy,; and STy, respectively), vapor pressure deficit (VPD), and branch-level
transpiration (from sap flux) for sagebrush plants for the average environmental condition of summer
2022, autumn 2022, winter 2023, and spring 2023.

3.2. Daily Fluctuation of Sagebrush Transpiration and Environmental Variables

Figure 3 illustrates the daily averaged fluctuations of Pr, SR, VPD, SM, and ST levels
between 1 April 2022 and 31 August 2023. Also, it shows the transpiration data collected
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from 24 July 2022 to 23 May 2023. Total annual precipitation for the two years (2022 and
2023) encompassing this study was highly variable. Below-average precipitation records
(278 mm) were obtained in 2022, following five other years of severe drought in the region.
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Figure 3. Daily fluctuation of several environmental variables and sagebrush transpiration rates
measured for 2022 and 2023. Environmental variables are precipitation (Pr), solar radiation (SR),

vapor pressure deficit (VPD), and soil moisture (SM) and soil temperature (ST) at different soil depths
(0.2,0.5, and 0.8 m).

Conversely, 2023 was an above-average precipitation (414 mm) year characterized by
a winter mix of rain and snow that provided early spring moisture.

Overall, mean transpiration values for the evaluation period were higher for plant 2
(5.0 L d~1) than for plant1 (2.1 L d-1. During the dry year, the maximum transpiration
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values were obtained at the beginning of this study in July (11.1 L d~! for plant 2 and
4.8 L d~! for plant 1). For the wet year, both plants showed maximum transpiration levels
at the end of the recording period in mid-May (Plant 1=9.6 Ld~!; Plant2=8.6 Ld~'). A
transpiration sensor malfunction prevented data recording through the rest of the summer.
Transpiration largely followed the seasonal soil and air moisture availability. The highest
transpiration rates corresponded to the highest VPD values observed in the summer of 2022.

Similarly, the higher winter precipitation resulting in increased SM levels in the spring
of 2023 corresponded to the higher transpiration levels observed that year. The ANOVA
results showed significant SM differences (p < 0.001) among SM sensor depths, with greater
SM values at 0.5 m depth (SMj 5) and lower SM values at 0.8 m depth (SMyg). Transpiration
levels began a steady decline through late summer and autumn following the drying of the
soil, particularly at SM at 0.2 m depth (SMy>), indicating the potential time at which SM
became a limiting factor for transpiration. The VPD levels peaked in July with an average
of 1.92 and 1.51 KPa in 2022 and 2023, respectively.

Throughout this study, SR and ST exhibited a similar trend; both were lower in the cold
months and gradually rose to the maximum in the warm months. There were significant
ST differences (p < 0.05) by sensor depth during the observation period, with ST at 0.2 m
depth (ST 1), generally showing higher values during the spring and summer, followed by
ST at 0.5 m depth (5T 5) and ST at 0.8 m depth (5T g). This condition was the opposite
during late fall and winter.

3.3. Seasonal Transpiration and Its Response to Environmental Variables

Table 2 shows seasonal transpiration estimates based on sagebrush sap flow data
recorded between 24 July 2022 and 23 May 2023. The highest seasonal mean transpiration
values for plants 1 (2.87 L d~1)and 2 (6.71 L d~1) were obtained during the summer of
2022. Transpiration rates for both plants decreased to a mean value of 2.46 L d ! in autumn
2022, corresponding with the expected reduction in evaporative demand toward the end
of the year. A sharp decline in transpiration rates occurred for both shrubs during winter
2023, with a mean value of 0.58 L d!. In the spring of 2023, plants became more active,
and transpiration was significantly higher (p < 0.05) than during the winter and autumn
seasons, with an average of 3.25 L d~1. The results from the ANOVA test showed that
plant 2 had a higher transpiration rate than plant 1 for all seasonal periods. Across seasonal
periods, the highest transpiration values were observed in summer 2022, followed by
spring 2023, autumn 2022, and winter 2023.

Table 2. Mean value + standard error of transpiration rates of sagebrush, averaged by individual
plant and by all plants for summer 2022 (24 July to September 20), autumn 2022 (21 September to 20
December), winter 2023 (21 December to 20 March), and spring 2023 (21 March to 23 May). Different
lowercase letters (a, b) along rows indicate significant differences (p < 0.05) in mean transpiration
rate by plant for each season. Different uppercase letters (A, B, C, D) along columns indicate mean
transpiration differences (p < 0.05) by season for all plants. Numbers in parentheses in plant 1 and
plant 2 represent the number of days when sap flow data were collected for each individual plant.
Numbers in parentheses for both plants represent the number of averaged days using data from at
least one plant.

Mean Transpiration Rate (L Day—1)

Season, Year

Plant 1 Plant 2 Both Plants
Summer 2022 2.87 £ 0.13 (56) Ab 6.71 + 0.28 (56) Aa 4.79 £+ 0.20 (56) A
Autumn 2022 1.35 4+ 0.13 (41) Cb 3.56 + 0.22 (38) Ca 2.46 +0.18 (45) C
Winter 2023 0.21 + 0.06 (15) Db 0.94 + 0.20 (7) Da 0.58 + 0.10 (17) D
Spring 2023 2.12 + 0.50 (26) Bb 4.37 + 0.46 (26) Ba 3.25+ 0.46 (36) B

Stronger relationships between sagebrush’s transpiration and the environmental vari-
ables SM, ST, and VPD were observed in spring, summer, and autumn, whereas a more
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muted response was noted in the winter (Figure 4). A positive correlation between tran-
spiration and SM at all depths was noted. The greatest rate of change between SM and
transpiration was obtained for SMy » during the spring and summer. The highest variability,
with SMy» levels ranging from 11% to 25% and corresponding transpiration values ranging
from 0.05 to 9 L d~!, was observed in the spring. The relationships between transpiration
and SMy, was stronger than with SM at deeper soil layers for summer, autumn, and
winter. In spring, sagebrush’s transpiration was more influenced by the SM; 5 compared to
other soil depths, indicating that the transpiration process relied heavily on the moisture
available at this depth.

9 99 9 9
T (@) (b) (c) ()
o
-
= 6 6 6 6
]
g
2 34 3
3 L’ At |
= o
= " N
0 T 0 .- Lam T J 0+ J ‘ T T 0 T T T ]
5 10 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Soil moisture (%) Soil moisture (%) Soil moisture (%) Soil moisture (%)
9 91 o - 9 .
~ | @ ) @ (h) W e
3
= 6 6 6 6
8
g
=) J
g 3 3 3
51
& - Go8 8
. o e e . . . . ot oae . .
3 7 -3 7 17 27 -3 7 17 27 -3 7 17 27
Soil temperature (“C) Soil temperature (‘C) Soil temperature (“C) Soil temperature (“C)
9 1 9a 9 1 9 .
) (k) M
~ s 8
Z i
=2 6 6 6 6 .
=
g °
E L]
'é_ 3 3 oot -, 3 3
&
= L o
0 . 0 +e2 . 0 “ . L0 -t v .
2 3 4 1 2 0 1 2 4 0 1 2 3 4
VPD (KPa) VPD (KPa) VPD (KPa) VPD (KPa)
Summer 2022 Autumn 2022 Winter 2023 Spring 2023

Figure 4. Relationships of transpiration to soil moisture (a—d) and soil temperature (e-h) at various
depths, and vapor pressure deficit, VPD (i-1), in summer 2022, autumn 2022, winter 2023, and
spring 2023.

A positive correlation between transpiration and ST at all depths was also obtained.
The ST has a more significant relationship with transpiration than ST at deeper depths.
The greatest rate of change was observed during the autumn, with ST, levels ranging
from —0.4 °C to 20.5 °C and transpiration values ranging from near zero to 3.9 Ld 1. As
expected, the greatest rate of change in the relationship between transpiration and VPD
was obtained for the drier months in the summer, followed by autumn, spring, and winter
(Figure 4).

The Spearman rank order correlation test showed that SM at all depths showed great
explanatory power for transpiration variability for summer 2022, autumn 2022, and spring
2023 seasons, with a stronger effect recorded for SM;,t (p = 0.93, p < 0.001, n = 36) in spring
2023 (Table 3). Except for the relationship between transpiration and ST g in summer 2022
(p=—0.10, p > 0.05, n = 56), ST also had a positive correlation with transpiration at all
depths, which was most significant at STy, (p = 0.91, p < 0.001, n = 36) in spring 2023. In
winter 2023, the dependence of transpiration on SM and ST became either negative or not
detectable, except for the positive correlation between transpiration and SMy, (p = 0.52,
p <0.05,n=17).
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Table 3. Spearman’s rank correlation coefficients between sagebrush’s transpiration and SM, and ST
at different soil depths, SM;ot, and STyyt, and VPD for summer 2022, autumn 2022, winter 2023, and
spring 2023.

Season, Year SMy» SMys SMys SM;ot STo.2 STos STos STtot VPD

Summer 2022 0.88 *** 0.76 *** 0.62 *** 0.73 *** 0.74 *** 0.49 *** —0.10ms 0.58 *** 0.54 ***

Autumn 2022 0.80 *** 0.66 *** 0.66 *** 0.72 *** 0.79 *** 0.65 *** 0.67 *** 0.72 *** 0.92 ***
Winter 2023 0.52 * 0.39 s —0.08 s 0.46 1 0.06 1S —0.06 18 —0.27 1 —0.15ms 0311
Spring 2023 0.47 ** 0.85 *** 0.79 *** 0.93 *** 0.97 *** 0.84 *** 0.79 *** 0.88 *** 0.72 ***

*** = p <0.001; ** =p <0.01; * = p < 0.05; ns = not significant.

Transpiration and VPD were moderately correlated in summer 2022 (p = 0.54, p < 0.001,
n = 56), very strongly correlated in autumn 2022 (p = 0.92, p < 0.001, n = 29), and strongly
correlated in spring 2023 (p = 0.72, p < 0.001, n = 36). No significant correlation between
transpiration and VPD was observed in winter 2023 (p = 0.31, p > 0.05, n = 17). The best
predictor for transpiration variability was SMy» in summer 2022 and winter 2023, SM;y; in
spring 2023, and VPD in autumn 2022.

4. Discussion

This study quantified water uptake by mountain big sagebrush plants and evaluated
its correlation with several environmental variables of interest (i.e., SM, ST, and VPD).
Plant transpiration varied daily and seasonally, with maximum values obtained during the
warm months and acute reductions during the cold months corresponding with decreasing
SM, ST, SR, and VPD. Various other studies have reported similar patterns of seasonal
water use in shrubs [30-32].

Even though the range of transpiration levels for the period of study was similar for
both plants (0.01 to 9.6 L d~! for plant 1 and 0.1 to 11.1 L d~! for plant 2), their annual
mean transpiration (2.1 vs. 5.0 L d 1) and seasonal transpiration levels were different. The
much greater seasonal transpiration levels for plant 2 compared to plant 1 were partly
attributed to the larger total branch diameter obtained for this plant. The difference in
transpiration levels between the two plants was exacerbated during the drier 2022 year,
which resulted in higher air and soil moisture deficits. In the spring of the wetter 2023 year,
the close peak transpiration values of 9.6 and 8.6 L d ! for plant 1 and plant 2, respectively,
were attributed to the abundance of moisture available. Sagebrush plants have extensive
root systems reaching depths up to 2 m [33,34]. Some studies have shown that sagebrush
plants’ productivity is strongly associated with shallow soil moisture [35,36]. Overall, water
uptake by sagebrush plants in this study closely followed the pattern of SMy; availability,
with sagebrush water use declining as SMy levels depleted through the summer and
increasing in response to an SMy rise during the spring snowmelt runoff season. The
positive relationship between transpiration and SMj; observed during winter suggested
that sagebrush primarily used water from the surface soil layer in cold weather rather than
penetrating deeper with its roots.

In response to cold temperatures, many plants, including shrubs, reduce their metabolic
activities, including root growth and water uptake [37,38]. This is a survival strategy to
conserve energy and resources during the harsh winter conditions. Therefore, in cold
conditions, plants rely more on the water available in the surface soil layers, which are
more easily accessible and require less energy to extract water from [39]. In the spring,
when SM was abundant, the SM;,; was a strong predictor of water uptake by sagebrush.
That means sagebrush could utilize water from the entire soil profile, which can contribute
to their growth and survival.

The rise in ST in the spring, particularly near the surface (ST ), stimulated increased
transpiration rates by the sagebrush plants. The lower transpiration and ST levels observed
in autumn and winter are consistent with reports by Onwuka and Mang [40], who found
that low ST during winter can hinder plants” water uptake by reducing the transpiration
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rate. Overall, results from this study are similar to other research showing that plant
transpiration positively relates to ST [26,41,42].

Similar to SM and ST, transpiration sensitivity to the VPD explanatory parameter was
positive in all seasons except winter. The association between VPD and transpiration be-
came more evident in conditions where SM was low, such as in the autumn season. Under
low SM conditions, a decrease in VPD likely led to a decrease in stomatal conductance,
thereby reducing sagebrush transpiration. This aligns with various studies investigating
vegetation water use in response to low VPD and water availability [43—45]. Stomatal
conductance helps minimize plant water loss [46]. Under high SM conditions in spring,
VPD was also an important environmental factor affecting the transpiration rate of sage-
brush. Daily increases in VPD, co-occurring with ST, enhanced transpiration throughout
the spring season. When VPD increases, it creates a more significant gradient for water to
move from the plant to the atmosphere, which can increase the transpiration rate [47]. As
ST rises, it can enhance plant roots” activity and cell membrane permeability, promoting
water absorption [48].

The limitations of this study included the fact that the transpiration data collected
were from only two plants. Caution should be exercised when extrapolating plant scale
findings to the larger landscape scale. Also, some transpiration data were lost during early
summer due to sensor malfunctioning. We may have missed the peak transpiration values
during the warmest month in June in both years. Even though the data comprised nearly
one year, and the data followed the expected distribution of seasonal weather: the first
part (summer and fall) of the data was collected during a below-average precipitation
year (2022; 278 mm), whereas the other part (most winter and spring) was collected in
an above-average precipitation year (2023; 414 mm). This can lead to a less-accurate
interpretation of seasonal transpiration and environmental relationships during average
conditions. Other environmental factors not considered in this study may influence the
sagebrush plant water dynamics observed. For example, studies indicate that reductions in
leaf stomatal conductance under rising atmospheric carbon dioxide concentration (CO,)
may promote water use efficiency (WUE) to benefit plant growth, especially in water-
limited ecosystems [49-51].

Results from this study provide essential information regarding mountain big sage-
brush water use and its relations with various environmental drivers critical for the sustain-
ability of arid and semiarid ecosystems. The project outcomes contribute to an enhanced
understanding of soil-plant-water interactions in cool-climate rangeland ecosystems where
restoration practices such as juniper stand reduction have been implemented. Similar ef-
forts to control woody vegetation expansion and invasive grass species can be found in
many other landscapes in the Pacific Northwest region, USA, and arid and semiarid land-
scapes worldwide. Future research involves studying the combined effects of water use
by various dominant vegetation species, such as sagebrush and juniper, and the effects of
vegetation water uptake on the water budget at the watershed scale.
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