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Abstract: In this study, due to their flexibility in forecasting, the capabilities of three regression-based
machine learning models were explored, specifically random forest regression (RFr), generalized
regression neural network (GRNN), and support vector regression (SVR). The above models were
assessed for their suitability in modeling daily reference evapotranspiration (ETo), based only on
temperature data (Tmin, Tmax, Tmean), by comparing their daily ETo results with those estimated
by the conventional FAO 56 PM model, which requires a broad range of data that may not be
available or may not be of reasonable quality. The RFr, GRNN, and SVR models were subjected to
performance evaluation by using statistical criteria and scatter plots. Following the implementation
of the ETo models’ comparisons, it was observed that all regression-based machine learning models
possess the capability to accurately estimate daily ETo based only on temperature data requirements.
In particular, the RFr model outperformed the others, achieving the highest R value of 0.9924, while
the SVR and GRNN models had R values of 0.9598 and 0.9576, respectively. Additionally, the RFr
model recorded the lowest values in all error metrics. Once these regression-based machine learning
models have been successfully developed, they will have the potential to serve as effective alternatives
for estimating daily ETo, under current and climate change conditions, when temperature data are
available. This information is crucial for effective water resources management and especially for
predicting agricultural production in the context of climate change.

Keywords: daily reference evapotranspiration; random forest regression; generalized regression
neural network; support vector regression

1. Introduction

The decrease in water availability over the last few decades is one of the principal
environmental problems that could severely restrict agricultural production and indus-
trial development in some arid and semiarid areas of the world [1,2], particularly under
climate change conditions. Evapotranspiration (ET) is a parameter of major importance,
participating in both hydrological cycle and surface energy balance [1–3], and is well-
established in various disciplines such as hydrology [4], agronomy [5], climatology [6], and
other geosciences [7]. Modeling daily reference evapotranspiration (ETo) holds significant
importance in various aspects, including water resources management, estimating water
balances, scheduling irrigation, forecasting agricultural production, and addressing theo-
retical challenges within the fields of hydrology and meteorology. The ASCE-standardized
method [8], at a daily step for short reference crops (clipped grass of 0.12 m), gives, as
suggested by [8], equivalent ETo results to the FAO56 Penman–Monteith (FAO 56 PM)
equation [9]. The FAO 56 PM equation was adopted by the FAO as a standard method of
estimating ETo, as it gives more consistent ETo estimates, and it has been shown to perform
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better than other ETo methods [8,9]. However, the detailed meteorological data required by
the FAO 56 PM equation are not often available, especially in developing countries. In such
circumstances, there is much research for innovative modeling approaches to ensure the
trustworthy estimation of ETo values.

In recent years, artificial intelligence (AI), including machine learning (ML) modeling
techniques, has gained significant popularity for estimating and forecasting purposes across
various domains, including water resources and environmental science [1–9]. Since the
early 2000s, there have been discussions about machine learning concepts and applications
in hydrology.

The ASCE Task Committee [10] recognized artificial neural networks (ANNs) as
a reliable modeling tool, prompting the further exploration of machine learning (ML)
techniques in various hydrological and climatological applications. Since then, ML methods
have been used for water quality examination, hydrologic time series analysis [11–15],
landslide susceptibility mapping [16], and climate impact assessments on dam seepage [17].

Several studies have focused on estimating reference evapotranspiration (ETo) using
ML techniques. For example, ref. [18] used a cascade correlation neural network with
Kalman filtering for monthly ETo estimation, while [19] found that generalized regression
neural networks (GRNNs) outperformed radial basis function neural networks (RBFNNs)
for daily ETo estimation in northern Algeria. Similarly, ref. [20] evaluated least square
support vector regression, multivariate adaptive regression splines, and M5 Model Tree
for ETo estimation. Ref. [21] explored daily ETo estimation using ANNs and empirical
equations with limited input data, and [22] proposed GRNN and random forest models for
daily ETo in the Sichuan basin, southwest China.

Various studies have explored the use of boosted machine learning models as alter-
natives to empirical methods for estimating daily reference evapotranspiration (ETo). For
instance, ref. [23] investigated boosted ML models, while [24] examined spatial and tempo-
ral ML approaches for ETo estimation. Linear regression algorithms were explored by [25]
using limited climate data, and [26] focused on support vector machine (SVM) models
for reference crop evapotranspiration. A comprehensive evaluation of ML models at both
general and regional levels was conducted by [27]. In an arid climate context, ref. [28]
assessed the performance of ML algorithms for ETo estimation. Lastly, ref. [29] explored
the k-nearest neighbor algorithm, multigene genetic programming, and support vector
regression (SVR) for daily ETo estimation in Turkey.

The literature mentioned above highlights the necessity for further investigation into
the capabilities of different machine learning algorithms and structures. Nevertheless, the
utilization of machine learning algorithms and their various adaptations in water resources
applications have not been fully exploited. Towards this direction, the main objective of
this study is to investigate and finally evaluate three regression-based machine learning
modeling approaches, namely random forest regression (RFr), generalized regression
neural network (GRNN) and support vector regression (SVR), for accurate and reliable
daily reference evapotranspiration (ETo) estimation. The difference between this work and
the Hargreaves–Samani (HG-S) method [30,31], which also assesses temperature-based
features for the estimation of ETo, is examined. Taking advantage of the capabilities
offered by the strength of machine learning, the goal was to construct accurate daily ETo
prediction models using only temperature data (Tmin, Tmax, Tmean) and astronomical data
(extraterrestrial radiation (Ra), and theoretical sunshine (N), which can easily be estimated
for a certain day and location) as inputs. It is important to mention that machine learning
models built based on temperature can also be extended to predict ETo using predicted
temperature data, especially in the context of climate change conditions.

The motivation for employing the RFr, GRNN, and SVR machine learning approaches
was to evaluate various algorithmic strategies for the same problem using three distinct
modeling techniques, thereby aiming to produce the most reliable results possible. The
reasoning behind the selection of these algorithms was that RFr is an ensemble learning
algorithm that leverages the combined knowledge of multiple models to enhance overall
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performance. GRNN is a probabilistic neural network, which offers significant advantages,
particularly its ability to efficiently converge to the underlying data function even with
a limited number of training samples. Finally, the ε-SVR methodology addresses the
nonlinear regression problem by transforming it into a linear one using kernel functions.

The performance evaluation of the RFr, GRNN and SVR models was assessed by
comparing their daily ETo results with those of the FAO 56 PM model [8,9], while the data
we used were obtained from daily meteorological data collected at two weather stations,
which are sited at Sindos and Piperia, in northern Greece. These stations were selected
because they are located in regions frequently affected by droughts due to the combined
influence of climate change and extensive human activities. Additionally, this work is moti-
vated by the fact that, so far, scientists in Greece have not investigated the use of machine
learning models with temperature-based features. Furthermore, there is a scarcity of global
evaluations of these three specific methodologies using only temperature measurements.

2. Materials and Methods
2.1. Study Area and Data

The study area is located in northern Greece. Daily meteorological variables, including
maximum (Tmax)/minimum (Tmin) air temperature at 2 m height, mean relative humidity
(RH), wind speed at 2 m height (U2), and net solar radiation (Rn), were obtained at Sindos
meteorological station (Lat. 40◦41′, Lon. 22◦47′, Alt. 10 m), with 2000–2007 as the training
period and 2008–2009 as the testing period. The daily data from Piperia station (Lat. 40◦58′,
Lon. 22◦00′, Alt. 160 m) (Figure 1) were used as a separate testing period during the years
2008–2009. Mean air temperature (Tmean) was estimated by averaging Tmin and Tmax.
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Figure 1. Geographic location of the meteorological stations in Greece.

Figures 2 and 3 present the monthly and inter-annual variation in meteorological
variables (mean air temperature, relative humidity, wind speed, net solar radiation, and
reference evapotranspiration estimated using the FAO 56 PM method (Equation (1)).



Hydrology 2024, 11, 89 4 of 20

Hydrology 2024, 11, x FOR PEER REVIEW  4  of  23 
 

 

 
 

 
 

 
 

 
 

 
 

Figure 2. Monthly variation in meteorological variables and ETo at Sindos station, during the train-

ing (2000–2007) and test (2008–2009) period, and at Piperia station, during the test (2008–2009) pe-

riod (a–e). Tmean, RH, U2, Rn, and ETo represent mean air temperature, relative humidity, wind speed, 

net solar radiation, and reference evapotranspiration estimated by the FAO 56 PM method, respec-

tively. 

These variations are shown for Sindos station during the test periods 2000–2007 and 

2008–2009 and for Piperia station during the test period 2008–2009. Since the models op-

erate on a daily time step, the mean monthly temperature values do not capture the devi-

ations in daily values, which can reach up to 12.5 °C, with lower temperatures typically 

observed at Piperia station (alt. 160 m) compared to Sindos station (alt. 10 m). However, 

Figure 2. Monthly variation in meteorological variables and ETo at Sindos station, during the training
(2000–2007) and test (2008–2009) period, and at Piperia station, during the test (2008–2009) period
(a–e). Tmean, RH, U2, Rn, and ETo represent mean air temperature, relative humidity, wind speed, net
solar radiation, and reference evapotranspiration estimated by the FAO 56 PM method, respectively.

These variations are shown for Sindos station during the test periods 2000–2007 and
2008–2009 and for Piperia station during the test period 2008–2009. Since the models
operate on a daily time step, the mean monthly temperature values do not capture the
deviations in daily values, which can reach up to 12.5 ◦C, with lower temperatures typically
observed at Piperia station (alt. 160 m) compared to Sindos station (alt. 10 m). However, the
mean monthly temperature values in Figure 2a and the mean annual temperature values in
Figure 3(a1,a2) clearly show temperature disparities between the two stations. Additionally,
Figures 2 and 3 indicate notable differences in relative humidity and wind speed between
the stations.
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Figure 3. Inter-annual variation in meteorological variables and ETo at Sindos station during
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Rn, and ETo represent mean air temperature, relative humidity, wind speed, net solar radiation, and
reference evapotranspiration estimated by the FAO 56 PM method, respectively.

2.2. FAO56 Penman–Monteith (FAO 56 PM) Method

In this study, the performance of the RFr, GRNN, and SVR models, using only tem-
perature data (Tmin, Tmax, Tmean) and astronomical data (extraterrestrial radiation (Ra) and
theoretical sunshine (N)) as inputs, was assessed by comparing their daily ETo results with
those of the conventional FAO 56 PM method. This method was adopted by the FAO as the
standard method of estimating ETo as it gives more consistent ETo estimates, and it has
been shown to perform better than other ETo methods [8,9]. According to [8,9], the FAO 56
PM method is summarized by the following equation:

ETo =

[
0.408 (Rn − G) + γ

900
T + 273

U2 (es − ea)

]
/[∆ + γ(1 + 0.34 U2)] (1)

where ETo is the reference evapotranspiration (mm d−1), Rn is the daily net solar radiation
(MJ m−2 d−1), G is the soil heat flux (MJ m−2 d−1), T is the average daily air temperature
at a height of 2 m (◦C), U2 is the daily mean of the wind speed at a height of 2 m (m s−1),
es is the saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), ∆ is the slope
of the saturation vapor pressure versus the air temperature curve (kPa ◦C−1), and γ is
the psychrometric constant (kPa ◦C−1). All parameters were calculated using equations
provided by [9]. The soil heat flux (G) was assumed to be zero over the calculation time
step period (24 h) [8].

Extraterrestrial radiation (Ra) and theoretical sunshine (N), which are astronomical
data, can easily be estimated for a certain day and location, according to [9], as follows:

Ra =
24 (60)

π
Gsc dr [ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs) ] (2)

N =
24
π

ωs (3)

where Ra is extraterrestrial radiation (MJ/m2 d), Gsc is the solar constant (0.0820 MJ/m2

min), dr is the inverse relative distance between the Earth and the Sun, ωs is the sunset hour
angle (rad), φ is latitude (rad), δ is solar declination (rad), and N is theoretical sunshine (h).

2.3. Machine Learning Modeling Approaches

Partitioning the dataset into distinct training and testing subsets constitutes a foun-
dational procedure in machine learning, enabling efficient model training, performance
assessment, and protection against overfitting. This methodology serves to promote the
model’s ability to effectively generalize to unseen data and make precise predictions in
practical real-world applications. Due to this fact, the available dataset was divided into
two parts: the daily meteorological data for the period 2000–2007 as the fitting dataset
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and the daily meteorological data for the period 2008–2009 as the test dataset from Sindos
station. In order for the predictive ability of the built machine learning models to be further
assessed, the daily meteorological data for the period 2008–2009 from the Piperia station
were used as a second test dataset as well. The k = 10 cross-validation technique [32] was
applied to the comprehensive dataset, consisting of 2922 daily measurements, ensuring that
all available data patterns were taken into account during the model construction phase.

• Random Forest for regression (RFr)

Utilizing the structural and algorithmic power of machine learning techniques, which
are known for their superiority in simulating intricate non-linear systems, and, considering
the fact that as non-parametric methods, they can bypass the constraints of standard
regression modeling [33], the random forest for regression (RFr) machine learning modeling
approach was employed in order for accurate and reliable ETo models to be created. This
modeling technique has been extensively described in [34]. Ref. [35] was the pioneer in
introducing this supervised machine learning technique, founded on the idea that multiple
models have the capacity to generate an outcome capable of capturing the true underlying
structure of the available data. Random forest for regression (RFr) utilizes numerous
individual models, known as decision trees, which are ultimately aggregated into one,
aiming to minimize both the variance and bias of the base learner, which is the decision
tree, to the greatest extent achievable by the system. This approach, referred to as ensemble
learning [36–38], harnesses the combined knowledge of multiple models to enhance the
overall performance of the learning system. That is, a random forest comprises a collection
of regression trees (decision trees), utilizing their information collectively.

In the training process, the observations within the fitting dataset are employed
to create numerous regression trees, each having distinct training parameters, thereby
contributing uniquely to the prediction process. The ultimate observation prediction
results from the amalgamation of all individual predictions, thereby leveraging the diverse
internal characteristics of each tree to improve generalization. It represents a form of
decision structure learning, centered on a predictive model, with the aim of accurately
estimating the dependent variable based on the observed values of independent variables.

Each individual regression tree comprises a connected flowchart. In this structure,
there is a solitary starting node from which two branches initially extend and lead to ‘child’
nodes stemming from their parent nodes. Each node has a specific satisfaction condition
(impurity criterium), and if this objective is not met, the process advances to a new node
and its corresponding children. The ensemble method used for ETo model construction
was bootstrapped aggregation (bagging) [36,39–43]. This approach entails training multiple
independent models on random subsets (bootstraps) of the fitting data. The algorithm
selects a random subset of the available features while ensuring there is no correlation
among the decision tree estimators. These estimators showed, as expected, high variance,
since they perfectly capture the pattern of the particular sample data. Ultimately, when
the predictions from these individual models (regression trees) were combined through
averaging, the variance in aggregation was significantly reduced.

For the development of a precise and reliable RFr model, it is essential to appropriately
adjust its learning hyperparameters. The most critical factors in this process are the quantity
of decision trees and their maximum depth within the modeling system. Additionally,
careful consideration should be given to parameters such as the minimum number of
samples necessary to split a node, the minimum number of samples required for a leaf
node, and the number of features to be considered when searching for the optimal split.
To identify the most suitable combination of hyperparameters for the RFr model, we utilized
a trial-and-error approach, aiming to minimize the mean square error. This involved
iterating through various settings for the first two hyperparameters, while keeping the last
three at their default values, until we achieved the desired target error. We examined a
range of values for the number of decision trees and their maximum depth, spanning from
50 to 500 per unit for the former and 5 to 12 per unit for the latter. The default values for the
minimum number of samples required to split a node, the minimum number of samples
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needed for a leaf node, and the number of features considered for the optimal split were 2,
1, and 1, respectively.

• Generalized Regression Neural Network (GRNN)

The utilization of a probabilistic neural network, such as a GRNN, offers significant
benefits, primarily because it can efficiently converge towards the underlying data function
even when there are limited training samples available. Moreover, the minimal additional
knowledge required for achieving a satisfactory fit can be obtained without requiring
further input from the user. Consequently, this makes the generalized regression neural
network (GRNN) a highly valuable tool for making predictions and conducting practical
comparisons of system performance. As a statistical method of function approximation into
the structure of a neural network, generalized regression neural networks (GRNNs) [44]
have been successfully used for daily reference evapotranspiration modeling [20,22,45,46].
The concluding remarks of the conducted research indicate that this artificial neural net-
work methodology is worthy of further exploration in hydrology studies. GRNNs have
been described extensively in the related literature [47–49]. Summarizing, the learning of
this methodology depends on a single parameter (σ), which is known as the smoothing
parameter. It represents the width of the normalized Gaussian function which is embedded
in the probability density function used in single-bandwidth GRNN training and can be
described as follows:

Ŷ(X) =
∑n

i=1 Yi exp
(
− (X−Xi)

T ·(X−Xi)
2·σ2

)
∑n

i=1 exp
(
− (X−Xi)

T ·(X−Xi)
2·σ2

) (4)

where Ŷ(X) represents the Nadaraya–Watson kernel regression estimator;

exp
(
−∑n

i=1 (X−Xi)
T ·(X−Xi)

2·σ2

)
is the Gaussian radial basis function (RBF), whose outcome is

influenced by the smoothing parameter (σ) value; X is the current input vector and Xi is
the corresponding training output vector; n is the number of elements of the vector X; and
the symbol T represents the transpose operation applied to the vector.

A CRNN’s architecture comprises four distinct layers. The initial layer functions as
the input layer, where independent variables are introduced to the system. Subsequently, a
second layer called the pattern layer is established, which receives information from the
input layer. Within the pattern layer, each node generates a signal using the RBF (radial
basis function) and transmits it to the next layer, known as the summation layer, which
is the third layer. In this layer, ∑n

i=1 (X − Xi)
T ·(X − Xi) represents the squared Euclidean

distance between the training value and the prediction point, serving as a gauge of the
neural network’s adaptation to the actual training values. Finally, the fourth layer, known
as the output layer, incorporates the values obtained from Equation (4).

Based on the preceding explanation, it becomes obvious that the precise choice of the
smoothing coefficient (σ) is of outmost importance for both the accuracy and generalization
capability of the final GRNN model. Therefore, its value was fine-tuned using an exhaustive
grid-search method [50] through a trial-and-error process, spanning the range of [0, 10] with
increments of 0.001. This selection was driven by optimizing a combination of maximum
correlation and minimum mean square error between the observed values and those
estimated by the GRNN model.

• Support Vector Regression (SVR)

Support vector regression (SVR) is another highly promising algorithm within the
realm of machine learning approaches, offering considerable potential for application in
environmental modeling. It was initially introduced along with the concept of the capacity
of machine learning by [51], in conjunction with the work of Cortes and Vapnik [52].
A comprehensive description of SVR can be found in Vapnik’s works from 1999 and
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2000 [53,54], as well as in the publications [55,56]. In essence, this methodology addresses
the nonlinear regression problem by converting it into a linear one through the use of
kernel functions. To achieve this transformation via the ε-SVR algorithm, the original input
space is mapped onto a higher-dimensional feature space. ε-SVR involves the creation of
an initial space with a width of (2ε), where ε > 0, effectively encapsulating the original data
within the range [−ε, +ε]. With the introduction of an additional variable ξi, referred to as a
slack variable, which quantifies the deviation of each training point from the initial space
with a width of (2ε), the system aims to minimize the ε-insensitive loss function [54,56,57]:

min
1
2
∥w∥ 2 + C·∑n

i=1

(
ξ+i + ξ−i

)
subject to


yi − wT φ(xi )− bc ≤ ε + ξ+i

yi − wT φ(xi )− bc ≤ −ε − ξ−i
ξ+i , ξ−i ≥ 0, i = 1, . . . , n

(5)

where C is a system’s hyperparameter that needs to be tuned, w is the vector of the weights,
and bc is the system’s bias.

Out of the four kernel functions offered in ε-SVR, which include the radial basis func-
tion, linear, sigmoid, and polynomial, the radial basis function (RBF) kernel (Equation (6))
was chosen for its capacity to effectively measure similarity. It was employed to convert the
data into a multi-dimensional super-space (m-dimensional) with the aim of representing
intricate nonlinear relationships using an optimal straight line:

K
(
xi − xj

)
= exp

(
−γ

∥∥xi − xj
∥∥2

)
, γ > 0 (6)

where γ = (1/2σ2), and
∥∥xi − xj

∥∥ is the Euclidean distance between the support vectors (SVs).
Considering Equations (5) and (6), it can be seen that the precision of estimation

and the intricacy of ε-SVR models rely on three key hyperparameters. These include
(ε), responsible for determining the width of the ε-insensitive zone; gamma (γ), serving
as the tuning parameter for Gaussian radial basis function (RBF) kernels; and the cost
parameter (C), which regulates the influence of each support vector, effectively managing
the trade-off between misprediction and model simplicity. The optimal combination of
these hyperparameters was determined through an exhaustive grid-search approach [50],
where (ε) varied between 0.01 and 0.8 in increments of 0.01, (γ) ranged from 0.01 to 1 with
steps of 0.01, and (C) spanned from 1 to 100 in increments of 1.

All machine learning modeling methodologies used were implemented using the
scikit-learn libraries [58] within the Python programming language [59].

2.4. Performance Evaluation Criteria

In order to determine the accuracy in modeling daily reference evapotranspiration of
the RFr, GRNN and SVR models employed in this study, graphical and numerical analyses
of the errors were performed. For this purpose, four different criterium values were used.
These evaluation metrics are the correlation coefficient (R, mm/d), the absolute average
error (AAE, mm/d), the root mean square error (RMSE, mm/d), and the percent relative
error (RE%). The formulas for these metrics are provided below:

R =
∑n

i=1

(
ETPM

i − ETPM
i

)
·
(

ETM
i − ETM

i

)
√(

∑n
i=1

(
ETPM

i

)2
− (∑n

i=1 ETPM
i )

2

n

)
·
(

∑n
i=1

(
ETM

i

)2
− (∑n

i=1 ETM
i )

2

n

) (7)

AAE =
∑n

i=1

∣∣∣ETPM
i − ETM

i

∣∣∣
n

(8)

RMSE =

√√√√∑n
i=1

(
ETPM

i − ETM
i

)2

n
(9)
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RE% =


√

∑n
i=1(ETPM

i −ETM
i )

2

n

ETPM
i

·100 (10)

where ETPM
i and ETM

i are ETo values at the i-th step obtained by the FAO 56 PM and
the constructed machine learning models, respectively; n is the number of the time steps;
while ETPM

i and ETM
i are the average ETo values obtained by the FAO 56 PM and the

constructed machine learning models, respectively. High values of R, accompanied by a
low AAE, RMSE, and RE, indicate high model performance, whereas the opposite implies
poorer performance.

3. Results
Performance of the Constructed Machine Learning Models

As non-parametric modeling approaches, machine learning methodologies do not
impose assumptions. However, there are specific hyperparameters unique to each machine
learning algorithm that need to be tuned to generate accurate and reliable models. In
order for the best fitted RFr to be constructed, the optimal values of the training elements
of the model were assessed through trial-and-error methodologies, taking into account
the estimation and prediction mean square errors. Moreover, in order to guarantee full
randomization of the procedure, the bootstrap aggregation technique was employed in
the selection of training data for each individual decision tree during model building.
To achieve this, 300 regression trees were utilized, each having 10 branches. These specific
numbers were chosen after testing various options, ranging from 2 to 500 for the number
of trees and 1 to 15 for the number of branches per tree. It was observed that once a
combination of 300 regression trees with 10 branches each was employed, there was no
substantial improvement in the model’s average estimation error. Additionally, this choice
of tree depth effectively prevented the over-parameterization of the system during the
learning process of the random forest regression (RFr) model.

Based on the models developed using generalized regression neural networks (GRNNs),
the smoothing factor value (σ) was fine-tuned through an exhaustive grid-search ap-
proach [58], involving a total of 4950 fits. The optimal σ value, which resulted in the
most precise and reliable model, was determined to be 1.489. An exhaustive grid-search
approach was conducted to identify the best hyperparameter combination (ε, γ, and C) for
constructing the ε-SVR model as well. The optimal hyperparameter values which resulted
in both the highest correlation value and the smallest root mean square error between the
observed and estimated ETo values were determined to be 0.01, 0.5, and 180, respectively.

In Table 1, the evaluation metrics of the trained RFr, GRNN, and SVR models at Sindos
station during the calibration period (2000–2007), using 2922 daily data points, are given.
When evaluating the performance of the machine learning models constructed for the
calibration dataset (Table 1), the RFr model demonstrated the most favorable fit to the data,
achieving the highest R value and simultaneously the lowest values across all error metrics.
The SVR model exhibited the second-best fit to the data, while the constructed GRNN
model displayed comparatively lower adaptability, resulting in 1.49 times, 1.57 times, and
6.7% higher AAE, RMSE, and RE% values, respectively, compared to the error values
obtained from the RFr model.

To assess the generalization capability of the created machine learning models, we
computed evaluation metrics for a new time period spanning from 2008 to 2009, encom-
passing both the Sindos and Piperia stations. This analysis utilized 731 distinct daily input
datasets for each station, and the outcomes can be found in Table 2.

Table 2 illustrates that all the developed models exhibited effective generalization to
new data, as evidenced by evaluation metric values closely resembling those obtained
during the calibration period (Table 1). This indicates that the models delivered accurate
ETo predictions for new data, whether in the same station (Sindos) as the calibration
data or in an entirely different station (Piperia). Furthermore, a consistent pattern in the



Hydrology 2024, 11, 89 11 of 20

evaluation metrics was observed among the models, with the RFr model generating the
most precise predictions, followed by the SVR model, and the GRNN model producing the
least accurate predictions.

Table 1. Evaluation metrics for the estimated daily ETo by the trained RFr, GRNN, and SVR models
at Sindos station during the calibration period (2000–2007); n = 2922.

Evaluation Metrics Machine Learning Models

RFr GRNN SVR

R 0.9924 0.9576 0.9598

AAE 0.2189 0.3263 0.3168

RMSE 0.3119 0.4886 0.4766

RE% 12.67 19.86 19.36

Table 2. Evaluation metrics for the predicted daily ETo by the RFr, GRNN, and SVR models during
the 2008–2009 period, for both Sindos and Piperia stations; n = 731.

Model Sindos Piperia

R AAE RMSE RE% R AAE RMSE RE%

RFr 0.9577 0.3278 0.4754 18.9 0.9368 0.4848 0.6376 25.3

GRNN 0.9491 0.3455 0.5156 20.5 0.9263 0.5814 0.7410 29.4

SVR 0.9548 0.3101 0.4944 19.7 0.9322 0.5697 0.7226 28.7

To investigate the accuracy of estimation and prediction by the models on an annual
basis, Figures 4 and 5 were generated for each individual year.
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Figure 4. Performance of RFr, GRNN, and SVR models at Sindos station, during calibration
(2000–2007) period. R (a), AAE (b), RMSE (c), and RE (d) represent correlation coefficient, abso-
lute average error, root mean square error, and relative error, respectively.
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The sub-figures in Figure 4 illustrate the performance of the RFr, GRNN, and SVR
models at Sindos station, during the calibration period (2000–2007), for each individual year.
It is important to highlight that these models were constructed using solely air temperature,
Ra, and N data. In the case of Sindos station, shown in Figure 4, the performance metrics
exhibited noticeable variability throughout the calibration period. Specifically, considering
the RFr model, the values of R (Figure 4a) ranged from 0.9894 to 0.9851, with an average of
0.9843. The AAE values (Figure 4b) ranged from 0.2104 to 0.2211, averaging 0.2189 mm/d
for the same model, while the RMSE values (Figure 4c) ranged from 0.2881 to 0.3201, with
an average of 0.3108 mm/d. Lastly, the RE values (Figure 4d) ranged from 0.1093 to 0.1197,
with an average value of 0.1269 for the best-performing RFr model. The GRNN and SVR
models exhibited lower average R values, with their performance resulting in 2.39% and
2.11% lower average R values, respectively, compared to the average R value derived by the
RFr model (Figure 4a). The SVR model yielded an average AAE value that was 1.45 times
higher than that of the RFr model, while the GRNN model had an average AAE value
1.49 times higher than that of the RFr model. Additionally, the SVR model resulted in an
average RMSE value that was 1.53 times smaller, and the GRNN model had an average
RMSE value 1.56 times smaller than that of the RFr model.

Finally, the relative error (RE) in percentage error values for the GRNN and SVR
models were 7.11% and 6.67% larger, respectively, compared to the average RE% value
of the RFr model. The results mentioned above and shown in Figure 4 indicate that the
constructed RFr model demonstrated the most effective fit with the calibration dataset.

Based on the evaluation of the machine learning models’ generalization capability us-
ing test datasets from Sindos and Piperia stations in the 2008–2009 testing period (Figure 5),
the performance metrics for all models exhibited minor fluctuations, suggesting that the
tested models possessed similar generalization abilities.

Figure 6 illustrates that there is minimal variability in annual ETo values (mm/year)
between the RFr, GRNN, SVR models, as well as the FAO 56 PM model, for the years
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2000–2009 at Sindos station, as well as for the years 2008–2009 at Piperia station. When
comparing these models to the reference FAO 56 PM ETo values, at Sindos station, they
tend to overestimate ETo in 2002 and 2006 and underestimate ETo in 2000, 2001, 2007, and
2008, with the RFr model performing better. Meanwhile, at Piperia station, the RFr model
overestimated ETo in 2008 and 2009, while the SVR model underestimated ETo in the same
years, with the GRNN model showing superior results.
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According to [30,31], the Hargreaves–Samani (HG-S) method, which also relies on
temperature data, has been effectively used in certain locations to estimate daily ETo, and it
is summarized by the following equation:

ETo = [0.0023 (Tmean + 17.8)(Tmax − Tmin)]
0.5 Rα (11)

where ETo is the reference evapotranspiration (mm d−1), Tmean is the mean daily air tem-
perature (◦C), Tmax is the maximum daily air temperature (◦C), Tmin is the minimum daily
air temperature (◦C), and Rα is extraterrestrial radiation (mm d−1), which can easily be
estimated for a certain day and location using Equation (2).

Figure 7 displays the annual ETo values (mm/year) estimated using the HG-S method
at Sindos station for the period 2000–2009 and at Piperia station for the testing period
2008–2009. Figure 7 highlights a significant divergence between the annual ETo values
(mm/year) estimated using the FAO 56 PM and HG-S methods. At Sindos station, when
comparing the HG-S method to the reference FAO 56 PM annual ETo values, the HG-S
method significantly overestimates ETo for all years. The overestimation of annual ETo
values ranged from 20.29% to 41.20%, with an average of 29.33%. Conversely, at Piperia sta-
tion, the HG-S method significantly underestimates the annual ETo, with underestimation
values of 48.61% for 2008 and 50.27% for 2009. Similar discrepancies are observed in the
monthly ETo values (mm/day) estimated by the two methods, confirming that the HG-S
method has failed to reliably estimate daily ETo at both stations.

Figure 8 demonstrates that there is minimal fluctuation in monthly ETo values (mm/day)
between the RFr, GRNN, SVR, and FAO 56 PM models. This consistency is observed during
the calibration period from 2000 to 2007 at Sindos station (Figure 8a), as well as during the
testing period, from 2008 to 2009, at both Sindos (Figure 8b) and Piperia (Figure 8c) stations.
Notably, the RFr model consistently outperforms the other models in both periods.



Hydrology 2024, 11, 89 14 of 20

Hydrology 2024, 11, x FOR PEER REVIEW  15  of  23 
 

 

 
 

 
 

Figure 7. Annual variations in ETo values (mm/year) estimated by FAO 56 PM and HG-S models at 

(a) Sindos station during (2000–2009) period and (b) Piperia station during testing (2008–2009) pe-

riod. 

Figure  8  demonstrates  that  there  is minimal  fluctuation  in monthly  ETo  values 

(mm/day) between the RFr, GRNN, SVR, and FAO 56 PM models. This consistency is ob-

served during the calibration period from 2000 to 2007 at Sindos station (Figure 8a), as 

well as during the testing period, from 2008 to 2009, at both Sindos (Figure 8b) and Piperia 

(Figure 8c) stations. Notably, the RFr model consistently outperforms the other models in 

both periods. 

   

Figure 7. Annual variations in ETo values (mm/year) estimated by FAO 56 PM and HG-S models at
(a) Sindos station during (2000–2009) period and (b) Piperia station during testing (2008–2009) period.

Hydrology 2024, 11, x FOR PEER REVIEW  16  of  23 
 

 

 

 
 

 
 

 
 

Figure 8. Monthly variations in ETo values (mm/d) estimated by FAO 56 PM and RFr, GRNN, and 

SVR models at (a) Sindos station during calibration (2000–2007) period, (b) Sindos station during 

testing (2008–2009) period, and (c) Piperia station during testing (2008–2009) period. 

Figure 9a,c,e depict scatterplots comparing ETo values  (mm/day) estimated by  the 

FAO 56 PM model with those from the RFr, GRNN, and SVR models during the calibra-

tion period (2000–2007) at Sindos station. In these plots, it is obvious that the RFr model 

outperformed the GRNN and SVR models based on the slope of the fitted line equations 

and R2 values (slope: 1.019 vs. 1.0073 and 0.9745; R2: 0.9662 vs. 0.9162 and 0.9212, respec-

tively). 

   

Figure 8. Monthly variations in ETo values (mm/d) estimated by FAO 56 PM and RFr, GRNN, and
SVR models at (a) Sindos station during calibration (2000–2007) period, (b) Sindos station during
testing (2008–2009) period, and (c) Piperia station during testing (2008–2009) period.

Figure 9a,c,e depict scatterplots comparing ETo values (mm/day) estimated by the
FAO 56 PM model with those from the RFr, GRNN, and SVR models during the calibration
period (2000–2007) at Sindos station. In these plots, it is obvious that the RFr model
outperformed the GRNN and SVR models based on the slope of the fitted line equations
and R2 values (slope: 1.019 vs. 1.0073 and 0.9745; R2: 0.9662 vs. 0.9162 and 0.9212,
respectively).

Hydrology 2024, 11, x FOR PEER REVIEW  17  of  23 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 9. Scatterplots of ETo values  (mm/d) estimated by FAO 56 PM and RFr, GRNN, and SVR 

models, during calibration (2000–2007) period (a,c,e) and during testing (2008–2009) period (b,d,f), 

respectively, at Sindos station. 

Figure 9. Cont.



Hydrology 2024, 11, 89 15 of 20

Hydrology 2024, 11, x FOR PEER REVIEW  17  of  23 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 9. Scatterplots of ETo values  (mm/d) estimated by FAO 56 PM and RFr, GRNN, and SVR 

models, during calibration (2000–2007) period (a,c,e) and during testing (2008–2009) period (b,d,f), 

respectively, at Sindos station. 

Figure 9. Scatterplots of ETo values (mm/d) estimated by FAO 56 PM and RFr, GRNN, and SVR
models, during calibration (2000–2007) period (a,c,e) and during testing (2008–2009) period (b,d,f),
respectively, at Sindos station.

On the other hand, Figure 9b,d,f present scatterplots comparing ETo values (mm/day)
estimated by the FAO 56 PM model with those from the RFr, GRNN, and SVR models dur-
ing the testing period (2008–2009) at Sindos station. Similar to the calibration period, the RFr
model demonstrated superior performance compared to the GRNN and SVR models, as in-
dicated by the slope of the fitted line equations and R2 values (slope: 0.9875 vs. 0.9872 and
0.9596; R2: 0.9172 vs. 0.9022 and 0.91, respectively).

Figure 10a–c illustrate scatterplots that compare ETo values (mm/day) estimated by
the FAO 56 PM model with those from the RFr, GRNN, and SVR models during the testing
period (2008–2009) at Piperia station. As can be seen (Figure 10), the RFr model has the
highest R2 value (0.8775), suggesting it explains the most variance in the data. However, its
slope (0.8475) deviates significantly from 1, indicating it tends to underestimate the actual
values. GRNN model has a lower R2 value (0.8581) compared to the RFr model but has the
slope (1.0035) closest to 1 and the intercept (0.0783) closest to 0, suggesting very accurate
predictions, although it could not be able to explain the most variance in the data. Finally,
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SVR model showed a middle R2 value (0.869), a slope (1.0114) close to 1, and a slightly
higher intercept (0.1716) compared to the GRNN model. Although the results do not clearly
identify the best prediction model for the Piperia test dataset, the overall performance of
the RFr model on both the calibration and test datasets, compared to the GRNN and SVR
models, suggests that the RFr model can be considered the safest choice.
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4. Discussion

This study aims to offer a comprehensive and dependable methodology for estimating
and predicting daily reference evapotranspiration (ETo), which is of great importance for
water resources management, water balance estimation, irrigation scheduling, agricultural
production forecasting, and solving many theoretical problems in the fields of hydrology
and meteorology. Given the nonlinear nature of ETo, our approach involves employing
three non-parametric regression-based machine learning modeling methods. This strategy
is designed to leverage the unique strengths of each algorithm, while also taking into
account their individual advantages and limitations.

The models were primarily constructed based on temperature data (Tmin, Tmax,
Tmean), which are correlated. The effect of multicollinearity introduced in these non-
parametric machine learning models can be considered minimal. Examining each mod-
eling method used, it can be said that the ε-SVR approach effectively addresses the non-
linear nature of the data by using kernel tricks to map input features to high-dimensional
spaces, thus reducing issues from multicollinearity. Random forest (RFr) generally han-
dles multicollinearity well. In our case, the model, composed of 300 regression trees
with 10 branches each, was of moderate complexity. This tree depth effectively prevents
over-parameterization during learning. Finally, generalized regression neural networks
(GRNNs) are also less sensitive to multicollinearity due to their kernel regression principles.
GRNNs, being inherently non-linear, do not assume linearity and base their predictions on
the distance between input and training vectors, minimizing the impact of multicollinearity
in high-dimensional spaces.

Additionally, all modeling approaches possess the capability to address data chal-
lenges like high variance, outliers, and potential missing values, ultimately resulting in
accurate results. Nevertheless, it is essential to appropriately fine-tune the hyperparameters
for all modeling approaches, as this task plays a crucial role in ensuring their effective
estimation and prediction performance.

Specifically, the first utilized approach for ETo estimation and prediction involves
random forest regression (RFr), which, through the independent building of its decision
trees, can effectively address the significant issue of overfitting while reducing the vari-
ance [60] and bias of predictions [61]. Nonetheless, it also exhibits a significant limitation,
namely the absence of extrapolation capability. In other words, any forecast made outside
the range of values encountered during the system’s construction phase will essentially be
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an average of the previously observed values within the RFr model’s scope. The further
the predicted value is from the range of the training data, the less reliable the prediction
becomes. The second modeling approach utilizes a generalized regression neural network
(GRNN), which is a probabilistic neural network. It provides notable advantages [44],
particularly in its ability to effectively converge towards the underlying data function, even
in scenarios with a limited number of training samples. Furthermore, it requires minimal
additional knowledge to achieve a satisfactory fit, eliminating the need for additional user
input. As a result, the GRNN proves to be a valuable tool for making predictions and
facilitating practical comparisons of system performance. However, due to the fact that it
is a memory-intensive neural network, GRNN cannot be considered as a suitable neural
network type for large datasets or high-dimensional data. Furthermore, it can be prone
to overfitting, which is a common problem for all neural network types. Due to ε-SVR’s
ability to uncover intricate relationships within real-world data and effectively address
issues like overfitting and local minima [61,62], the support vector regression approach
was our third viable choice for estimating and predicting ETo. However, training an SVR
model is a computationally intensive procedure.

Taking into account the flexibility exhibited by each of the employed approaches, as
shown in Table 1, and their capacity to generalize to new datasets, as indicated in Table 2, it
is reasonable to deem their performance as satisfactory for both calibration and the two
distinct test datasets. Additionally, there was consistency observed in how they performed
in terms of estimation and prediction accuracy.

The modeling of daily ETo by the developed RFr, GRNN, and SVR models, using only
temperature data, offers the possibility of integrating ETo in many cases, under current and
climate change conditions, when temperature data are available. Some of its uses include
the prediction of the agricultural production through the reliable estimation of the crop
water requirements and its introduction in each grid of distributed hydrological models for
the accurate estimation of the water balance components.

At this point, it is noteworthy to say that the Hargreaves–Samani (HG-S) method [30,31],
which also assess temperature-based features for estimation ETo, was examined in this
paper, and the finding is that it has failed at reliable daily ETo estimation at both stations.

5. Conclusions

This study delved into the feasibility of utilizing three different regression-based ma-
chine learning models to estimate daily reference evapotranspiration (ETo): random forest
regression (RFr), generalized regression neural networks (GRNNs), and support vector
regression (SVR).We employed meteorological data from two stations situated in north-
ern Greece, focusing solely on temperature variables (Tmin, Tmax, Tmean), extraterrestrial
radiation (Ra), and theoretical sunshine (N) as input parameters for the models. To assess
performance, we compared the results with FAO 56 PM daily ETo values estimated using
comprehensive meteorological data, which served as our reference benchmark.

Analyzing the statistical comparisons (both numerically and graphically), encom-
passing evaluation metrics like R, AAE, RMSE, and RE%, alongside a comprehensive
examination of the models’ performance throughout the entire calibration and testing
periods, as well as on a yearly basis, it becomes obvious that all three models (RFr, GRNN,
and SVR) consistently displayed robust performance when estimating daily ETo at both
stations. Notably, the RFr model stood out as the top performer, providing the most precise
daily ETo estimates.

This study’s findings suggest the utilization of three regression-based machine learn-
ing models (RFr, GRNN, and SVR) as valuable tools for estimating daily ETo with only
temperature data. Once these regression-based machine learning models have been success-
fully developed, they have the potential to serve as effective alternatives for estimating daily
ETo, under current and climate change conditions, when temperature data are available.

Daily ETo is crucial information for water resources management and particularly
for the prediction of agricultural production under climate change conditions. Machine
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learning models offer several advantages, including their ability to support engineers
and watershed managers in diverse applications. As the models run on a daily time step,
selecting two stations in different regions with significantly different altitudes (10 m and
160 m) ensures the integration of diverse meteorological variable values.

It is worth noting that this study utilized data from two stations, and future research
could explore the application of the RFr, GRNN, and SVR models with data from additional
stations. Additionally, the significant limitation of the RFr model—its lack of extrapolation
capability—must be seriously considered, as it could impact its prediction accuracy.

Finally, it would be interesting for future research to include a comparison of these
approaches, which have demonstrated potential in accurately estimating and predicting ETo,
against more complex machine learning models to further evaluate their relative performance.
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