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Abstract: The centuries-old history of dam construction, from the Saad el-Kafara Dam to global
expansion in the 1950s, highlights the importance of these structures in water resource management.
The Jucazinho Dam, built in 1998, emerged as a response to the scarcity of water in the Agreste
region of Pernambuco, Brazil. After having less than 1% of its water storage capacity in 2016, the
dam recovered in 2020 after interventions by the local water utility. In this context, the reliability
of influent flow prediction models for dams becomes crucial for managers. This study proposed
hydrological models based on artificial intelligence that aim to generate flow series, and we evaluated
the adaptability of these models for the operation of the Jucazinho Dam. Data normalization between
0 and 1 was applied to avoid the predominance of variables with high values. The model was based
on machine learning and employed support vector regression (SVM), random forest (RF) and artificial
neural networks (ANNs), as provided by the Python Sklearn library. The selection of the monitoring
stations took place via the Brazilian National Water and Sanitation Agency’s (ANA) HIDROWEB
portal, and we used Spearman’s correlation to identify the relationship between precipitation and
flow. The evaluation of the performance of the model involved graphical analyses and statistical
criteria such as the Nash–Sutcliffe model efficiency coefficient (NSE), the percentage of bias (PBIAS),
the coefficient of determination (R2) and the root mean standard deviation ratio (RSR). The results
of the statistical coefficients for the test data indicated unsatisfactory performance for long-term
predictions (8, 16 and 32 days ahead), revealing a downward trend in the quality of the fit with an
increase in the forecast horizon. The SVM model stood out by obtaining the best indices of NSE,
PBIAS, R2 and RSR. The graphical results of the SVM models showed underestimation of the flow
values with an increase in the forecast horizon due to the sensitivity of the SVM to complex patterns
in the time series. On the other hand, the RF and ANN models showed hyperestimation of the
flow values as the number of forecast days increased, which was mainly attributed to overfitting.
In summary, this study highlights the relevance of artificial intelligence in flow prediction for the
efficient management of dams, especially in water scarcity and data-scarce scenarios. A proper choice
of models and the ensuring of reliable input data are crucial for obtaining accurate forecasts and can
contribute to water security and the effective operation of dams such as Jucazinho.

Keywords: support vector machine; random forest; artificial neural network; hydrological modeling;
rainfall; flow; forecasting

1. Introduction

Many archaeologists consider the Saad el-Kafara dam to be one of the first in the
world. It was probably built during the reign of Khufu, who was the king of Egypt around
2900–2877 B.C. [1]. Since then, there has been a long tradition of dam construction that
spans millennia and with various purposes, such as flood control, providing water for
human consumption, irrigation and animal thirst and, more recently in the history of dams,
for industrial purposes and electricity generation.
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As we arrived in the 1950s, which was a period of great expansion of global popula-
tions and economies, dams began to be increasingly considered as a solution to meet the
growing demands for water and energy. Since then, according to the World Commission
on Dams (WCD) [2], at least 45,000 large dams have been built worldwide, with almost
half of the world’s rivers having at least one large dam in their course.

In the Brazilian city of Surubim in the state of Pernambuco, the Jucazinho Dam was
inaugurated in 1998; it is located in the Capibaribe watershed and bars the river that is
also called the Capibaribe. It was built to minimize the water scarcity in the rural region of
Pernambuco and to control floods on the Capibaribe River.

According to the Pernambuco Water and Climate Agency (APAC) [3], the dam has an
accumulation capacity of 204.82 million cubic meters of water at an elevation of 292 m from
the main spillway crest, and, as recorded by the Brazilian National Water and Sanitation
Agency (ANA) [4], it has 92% of the total withdrawal demand for water for human supply,
7% for animal thirst, and 1% for irrigation. This amount of water is relevant due to the
large number of municipalities it serves: a total of 15 cities.

The Hydroenvironmental Plan for the Capibaribe Hydrographic Basin of the Secre-
tariat of Water Resources of the State of Pernambuco highlights the economic potential of
the municipalities served by the dam, nine of which belong to the second largest textile
and clothing pole in Brazil, three with relevant agricultural activities, two belonging to the
furniture and tourism pole and one with a strong thermal tourism industry.

Even with the efforts of the Pernambuco Sanitation Company (COMPESA), which
is responsible for the operation of the Jucazinho Dam, to combat the prolonged drought,
the dam’s water level dropped to below 0.01% in 2016 and only recovered four years later,
in 2020, surpassing 1% [5]. At the height of the water crisis, the company implemented
a rotation in the supply, providing the population with potable water only seven days
per month [6].

To address such challenges and improve the management of water resources, re-
searchers have increasingly turned to advanced computational methods. In recent decades,
several artificial intelligence models have been used by researchers to predict influentary
flows due to the great accuracy and flexibility of considering physical processes with all
their characteristics. Among the methods used, artificial neural network (ANN) [7–9],
random forest (RF) [10–12] and support vector machine (SVM) [13–15] models stands out.

Based on the literature, there are models that are better suited depending on the
watershed. Adnan et al. [13] conducted an evaluation of various models, including the
Optimally Pruned Extreme Learning Machine (OP-ELM), Least Square Support Vector
Machine (LSSVM), Multivariate Adaptive Regression Splines (MARS) and M5 Model
Tree (M5Tree), for modeling monthly streamflows with precipitation and temperature
inputs. Their findings highlighted the superiority of LSSVM and MARS-based models
for streamflow prediction without the need for local input data, surpassing the OP-ELM
and M5Tree models. Parisouj et al. [8] investigated the predictive accuracy of three
renowned machine learning algorithms—Support Vector Regression (SVR), ANN and
Extreme Learning Machine—for monthly and daily streamflows across four rivers in the
United States. The study identified SVR as the most effective model at both the monthly
and daily scales, whereas the ANN model exhibited the least satisfactory performance.
Meshram et al. [9] compared the efficacy of three AI techniques—Adaptive Neuro Fuzzy
Inference System (ANFIS), Genetic Programming and ANN—for forecasting streamflow
within India’s Shakkar watershed. The findings underscored that models incorporating
cyclic terms outperformed those that did not consider periodicity and relied solely on
previous streamflow data. Sousa Jr. et al. [12] assessed K-Nearest Neighbor, SVM, RF and
ANN models for daily streamflow prediction in a transitional region between the Savanna
and Amazon biomes in Brazil. The results demonstrated that these models achieved
promising streamflow predictions for up to three days ahead, even in basins with scarce
hydrological data.
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The motivation of this study is the delivery of a hydrological model for reservoir
management based on emerging artificial intelligence techniques, adding to the literature
machine learning adaptations for the prediction of tributary flows and optimizing the
operation of water reservoirs.

Therefore, the objective of the present study is to generate synthetic series of tributary
flows for the Jucazinho Dam, which is located in the Agreste region of Pernambuco, from
stochastic models. By evaluating the adaptability of machine learning models using SVM,
RF and ANN to generate synthetic series of tributary flows to the dam, analyzing the
influence on the quality of adjustments with the increase in the number of forecast days
and verifying the quality of the adjustments based on statistical metrics, we determine the
best model for the hydrological variables under study.

2. Materials and Methods
2.1. Study Area

Located in the Brazilian city of Surubim in the state of Pernambuco in the Capibaribe
watershed, the Jucazinho Dam bars the river that is also called the Capibaribe, as we can see
in the map of the situation in Figure 1. Its construction began in 1995 and was completed in
1998, and at the time, there was the expropriation of more than two thousand hectares in
the riverside areas, involving about 5000 people [16].

Figure 1. Situation map.

One of the reasons for the construction of the dam was the scenario of scarcity of
water supply in the rural region of Pernambuco. With the construction of Jucazinho, which
has a maximum storage capacity of 245.26 million cubic meters of water at the maximum
maximorum elevation of 295 m, 21 municipalities could be served, which impacted the
lives of approximately 800 thousand inhabitants. As stated in Figure 2, 92% of the dam’s
use is for water for human supply. In addition, the dam is used for fish farming, livestock
and agricultural.

The other reason for the construction of the dam was for flood control planning
in Capibaribe, which involved the construction of several dams in order to protect the
metropolitan region of Recife (about 135 km away) from historical floods such as those that
occurred between the years 1960 and 1980. The dam has a flood control volume of 106 m³.
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Figure 2. Total withdrawal demands.

Its construction type is gravity with roller-compacted concrete, and it has a central
stepped spillway with a ski-jump-type dissipation basin. There are also two side spillways
connected to the dam’s abutment. It contains a gallery with access at the two abutments
and which extends over the entire embankment of the dam. Above the central spillway
is a bridge that connects the abutments. It has a water intake for supply and another
for the release of the ecological flow downstream, both with a pipe of 2.0 m in diameter
and a reduction to 1.5 m. In Table 1, we provide data from the dam’s technical file,
with information provided by Department of Water Resources of Pernambuco and data
measured by Neves et al. [17].

2.2. Input Data

The “garbage in, garbage out” principle refers to the fundamental idea that the quality
of the output of a data processing system is directly influenced by the quality of the input
data. In other words, if inaccurate, incomplete or inadequate information is fed into a
system, it is inevitable that the resulting output will also be inaccurate or of poor quality.
This principle highlights the critical importance of reliable and high-quality data entry to
ensure accurate and useful results in any computing or decision-making process.

The data for this study were obtained from the HIDROWEB portal: an online platform
by ANA that offers information on Brazil’s water resources. The portal provides real-time
data from a vast network of monitoring stations across the country, covering hydrometeo-
rological, hydrographic and water quality aspects. In the Jucazinho Dam’s basin, 32 rainfall
monitoring stations and two river flow monitoring stations were identified, as shown in
Figure 3.

Table 1. Technical data sheet of the Jucazinho Dam.

Name Dimension Unit
Embankment

Latitude 07°57′59.39′′ S -
Longitude 35°44′3.16′′ W -

Incremental drainage area 2865.60 km2

Total drainage area 4149.90 km2

Maximum volume 204.82 hm3

Minimum volume 0.29 hm3

Usable volume 326.75 hm3

Maximum operating water level 292.00 m
Minimum operating water level 253.00 m

Elevation of the bottom of the lake 238.00 m
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Table 1. Cont.

Name Dimension Unit
Crest

Length 442.00 m
Width 8.00 m

Elevation 299.00 m
Main Spillway

Length 170.00 m
Crest elevation 292.00 m

Distance between spillway and embankment crest 7.00 m
Maximum flow rate 5446.69 m3·s−1

Side Spillways
Length 57.00 m

Crest elevation 295.00 m
Maximum flow rate 1291.30 m3·s−1

Gallery
Length 2.00 m
Width 2.00 m

Elevation 250.00 m
Maximum flow rate 2.72 m3·s−1

To choose stations for the study, those with records within the same time frame were
initially selected. Fluviometric stations 39100000 and 39130000 had records matching with
pluviometric stations 735159, 736040, 736041, 736042 and 836092 and were the most recently
updated and were thus chosen for the study.

A key aspect of hydrological modeling is the correlation between rainfall and flow
data. Rainfall drives surface runoff and groundwater recharge, directly affecting river flow
levels. Spearman’s correlation (ρ), a robust non-parametric measure, was used to assess
this correlation, as shown in Equation (1). It ranges from −1 to 1 and indicates negative
(ρ < 0), positive (ρ > 0) or no correlation (ρ = 0).

ρ = 1 −
(

6 ∑n
i=1 di

2

n(n2 − 1)

)
(1)

where di and n are, respectively, the difference in ranks between the original series and the
series sorted in ascending order for the i-th observation and the total number of observations.

The highest correlation was observed between pluviometric station 736042 and fluvio-
metric station 39130000, as demonstrated in Figure 4, with a correlation coefficient of 0.18,
leading to their selection for the study.

Despite the low correlation, this research addresses a real situation where the case
study (Jucazinho Dam) was selected by the study funder (COMPESA). The choice was due
to its importance to the region, its history of “collapse”, and its operation based on the
technicians’ empiricism. Precisely due to data limitations, this study can contribute to the
literature by evaluating artificial intelligence models in real situations with scarce data.

The general data of both stations are contained in Table 2. Due to the beginning and
end of both series, the records from 1 January 1986 to 1 June 2023 were used to develop the
hydrological model.
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Figure 3. Pluviometric and fluviometric stations in the Jucazinho Dam’s catchment area.

Figure 4. Correlation matrix graph.

Regarding the flow data, to fill the faults of station 39130000, data from station 39100000
were used and were multiplied by a factor of 1.57, referring to the ratio between the drainage
area of 2450 km2 of station 39130000 and the drainage area of 1560 km2 of station 39100000,
which were obtained through data from ANA’s HIDROWEB portal.

It is noteworthy that both stations are located on the Capibaribe River, which is the
main river of the Capibaribe Hydrographic Basin, which is barred by the Jucazinho Dam,
and that the number of faults is insignificant when compared to the total series, allowing,
without major damage to the model, this type of fault filling.

The rest of the missing data, both flow and precipitation, for stations 736042 and
39130000, were interpolated linearly. The series with the gaps filled is presented in Figure 5
and covers a total of 13,668 days. Initially, stations 736042 and 39130000 presented, respec-
tively, 0.61% and 5.38% of failures in this number of days. After using the data from station
39100000 multiplied by the factor of 1.57, the percentage of failures from station 39130000
dropped to 4.15%. Finally, both series presented 13,668 days of records without failures.

It should be noted that linear interpolation is not the appropriate methodology for
filling in daily failures of a precipitation or flow series, but specifically because we were
filling for a period with low precipitation and flow, with values equal to zero or close to it,
it was acceptable to apply the method without the association of significant errors in the
results of the filled series.
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Table 2. General data of the pluviometric and fluviometric stations used.

Information Pluviometric Station Fluviometric Station
Station Name Taquaritinga do Norte Toritama

Code 736042 39130000
Basin 3—Atlantic, NW/NE

section
3—Atlantic, NW/NE

section
Sub-basin 39—Capibaribe, Ipojuca,

Una, Goiana, Mundaú,
Paraíba do Meio, Coruripe,
Sirinhaém, São Miguel and

Camaragibe Rivers

39—Capibaribe, Ipojuca,
Una, Goiana, Mundaú,

Paraíba do Meio, Coruripe,
Sirinhaém, São Miguel and

Camaragibe Rivers
City Taquaritinga do Norte Santa Cruz do Capibaribe
State Pernambuco Pernambuco

Accountable ANA ANA
Operator Geological Survey of Brazil

(CPRM)
CPRM

Latitude −7.9039 −8.0128
Longitude 36.0469 −36.0578

Elevation (m) 785 376
Drainage area (km2) - 2450

Distance to Jucazinho Dam
(km)

34.31 35.16

Start of the series 1 January 1986 1 January 1973
End of the series 30 June 2023 1 June 2023
Series size (years) 36.5 49.5

It also should be noted that fluviometric station 391300000 is about 35.16 km from
the Jucazinho Dam embankment and 14.64 km from the Jucazinho inundation area, and
side spillway crest elevations are about 295 m. Therefore, the flow series generated by
the artificial intelligence models trained from the data presented in Figure 5 should be
multiplied by a factor of 1.69 for a practical application of reservoir management. This
factor refers to the ratio between the drainage area of 4149.90 km2 of the Jucazinho Dam
and the drainage area of 2450.00 km2 of station 39130000.

Figure 5. Data series used in this study.
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Figure 6 presents the average of the monthly accumulations of all the years of the
catchment basin. It is verified that there is little rainfall in the area, with approximately
four months of rain and eight months of drought, indicating that the Capibaribe watershed
has no hydrological memory.

The hydrological memory of a watershed represents its ability to store and release
water over time in response to climatic conditions. It is influenced by factors such as geology
and land use, and basins with permeable soils tend to have greater hydrological memory.

Hydrological models face challenges in basins without hydrological memory because
they may have less predictable responses, impairing the model’s ability to capture anoma-
lous climate events, given that temporal variability in water retention and release directly
influences the hydrological response.

Figure 6. Average of the cumulative monthly index of all the years in the series.

2.3. Model Construction

For the development of the model, the input variables are presented in Table 3; the
model predicts a sequence of next steps from a sequence of past observations. As Q(t−1)
represents the flow rate for the time prior to Q(t), the delayed flows of 1, 2, 3, . . . , 32 days
with respect to t are called, respectively, Q(t−1), Q(t−2), . . . , Q(t−32); likewise, the flows with
an advance of 1, 2, 3, . . . , 32 days in relation to t are called, respectively, Q(t+1), Q(t+2), . . . ,
Q(t+32). The same nomenclature logic is used for precipitation.

Thus, in the first scenario, the prediction of the flow for the next day was made
from the previous data of one day of flow and precipitation (C-1). In the second scenario,
previous data from two days of flow and precipitation were considered in order to predict
the next two days of flow (C-2). In the other scenarios, the same logic was used but with 4
(C-4), 8 (L-8), 16 (L-16) and 32 days of data (L-32). The models were grouped into:

• (Group C): Short-term prediction for 1 (C-1), 2 (C-2) and 4 (C-4) days of prediction;
• (Group L): Long-term prediction for 8 (L-8), 16 (L-16) and 32 days (L-32) of prediction.

The models were constructed in an orderly manner without mixing the chronological
order of the pairs containing the input and output variables and with recursive, repeating
values in these pairs. Using model C-1 as an example, we show the pairs in Table 4.

Note that P(t−2), Q(t−2) and Q(t+1) are repeated in both the input and output sets.
In this way, historical values are used both to predict future flow values and to provide
information about past patterns that influence these predictions.

In a short-term context, usually covering periods of up to a week, flow prediction is
essential for immediate decision-making. This includes real-time control of water flow,
flood prevention, and reservoir water level management. The ability to anticipate intense
weather events or sudden changes in hydrological conditions allows for rapid responses,
such as the controlled release of water to prevent flooding or the immediate adjustment of
the stored volume to meet current demand.
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Table 3. Structure of the model for predicting flows.

Template Input Output
C-1 P(t−1), Q(t−1) Q(t)

C-2 P(t−1), P(t−2), Q(t−1), Q(t−2) Q(t), Q(t+1)

C-4 P(t−1), P(t−2), . . . , P(t−4), Q(t−1), Q(t−2), . . . ,
Q(t−4)

Q(t), Q(t+1), Q(t+2),
Q(t+3)

L-8 P(t−1), P(t−2), . . . , P(t−8), Q(t−1), Q(t−2), . . . ,
Q(t−8)

Q(t), Q(t+1), . . . , Q(t+7)

L-16 P(t−1), P(t−2), . . . , P(t−16), Q(t−1), Q(t−2),
. . . , Q(t−16)

Q(t), Q(t+1), . . . , Q(t+15)

L-32 P(t−1), P(t−2), . . . , P(t−32), Q(t−1), Q(t−2),
. . . , Q(t−32)

Q(t), Q(t+1), . . . , Q(t+31)

Table 4. Ordering and recursion of models, using model C-1 as an example.

Pair Input Output
1 P(t−1), P(t−2), Q(t−1), Q(t−2) Q(t), Q(t+1)

2 P(t), P(t−1), Q(t), Q(t−1) Q(t+1), Q(t+2)

3 P(t+1), P(t), Q(t+1), Q(t) Q(t+2), Q(t+3)

. . . . . . . . .
n P(t+n−2), P(t+n−3), Q(t+n−2), Q(t+n−3) Q(t+n−1), Q(t+n)

On the other hand, from a long-term perspective, usually covering periods longer than
a week, flow forecasting is crucial for strategic planning. This allows for gradual adaptation
to seasonal hydrological conditions, contributing to the sustainable management of water
resources over time.

Regarding their classification, hydrological models based on artificial intelligence
can be adapted to generate both probabilistic and deterministic predictions. Because the
model generates unique and specific predictions based on initial conditions and defined
parameters, it is reasonable to classify it as deterministic.

The input and output data were normalized between 0 and 1 to prevent the predomi-
nance of variables with high values, which is common in machine learning models. It is
noteworthy that the normalization was done by variable: for example, the normalization of
Q(t−1) considers the data series only of Q(t−1). For this process, the MinMaxScaler function
of the Sklearn library was used, which performs the transformation through Equation (2):

x
′
n =

xn − xmin
xmax − xmin

(2)

where xn is the nth value of the data series, x
′
n is the value after normalization, and xmin

and xmax are, respectively, the minimum and maximum values of the data series.
To apply the machine learning models, the data were divided into training and testing

using the traintestsplit function from the Sklearn library, and a sensitivity analysis was
performed considering the following proportions:

• 65% for training and 35% for testing (65–35);
• 70% for training and 30% for testing (70–30);
• 75% for training and 25% for testing (75–25);
• 80% for training and 80% for testing (80–20).

2.3.1. Defining Hyperparameters

Hyperparameters are external parameters that are not learned directly by the model
during training but need to be specified before the training process begins. These pa-
rameters influence the overall behavior of the model and affect training performance and
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effectiveness. In contrast, model parameters are the weights that the model adjusts during
training to make predictions based on the data.

Because the time series is large-scale, which significantly increases the computational
cost, and we aim to obtain an initial reference point to evaluate the adaptability of machine
learning models, the present work used the standard values for the hyperparameters.
These values, because they are generic and work well in a variety of situations, provide
computational efficiency, avoiding the initial need for extensive experimentation.

2.3.2. Support Vector Machine

In the SVM model, the SVR function of the Sklearn library was used, for which the list
of hyperparameters with their respective types of variables and default values are provided
in Table 5.

The SVR machine learning model is an extension of the SVM algorithm for regression
tasks. The original SVM was initially developed for classification problems, but the SVR
variant has been adapted to handle the prediction of numerical values instead of classes.

The core logic behind SVR is the same as for SVM and involves searching for an optimal
hyperplane that best fits the training data. However, unlike SVM classification, where the
goal is to find a hyperplane that separates classes efficiently, SVR seeks a hyperplane that
optimizes the prediction of continuous values.

Table 5. Hyperparameters of the SVR function from the Sklearn library.

Parameter Variable Type Default Value
Kernel {‘linear’, ‘poly’, ‘rbf’,

‘sigmoid’, ‘precomputed’}
or callable

‘rbf’

Degree int 3.0
Gamma {’scale’, ’auto’} or float Scal

coef0 float 0.0
tol float 0.001
C float 1.0

Epsilon float 0.1
Shrinking bool true
cache_size float 200

Verbose bool false
max_iter int −1.0

2.3.3. Random Forest

In the RF model, the RandomForestRegressor function of the Sklearn library was used,
for which the list of hyperparameters with their respective types of variables and default
values is provided in Table 6.

The RandomForestRegressor machine learning model resides in the construction of an
ensemble of decision trees, which are a fundamental component of RF. Each tree is trained
independently using random sampling of both the dataset instances and the characteristics
in each node split. This random approach contributes to the diversity among the trees and,
consequently, to the robustness of the model.

During the training process, each tree makes individual predictions for the dataset
instances according to the decisions made in their structures. The final RandomForestRe-
gressor prediction is obtained by averaging these predictions, resulting in a more stable
estimate that is less susceptible to overfitting.



Hydrology 2024, 11, 97 11 of 20

Table 6. Hyperparameters of the RandomForestRegressor function of the Sklearn library.

Parameter Variable Type Default Value
n_estimators int 100

criterion string: {“squared_error”,
“absolute_error”,
“friedman_mse”,

“poisson”}

squared_error

max_depth int None
min_samples_split int or float 2.0
min_samples_leaf int or float 1.0

min_weight_fraction_leaf float 0.0
max_features string: {“sqrt”, “log2”,

None}, int or float
1.0

max_leaf_nodes int None
min_impurity_decrease float 0.0

bootstrap bool true
oob_score bool false

n_jobs int None
random_state int, RandomState or None None

verbose Int 0.0
warm_start bool False
ccp_alpha non-negative float 0.0

max_samples int or float None

Overfitting is a common phenomenon in machine learning in which a model over-
adapts to the specific details of the training data, losing the ability to generalize to new
data. This occurs when the model is too complex relative to the inherent complexity of the
data, capturing irrelevant patterns, noise, or specific variations of the training set.

As a result, the model’s performance may be excellent on the training data but may fail
to tackle new data, hindering its ability to make accurate predictions in real-world situations.

2.3.4. Artificial Neural Network

In the ANN model, the MLPRegressor function from the Sklearn library was used,
for which the list of hyperparameters with their respective types of variables and default
values is provided in Table 7.

The MLPRegressor machine learning model belongs to the category of ANNs known
as MLPs. This model is specifically designed for regression tasks as it is able to perform
predictions of numerical values based on input data.

The fundamental structure of MLPRegressor is composed of multiple layers of neurons,
with each layer connected to its adjacent layers. This architecture allows the model to
capture complex relationships between input and output variables. Unlike simple linear
models, MLPRegressor is able to learn nonlinear patterns in data.

During training, MLPRegressor uses an iterative process known as backpropagation.
This process involves forward-passing inputs through the network to generate predictions
and then comparing those predictions with the actual values to calculate the error. The
error is then backpropagated through the network, and the weights of the connections
between neurons are adjusted to minimize the error in the next iteration.
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Table 7. Hyperparameters of the MLPRegressor function from the Sklearn library.

Parameter Variable Type Default Value
hidden_layer_sizes array-like of

shape(n_layers-2,)
100

activation {‘identity’, ‘logistic’, ‘tanh’,
‘relu’}

‘relu’

solver {‘lbfgs’, ‘sgd’, ‘adam’} ‘adam’
alph float 0.0001

batch_size int auto
learning_rate {‘constant’, ‘invscaling’,

‘adaptive’}
‘constant’

learning_rate_init float 0.001
power_t float 0.5
max_iter int 200
shuffle bool True

random_state int None
tol float 0.0001

verbose bool False
fwarm_start bool False
momentum float 0.9

nesterovs_momentum bool True
early_stopping bool False

validation_fraction float 0.1
beta_1 float 0.9
beta_2 float 0.999
epsilon float 0.00000001

n_iter_no_change int 10
max_fun int 15,000

2.4. Model Evaluation

The models were evaluated for their performance by means of a graphical analysis and
statistical criteria. The purpose of the evaluation was to verify the quality of the calibration
and validation results by comparing the flow data simulated by the models with the actual
observed data.

The adopted graphical analysis sought to verify the trend of the correlation of the
observed and predicted data along the increase in the flow and also with the increase in
days according to the models.

The statistical criteria adopted were the Nash–Sutcliffe model efficiency coefficient [18]
(NSE), the percentage of bias (PBIAS), the coefficient of determination (R2) and the root
mean standard deviation ratio (RSR). The NSE ranges from −∞ to 1, with 1 being repre-
sentative of the optimal value. Values between 0 and 1 are seen as acceptable performance
levels; however, values ≤ 0 indicate that the observed mean is a better predictor than the
simulated value, indicating poor performance of the model.

The optimal value of the PBIAS is 0, and positive or negative values with low mag-
nitudes represent good performance. Positive values indicate that the model underes-
timated measured values, while negative values indicate that the model overestimated
measured values.
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The R2 estimates the correlation between the measured and simulated values and
ranges from 0 to 1, with a value of 1 representing perfect agreement. The RSR ranges from
the optimal value of 0, which indicates that the root mean square error (RMSE) is zero, to a
large positive value. Therefore, the lower the RSR, the lower the RMSE and the better the
simulation performance.

In the quantitative analysis, the Moriasi et al. [19] classification presented in Table 8
was used. The classification used the evaluation of a monthly model, and therefore,
for simulations with daily values, it can be considered that NSE values above 0.36 are
still satisfactory.

Table 8. Classification of modeling efficiency coefficients.

Classification NSE PBIAS
Very Good 0.75 < NSE ≤ 1.00 PBIAS ≤ ±10

Good 0.65 < NSE ≤ 0.75 ±10 < PBIAS ≤ ±15
Satisfactory 0.50 < NSE ≤ 0.65 ±15 < PBIAS ≤ ±25

Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±25
Classification R2 RSR

Very Good 0.8 < R2 ≤ 1.0 0.0 < RSR ≤ 0.5
Good 0.7 < R2 ≤ 0.8 0.5 < RSR ≤ 0.6

Satisfactory 0.6 < R2 ≤ 0.7 0.6 < RSR ≤ 0.7
Unsatisfactory R2 ≤ 0.6 RSR ≥ 0.6

Graphical analyses were performed using scatter plots for all models and graphs
of readings over time for models C-1 and L-32. The graph of readings over time for the
L-32 model was created considering only the first, fifteenth and last day of the pairs,
considering that the values are repeated. Both graphs depict the relationships between
two variables visually.

The scatter plot displays observations comparing the independent variable on the
x-axis to the dependent variable on the y-axis. The pattern of points on this graph offers
insights into the relationship’s nature: indicating whether it follows a linear trend and
assessing the model’s fit quality. The second graph shows readings over time, with each
point representing observations comparing dates on the x-axis to flows measured at the
pluviometric station and predicted by the model on the y-axis. The closer the generated
curves, the better the model fit. This graphical representation allows for the identification
of difficulties with predicting highs or lows in the series and detecting any delays between
the graphs.

3. Results and Discussion

The results of the statistical efficiency coefficients of the models are shown in Table 9 for
the test data. It is observed that, in general, all models showed unsatisfactory performance
for long-term prediction, which includes 8 (L-8), 16 (L-16) and 32 (L-32) days for every
training and testing division (65–35, 70–30, 75–25 and 80–20, where the first number is the
percentage of data used for training, and the second number is the percentage of data used
for testing, as described in the methodology). In addition, with the increase in prediction
days, there is a clear tendency to decrease the quality of the fit.

It is also important to note that, despite the low correlation between the pluviometric
and fluviometric stations used in the study, the artificial intelligence models SVM, RF and
ANN presented acceptable results for the models for short-term prediction, which includes
one day (C-1), two days (C-2) and four days (C-4).
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Cheng et al. [20] adopted an ANN and long short-term memory (LSTM) to predict
flow rates at daily and monthly scales. For the monthly flow forecast, a recursive prediction
approach was used. The two models were trained and validated using precipitation and
flow datasets collected in the Nan and Ping river basins in Thailand, covering the period
from 1974 to 2014. The main findings of the study highlight that both ANN and LSTM
models can provide accurate daily predictions of up to 20 days.

It is not uncommon for the performance of flow prediction models using artificial
intelligence to decrease with increasing prediction horizons. This comparison suggests
that the accuracy of long-term flow forecasting can vary significantly depending on the
modeling method and the approach taken.

The decrease in the quality of adjustments with the increase in the number of forecast
days is attributed to increasing uncertainty regarding future conditions and the accumula-
tion of errors over the forecast horizon. According to the statistical criteria, the model that
best adapted to the series was SVM 80-20 (support vector machine using 80% for training
and 20% for testing), which resulted in the best statistical indices of NSE, PBIAS, R2 and
RSR according to Table 10.

Al-Mukhtar [21] investigated the modeling and prediction of sediment in the Tigris
River in Baghdad, which is an influential parameter for the pollution of water bodies. Three
artificial intelligence methods (RF, SVM and ANN) were employed using observed flow
(m³/s) and suspended sediment concentration (mg/L) data collected between 1962–1981
and 2000–2010. The predictive results of the three methods evaluated were analyzed based
on the coefficients R2, RMSE and NSE and indicated that RF presented the best performance.

These findings highlight the importance of considering the variation in performance
between different forecasting methods as well as the need to properly assess the uncertain-
ties associated with models, especially for long-term forecasting scenarios.

Table 9. Statistical criteria of training.

NSE
SVM RF ANN

65–35 70–3 0 75–25 80–20 65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20
C-1 0.54 0.83 0.91 0.94 0.70 0.87 0.85 0.82 0.73 0.92 0.92 0.93
C-2 0.40 0.75 0.85 0.91 0.66 0.85 0.80 0.69 0.71 0.87 0.88 0.79
C-4 0.27 0.63 0.78 0.86 0.57 0.63 0.72 0.56 0.64 0.76 0.77 0.71
L-8 0.16 0.47 0.68 0.80 0.50 0.49 0.62 0.48 0.53 0.60 0.70 0.59

L-16 0.08 0.30 0.52 0.70 0.37 0.35 0.50 0.20 0.41 0.37 0.57 0.38
L-32 0.01 0.17 0.41 0.57 0.21 0.05 0.06 –1.81 0.24 0.15 0.42 0.00

PBIAS
SVM RF ANN

65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20
C-1 –27.73 –10.17 –0.09 5.52 –9.63 1.15 7.23 9.04 –20.12 8.42 –11.74 20.32
C-2 –37.38 –16.13 –4.18 2.61 –5.61 1.27 9.64 13.25 –11.94 3.61 –15.1 6.78
C-4 –48.06 –23.69 –7.71 0.94 –13.05 5.97 16.49 20.56 –19.35 6.67 61.92 37.23
L-8 –56.63 –32.24 –13.74 –1.23 –22.89 8.78 23.27 31.75 –16.22 –0.04 –1.77 55.23

L-16 –62.5 –41.70 –23.98 –6.69 –34.88 15.48 34.72 49.17 –24.01 15.22 39.53 22.71
L-32 –70.99 –51.05 –30.33 –14.68 –44.57 23.63 82.32 128.36 –35.57 12.38 53.87 63.46
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Table 9. Cont.

R2

SVM RF ANN
65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20

C-1 0.54 0.83 0.91 0.94 0.70 0.87 0.85 0.82 0.73 0.92 0.92 0.93
C-2 0.40 0.75 0.85 0.91 0.66 0.85 0.80 0.69 0.71 0.87 0.88 0.79
C-4 0.27 0.63 0.78 0.86 0.57 0.63 0.72 0.56 0.64 0.76 0.77 0.71
L-8 0.16 0.47 0.68 0.80 0.50 0.50 0.62 0.48 0.53 0.60 0.70 0.59

L-16 0.08 0.30 0.52 0.70 0.37 0.35 0.50 0.20 0.41 0.37 0.57 0.38
L-32 0.01 0.17 0.41 0.57 0.21 0.05 0.03 –1.81 0.24 0.15 0.41 0.00

RSR
SVM RF ANN

65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20 65–35 70–30 75–25 80–20
C-1 0.67 0.41 0.30 0.25 0.55 0.36 0.38 0.42 0.52 0.28 0.28 0.27
C-2 0.78 0.50 0.38 0.30 0.58 0.38 0.44 0.55 0.54 0.35 0.34 0.46
C-4 0.86 0.61 0.47 0.37 0.66 0.61 0.53 0.66 0.60 0.49 0.48 0.54
L-8 0.92 0.73 0.56 0.44 0.70 0.71 0.61 0.72 0.69 0.63 0.55 0.64

L-16 0.96 0.84 0.69 0.55 0.80 0.80 0.71 0.90 0.77 0.79 0.65 0.79
L-32 0.99 0.91 0.77 0.66 0.89 0.97 0.97 1.68 0.87 0.92 0.76 1.00

Table 10. Better statistical criteria for training.

C-N NSE PBIAS R2 RSR
C-1 SVM 80-20 SVM 75-25 SVM 80-20 SVM 80-20
C-2 SVM 80-20 RF 70-30 SVM 80-20 SVM 80-20
C-4 SVM 80-20 SVM 80-20 SVM 80-20 SVM 80-20

The results of the models are presented in Figures 7–12. The models took 90% of
the code execution time to train, which means that the computational cost of training is
significantly higher than what is required to use the trained model.

In the SVM models, with the increase in the number of days, there was underestimation
of the flow forecast values (points approaching the x-axis). Despite being effective at
modeling nonlinear relationships, the SVM model is sensitive to complex patterns in time
series. For this reason, as the forecast horizon increased, the model was unable to predict
the significant changes in flow patterns, as can be seen in Figure 7.

The AF and ANN models had the opposite results of the SVM model: with the increase
in days, there was an overestimation of the flow prediction values (points approaching
the y-axis), as can be seen in Figures 8 and 9. This is mainly due to overfitting, where the
models have adjusted too much to the training data and incorporated transient noise and
patterns that are not representative of the actual flow behavior.

Han et al. [22] applied SVM to the Bird Creek watershed for flood prediction and
found that, like ANN models, SVM also suffers from underfitting and overfitting prob-
lems, with overfitting being more harmful than underfitting. The study also reveals an
interesting result in the response of the SVM to different rainfall inputs, where lighter rains
generated very different responses than more intense rainfall, similar to what occurred in
the present work.
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Figure 7. Scatter plots of the tests for SVM 80-20.

On the graph of the readings over time shown in Figure 10, it is possible to verify the
underestimation of the peaks mentioned above for the SVM models. The C-1 model was
able to predict peaks better than the L-32 model. It is also verified that there is a delay
between the graphs of the observed and measured flow for the L-32 model during the
increase in the number of pairs of input and output data points. This delay explains the
low statistical coefficients because the accumulated error is summed.

According to Figures 11 and 12, the RF models presented similar results as those of
the ANN: generating noise that oscillated much above the measured flow. The underlying
relationship between the features and the target variable is highly nonlinear and complex;
that is why both RF and ANN struggled to capture it effectively, leading to instability and
noisy predictions. As with the SVM model, there is also a delay between the graphs of the
observed and measured flow for the L-32 model during the increase in the number of pairs
of input and output data points.

Figure 8. Scatter plots of tests for RF 80-20.

The ANN models were able to represent the flow peaks well, as Figure 12 shows.
Above all, generated noise oscillated the values that should be zero between values slightly
higher or lower than zero, even predicting negative flow values. As with both models
presented above, there is also a delay between the graphs of the observed and measured
flow for the L-32 model during the increase in the number of pairs of input and output
data points.
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Figure 9. Scatter plots of tests for ANN 80-20.

Figure 10. Comparison between observed and simulated flows for SVM 80-20.

Figure 11. Comparison between observed and simulated flows for RF 80-20.
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The results confirm that the Capibaribe watershed does not have hydrological memory.
It is recommended in future works using the application of SVM for different watersheds
to verify the adaptability of the model according to the hydrological memory of each basin.

Figure 12. Comparison between observed and simulated flows for ANN 80-20.

4. Conclusions

The general objective of this research was to generate synthetic series of tributary
flows to the Jucazinho Dam, which is located in the Agreste region of Pernambuco, based
on stochastic models. The specific objectives were to evaluate the adaptability of SVM, RF
and ANN machine learning models to generate the synthetic flow series, to analyze the
influence of the quality of the adjustments with the increase in the number of days of the
forecast, and to verify the quality of the adjustments made by the models using statistical
metrics. Based on the results obtained and the discussions presented, it is concluded that:

• All models showed satisfactory performance for short-term prediction, which includes
1, 2 and 4 days, and unsatisfactory for long-term prediction, which includes 8, 16 and
32 days.

• The graphical results of the SVM models showed underestimation of the flow values
with an increase in the forecast horizon due to the sensitivity of the SVM to complex
patterns in the time series.

• On the other hand, the RF and ANN models showed hyperestimation of the flow
values as the number of forecast days increased, which was mainly attributed to
overfitting.

• For all models, an increase in the number of prediction days led to a tendency to
decrease the quality of the adjustment; this was mainly justified as due to the delay in
the predictions, which generated an accumulation of errors.

• According to the statistical criteria, the model that best adapted to the series was SVM,
which resulted in the best statistical indices of NSE, PBIAS, R2 and RSR.

• Even in situations where data are scarce, artificial intelligence models SVM, RF and
ANN have the potential to be applied for short-term prediction.

• The Capibaribe watershed does not have hydrological memory, which impacted model
training. It is recommended in future works using the application of ANNs in different
watersheds to verify the adaptability of the model according to the hydrological
memory of each basin.



Hydrology 2024, 11, 97 19 of 20

Author Contributions: Conceptualization, E.J.G.d.S. and A.P.C.; Formal analysis, A.P.C. and S.d.T.M.B.;
Investigation, E.J.G.d.S.; Methodology, E.J.G.d.S.; Project administration, S.d.T.M.B.; Software, E.J.G.d.S.
and J.F.C.; Supervision, A.P.C. and S.d.T.M.B.; Validation, A.P.C.; Writing—original draft, E.J.G.d.S.;
Writing—review and editing, E.J.G.d.S. and S.d.T.M.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Academic Master’s and Doctoral Program for Innovation
(MAI/DAI), which was promoted by the Brazilian National Council for Scientific and Techno-
logical Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq,
Brazil), in a partnership between the Federal University of Pernambuco (Universidade Federal de
Pernambuco—UFPE, Brazil) and the Pernambuco Sanitation Company (Companhia Pernambucana
de Saneamento—COMPESA, Brazil).

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: The authors would like to thank Vinnycius Luz and Milton Melo Neto from
the Pernambuco Sanitation Company (Companhia Pernambucana de Saneamento—COMPESA,
Brazil), the National Council for Scientific and Technological Development (Conselho Nacional de
Desenvolvimento Científico e Tecnológico—CNPq, Brazil) for the productivity scholarships for Artur
Coutinho [process 315927/2021-6] and Saulo Bezerra [process 308202/2022-8], the Foundation for
Support of Science and Technology of the State of Pernambuco (Fundação de Amparo à Ciência e
Tecnologia de Pernambuco—FACEPE, Brazil) [process APQ-1767-3.01/22], and the Coordination for
the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—CAPES, Brazil) [Finance Code 001].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jansen, R.B. Dams and Public Safety: A Water Resources Technical Publication; United States Printing Office: Denver, CO, USA, 1980.
2. World Commission on Dams. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on

Dams; Earthscan: Oxford, UK, 2000.
3. Agência Pernambucana de Águas e Clima-Apac. Available online: https://acesse.one/hyipu (accessed on 20 November 2022).
4. Agência Nacional das Águas-Ana. Reservatórios do Semiárido Brasileiro: Hidrologia, Balanço Hídrico e Operação; ANA: Brasília, Brazil,

2017; Volume Anexo E; 178 p.
5. Companhia Pernambucana de Saneamento-Compesa. Available online: https://l1nq.com/RCLDM (accessed on 20 November 2022).
6. Santana, R.A.; Bezerra, S.T.M.; Santos, S.M.; Coutinho, A.P.; Coelho, I.C.L.; Pessoa, R.S.V. Assessing alternatives for meeting water

demand: a case study of water resource management in the Brazilian Semiarid region. Util. Policy 2019, 61, 100974.
7. Ali, S.; Shahbaz, M. Streamflow forecasting by modeling the rainfall–streamflow relationship using artificial neural networks.

Model. Earth Syst. Environ. 2020, 6, 1645–1656. [CrossRef]
8. Parisouj, P.; Mohebzadeh, H.; Lee, T. Employing machine learning algorithms for streamflow prediction: a case study of four

river basins with different climatic zones in the United States. Water Resour. Manag. 2020, 34, 4113–4131. [CrossRef]
9. Meshram, S.G.; Meshram, C.; Santos, C.A.G.; Benzougagh, B.; Khedher, K.M. Streamflow prediction based on artificial intelligence

techniques. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 2393–2403. [CrossRef]
10. Sun, N.; Zhang, S.; Peng, T.; Zhang, N.; Zhou, J.; Zhang, H. Multi-variables-driven model based on random forest and Gaussian

process regression for monthly streamflow forecasting. Water 2022, 14, 1828. [CrossRef]
11. Islam, K.I.; Elias, E.; Carroll, K.C.; Brown, C. Exploring random forest machine learning and remote sensing data for streamflow

prediction: An alternative approach to a process-based hydrologic modeling in a snowmelt-driven watershed. Remote Sens. 2023,
15, 3999. [CrossRef]

12. de Sousa, M.F., Jr.; Uliana, E.M.; Aires, R.V.; Rápalo, L.M.; da Silva, D.D.; Moreira, M.C.; Lisboa, L.; da Silva Rondon, D. Streamflow
prediction based on machine learning models and rainfall estimated by remote sensing in the Brazilian Savanna and Amazon
biomes transition. Model. Earth Syst. Environ. 2024, 10, 1191–1202. [CrossRef]

13. Adnan, R.M.; Liang, Z.; Heddam, S.; Kermani, M.; Kisi, O.; Li, B. Least square support vector machine and multivariate adaptive
regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J. Hydrol. 2020, 586,
124371. [CrossRef]

14. Essam, Y.; Huang, Y.F.; Ng, J.L.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting streamflow in Peninsular Malaysia using
support vector machine and deep learning algorithms. Sci. Rep. 2022, 12, 3883. [CrossRef] [PubMed]

15. Ikram, R.M.A.; Hazarika, B.B.; Gupta, D.; Heddam, S.; Kisi, O. Streamflow prediction in mountainous region using new machine
learning and data preprocessing methods: a case study. Neural Comput. Appl. 2023, 35, 9053–9070. [CrossRef]

https://acesse.one/hyipu
https://l1nq.com/RCLDM
http://doi.org/10.1007/s40808-020-00780-3
http://dx.doi.org/10.1007/s11269-020-02659-5
http://dx.doi.org/10.1007/s40996-021-00696-7
http://dx.doi.org/10.3390/w14111828
http://dx.doi.org/10.3390/rs15163999
http://dx.doi.org/10.1007/s40808-023-01837-9
http://dx.doi.org/10.1016/j.jhydrol.2019.124371
http://dx.doi.org/10.1038/s41598-022-07693-4
http://www.ncbi.nlm.nih.gov/pubmed/35273236
http://dx.doi.org/10.1007/s00521-022-08163-8


Hydrology 2024, 11, 97 20 of 20

16. Girão, L.C.P. Uma Análise da Contribuição dos Programas Básicos Ambientais Como Instrumento de Gestão Ambiental Para a
Barragem de Jucazinho Localizada no Município de Surubim/PE. Master’s Thesis, Universidade Federal de Pernambuco-UFPE,
Recife, Brazil, 2004.

17. Neves, Y.T.; Rodrigues, A.; Cabral, J.J.S.P. Modelagem computacional do rompimento hipotético da barragem de Jucazinho no
estado de Pernambuco (Brasil). Rev. DAE 2021, 69, 167–182. [CrossRef]

18. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10,
282–290. [CrossRef]

19. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900.

20. Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long lead-time daily and monthly streamflow forecasting using
machine learning methods. J. Hydrol. 2020, 590, 125376. [CrossRef]

21. Al-Mukhtar, M. Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris
River-Baghdad. Environ. Monit. Assess. 2019, 191, 673. [CrossRef] [PubMed]

22. Han, D.; Chan, L.; Zhu, N. Flood forecasting using support vector machines. J. Hydroinform. 2007, 9, 267–276. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.36659/dae.2021.039
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2020.125376
http://dx.doi.org/10.1007/s10661-019-7821-5
http://www.ncbi.nlm.nih.gov/pubmed/31650261
http://dx.doi.org/10.2166/hydro.2007.027

	Introduction
	Materials and Methods
	Study Area
	Input Data
	Model Construction
	Defining Hyperparameters
	Support Vector Machine
	Random Forest
	Artificial Neural Network

	Model Evaluation

	Results and Discussion
	Conclusions
	References

