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Abstract: The effectiveness of using enhanced evapotranspiration rates of willow plantation is a
modern environmentally friendly practice for advanced treatment of effluent WWTP flow. The key
idea is that through advanced willow evapotranspiration rates, a significant proportion of the effluent
flow can be transferred into the atmosphere through the physical process of evapotranspiration. This
study further discusses the concept in a real-world problem using a wide dataset consisting of a
recent PET monthly remote dataset namely RASPOTION, monthly recorded rainfall gauge, and
experimental willow evapotranspiration surveys across Ireland, to identify the monthly cropping
pattern. A Monte Carlo water balance model has been developed for the period 2003–2016. The model
was applied in an existing willow plantation at Donard WWTP co. Wicklow, Ireland to identify the
exceedance probability of willow plantation runoff against estimated low flows (i.e., Q95, Q99) at the
adjacent small tributary. In this case study, any failure which can lead to river quality deterioration
was not assessed. The overall framework aims to provide new insights considering the multiple
sources of uncertainty (i.e., monthly willow cropping pattern and WWTP effluent flow) in associated
environmental engineering problems.

Keywords: willows evapotranspiration; effluent flow treatment; RASPOTION; Monte Carlo; Ireland

To enter water and not to get water

Foivos Delivorias, Artist

1. Introduction

Over the last decade, numerous publications have highlighted the importance of wil-
low in addressing environmental engineering challenges. Some examples are short rotation
coppice plantation [1–4], its use for irrigation with wastewater [5], sewage sludge [6], and
leachate [7]. It has been proven that willows can be used for the leaching prevention of
hazardous wastes [8,9], phytoremediation of contaminated soils [10,11], treatment wet-
lands [12,13], urban and agricultural catchment runoff systems [14], and to prevent soil
erosion [15]. The comprehensive article by Frédette et al. [16] reviewed numerous scientific
articles and presented a holistic view on the use of willow in environmental projects.

Evapotranspiration is one of the most difficult meteorological variables to record in the
field and there are reported different definitions in the hydrology domain such as potential
evapotranspiration, and real or actual evapotranspiration [17] to describe the water natural
conversion to atmospheric losses. Willow real evapotranspiration rates consist of two
components: the monthly potential evapotranspiration rates and the monthly cropping
pattern which is usually extracted by on-site observations. For the assessment of potential
evapotranspiration (PET), numerous models have been developed for which Penman-
Monteith model is the most reliable [17–19]. On the other hand, willows crop monthly
patterns require on-site experimental observations. In Ireland, relevant research has been
carried out over the last decade [13,20] and can inform water management studies for
providing a better and more resilient river environment. Based on Curneen and Gill [13], it
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appears that there is no difference in ET willow rates between four willow varieties (Tordis,
Sven, Inger, and Torhild). ET willow rates and associated crop factors for all three growing
seasons appeared to be affected by the strength of effluent received, with the varieties
receiving primary treated effluent outperforming those receiving secondary treated effluent
which in turn outperformed those receiving water. There was a noticeable decrease in ET
willow rates for all varieties under all three treatments in the second and third years, which
shows an increased rate of 50% for fertilized willow and 44% for unfertilized willow over
the second growing season. The challenge of quantifying willows plantation runoff regime
is critical, especially under the rapidly changing climate conditions which may cause more
severe droughts in the near future [21–23]. The link between drought and low flow in the
riverine system highlights the pivotal role of providing new environmental concepts [24] to
deal with the challenges of Water, Soil, Food, Biodiversity, and Energy Security Nexus [25].

A few researchers have been carrying out stochastic/probabilistic hydrology modeling
associated with evapotranspiration [26–28]. Considering that the uncertainty of willow
evapotranspiration rate is high, given the local meteorological influence and limited ob-
served on-site samples, probabilistic modeling of willow crop monthly patterns appears to
be irreplaceable as used to be common practice in other hydrological disciplines [29].

In this study, a monthly Monte Carlo approach is presented in real environmental
engineering problems. In this model, the real evapotranspiration consumption is presented
as a monthly random variable depending on the monthly variance of the nine on-site
monthly crop factors surveys over a four-year monitoring period. Meteorological inputs
associated with the monthly rainfall and monthly potential evapotranspiration were used
from gauge to remote sensing products, respectively. The new model is tested in Donard
WWTP, co Wicklow Ireland and the model appears to be promising for similar studies
worldwide. The main research questions presented in this article were:

• How can actual monthly ET rates and associated effluent flow provide for irrigation
purposes in a willow plantation?

• How critical is the use of willow cropping factors gathered by a specific monitor-
ing period (four years)? Given the limited monitoring period, can a probabilistic
approach be beneficial to provide naturalized monthly willow surface plantation
runoff for quantifying its influence on the water quality of adjacent rivers during low
natural flows?

• Can different types of datasets such as from rain gauges to remote sensing PET products
support effective solutions even in small-scale environmental engineering problems?

2. Materials and Methods
2.1. Study Area

The village of Donard is located in west Co. Wicklow, approximately 15 km northeast
of Ballinglass. The WWTP (WGS84, 53◦01′, 6◦37′) includes a semi-combined wastewater
collection system discharging to a new wastewater treatment plant. Wastewater receives
preliminary treatment consisting of de-gritting and fine screening, and then primary treat-
ment in a large septic tank. Effluent from the septic tank is pumped to an adjacent Willow
Plantation at Irishtown East, where it is treated through bio-infiltration. The plantation
covers an area of 12.9 hectares, though only 9.6 hectares are currently in use. Wicklow
County Council manages the willow growth and harvests the willow on a proper coppice
cycle every three years. The primary discharge point from the primary tank disperses
effluent to groundwater across the willow plantation land. The willow plantation consists
of a single landholding of 12.9 hectares, divided into two zones: Zone A measures 9.6
hectares. Effluent flow is discharged to the willow plantation by irrigation, from a series
of equally spaced lateral pipes. Zone A is currently in use. Zone B is reserved for future
expansion. The area of land occupied by Zone A is bound to slow down runoff rates,
allowing for some physical filtration and purification.

Figure 1 presents WWTP and Willow plantation sites.
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number of unrecorded rainfall measurements. Figure 2 depicts the monthly rainfall for 
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The annual rainfall averages around 950 mm, with low values mainly observed dur-
ing dry periods (such as July), while the wettest month is typically January. 

Donard WWTP site is located within the Slaney catchment. The standard annual av-
erage rainfall (SAAR) for the site is reported at 1290.85 mm/year (FSU, OPW). The WWTP 
site is situated on Till derived chiefly from Lower Palaeozoic rocks with moderate perme-
ability subsoil overlain by poorly drained gley soil. 

The WWTP site is located near Brown’s Breck Brook tributary upstream of the con-
fluence with Carrigower River. Donark’s brook catchment is estimated as being 12.31 km2. 

The average tributary’s flow has been estimated by EPA [30] as ranging from Q1 = 
2.97 m3/s to Q99 = 0.035 m3/sec indicating Q95 = 0.056 m3/s. 

Figure 3 shows the network in the vicinity of the Donard WWTP site. 

Figure 1. Study area.

2.1.1. Monthly Rainfall Gauge and River Network Description

Monthly rainfall data were acquired by Met Éireann for two sites (Oak Park and
Hackestown). The Hackestown rainfall dataset was ultimately utilized due to the low
number of unrecorded rainfall measurements. Figure 2 depicts the monthly rainfall for the
period 2003–2016 over the Donard site.
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The annual rainfall averages around 950 mm, with low values mainly observed during
dry periods (such as July), while the wettest month is typically January.

Donard WWTP site is located within the Slaney catchment. The standard annual
average rainfall (SAAR) for the site is reported at 1290.85 mm/year (FSU, OPW). The
WWTP site is situated on Till derived chiefly from Lower Palaeozoic rocks with moderate
permeability subsoil overlain by poorly drained gley soil.

The WWTP site is located near Brown’s Breck Brook tributary upstream of the confluence
with Carrigower River. Donark’s brook catchment is estimated as being 12.31 km2.

The average tributary’s flow has been estimated by EPA [30] as ranging from
Q1 = 2.97 m3/s to Q99 = 0.035 m3/sec indicating Q95 = 0.056 m3/s.

Figure 3 shows the network in the vicinity of the Donard WWTP site.
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2.1.2. Remote Sensing PET Monthly Dataset

A recent spatial monthly remote sensing PET dataset was utilized to capture monthly
values of potential evapotranspiration in the site of interest (Figure 4). The remote PET
dataset, namely RASPOTION [31], has been developed using parametric modeling based on
the simplification of the well-known Penman-Monteith model and remote sensing monthly
temperatures [32]. The RASPOTION dataset has been validated with in-situ samples from
various locations including the USA, Germany, Spain, Ireland, Greece, Australia, and China,
and by using spatial Penman-Monteith estimates in England. The results in both cases
are satisfactory. The key idea for using this dataset is the absence of reliable long-term
meteorological gauges in the vicinity of the WWTP site which can allow estimating monthly
PET. Having considered its reliability as set out above, the use of the remote sensing dataset
can benefit the aim of the study.
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Figure 4. Monthly PET values over Ireland RASPOTION model (2016).

The graph in Figure 5 below presents PET monthly values over the period 2003–2016
in the willow plantation site as acquired by the RASPOTION dataset. Monthly PET values
vary from approximately 11 mm (in December) to 87 mm (in July). For the total PET sample,
the minimum is 10.38 mm (in December 2010) and the monthly maximum is 87.59 mm (in
July 2013).

The annual cumulative PET rate is estimated as being around 550 mm (see also
Figure 5).
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2.1.3. Willows Monthly Cropping Coefficients

Potential Evapotranspiration (ETo) represents the evapotranspiration from a hypo-
thetical grass reference crop with an assumed height of 0.12 m and full water availability.
The crop coefficient is a measure of the rate of evapotranspiration achieved by a plant
in comparison to the reference evapotranspiration. It is determined by measuring the
evapotranspiration (ETc) of crops under standard conditions. The ratio of ETc to ETo is
referred to as the crop coefficient of a specific plant.

The factors that can affect the crop coefficient (Kc) include plant morphology, plant
physiology, irrigation method, and rainfall frequency, all of which affect canopy resistance.
To quantify the willow crop coefficient, an extended statistical analysis was carried out
based on nine willow sites across Ireland [13,20] mainly in County Wexford and another
two sites in Leitrim and Limerick Counties. As part of this study, four years of monitoring
surveys were carried out to quantify the efficacy of the effluent treatment through advanced
Willow Evapotranspiration. Several criteria were considered such as area requirement,
willow clone variety, type of influent, and water distribution networks. The usage of a
range willow clones has been observed including Bjorn, Torra, Jorr, Tordis, Torhild, Sven
Inger, Olof, and Native (Salix Caprea, Salix atrocinerea, Salix pentandra, and Salix aurita).

Figure 6 shows the monthly crop coefficient samples across nine test sites in counties
Wexford, Leitrim, and Limerick. It can be concluded that lower crop coefficient variances
are observed from November to March and higher observed from April to October.
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2.2. Monte Carlo Monthly Water Balance Model Set-Up

A Monte Carlo monthly water balance hydrology model has been developed to
estimate the monthly actual runoff from willow plantation sites under different crop
coefficient conditions outlined in analysis Section 2.1.3.

The methodology employed includes the following:

1. Monthly precipitation is input into the water balance model.
2. A portion of the monthly rainfall is withdrawn as soil moisture based on the Met

Éireann approach for poorly drained areas, which is summarized as follows: Soil
moisture saturates on wet winter days, with water surplus drained at very slow rates,
around 0.5 mm per day. The minimum Soil Moisture Deficit (SMD) is set at minus 10
mm. When SMD is greater than 10 mm, Actual Evapotranspiration (AE) is less than
Potential Evapotranspiration (PE), decreasing linearly to zero when SMD reaches a
theoretical maximum of 110 mm.

3. Actual site runoff includes the following: (a) The monthly net proportion of rainfall
minus soil moisture and minus willow actual evapotranspiration; (b) The effluent
flow from WWTP, for which two scenarios have been set up associated with 500 PE,
and two scenarios relevant to wastewater flows of 120 L/PE/day and 150 L/PE/day.

4. Due to the high uncertainty of the willows’ monthly cropping pattern and monthly
effluent flows, monthly random values based on the specified upper and lower limit
monthly cropping factors and two wastewater scenarios have been set up. A total
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number of 100 monthly water balance models have been generated and the results
are discussed below.

5. The final model step refers to the exceedance probability density of the monthly plant
surface runoff against low flow estimates (Q95 and Q99) at the adjacent tributary for
quantifying the likelihood of the river’s quality deterioration.

Figure 7 visualizes the process of the new Monte Carlo model.
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3. Results
3.1. Actual Monthly Evapotranspiration Rates

Figure 8 shows the variability of the monthly ET willow over the period 2003–2016.
Average monthly ET willows varies from 27.9 mm to 134.71 mm, maximum monthly ET
willow rates vary from 43.5 mm to 212.9 mm, and minimum monthly ET willow rates vary
from 2.95 mm to 67.49 mm.
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3.2. Monthly Surface Runoff Rates

Figure 9 shows the variability of the total site’s runoff over the period 2003–2016.
Average monthly runoff varies from 0 mm to 244.12 mm, maximum monthly runoff varies
from 0 mm to 262.5 mm, and minimum monthly runoff varies from 0 mm to 223 mm.
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3.3. Actual Runoffs Withdraw Monthly Rates

Figure 10 shows the monthly statistics for average, maximum, and minimum simu-
lated scenarios associated with effluent runoff withdrawal rates over the period 2003–2016.
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Figure 10. Means of monthly effluent flow withdrawal rates.

The ratio of runoff is equal to 1 during very wet months of the average sample. During
approximately 20% of the total simulated time, effluent flow is not treated/withdrawn
through willow evapotranspiration, while for 70% of the average sample, it is partially
treated. It has been assessed that for 10% of the time, there is full ET consumption of the
effluent flow. The full ET consumption of the effluent in the results of the probabilistic model
varies from 10 to 75% of the sample, providing a high variance due to high uncertainty
mainly of the monthly willow crop factors.

3.4. Runoff Results vs. Minimum River Flow

The rational idea behind the present probabilistic modeling is to quantify monthly
exceedances probabilities of site runoff against minimum river flow threshold (i.e., Q95 and
Q99) of the adjacent river where it finally discharges both effluent and site’s surplus runoff.
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It can be seen in Figure 11 that for all the simulated period, Donard willow plantation
runoff is lower than both Q95 and Q99 river flows and for both zones A and B. Thus, riverine
environmental degradation is not expected.
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Taking advantage of the monthly modeling, failures probabilities can be assessed
for a given site plant extension which can be defined as the probability of the site runoff
exceedance minimum flows such as Q95 and Q99.

The latter is necessary for future design of willow plantation systems where the size
of the plant along with the effluent flow of the WWTP are design parameters considering
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40 and 80 ha at Donard WWTP.

Figure 12 shows the monthly site runoff for both 40 ha and 80 ha scenarios. It can be
concluded that for 40 ha site runoff scenario, there is no failure for the Q95 flow, and it is
estimated a failure of 0.5% Q99 flow during wet periods. For the scenario associated with
80 ha, it has been assessed that there is an exceedance probability of 5% against Q99 flow
and an exceedance probability of 1% against Q95 flow.
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Following the above examples, it is easy to assess through the proposed Monte Carlo
model the failure probabilities for different willow plantation areas scenarios and consider-
ing the seasonality of the simulated failures (summer or winter river flows) to provide an
optimal design on a specific environmental engineering problem.

In order to thoroughly investigate plantation monthly variability, Figure 13 shows
the monthly variability for three different scenarios as set out above. It can be concluded
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that higher variability is observed during the autumn and winter periods and substantially
lower during the spring and summer. It can be seen also that for the scenario of 40 ha
December’s runoff associated with outlier of the monthly sample are greater than Q99.
For the scenario of 80 ha plantation, greater runoff flows than Q99 have been simulated
for all months except the period March to May, while relevant runoff flows greater than
Q95 are observed on October, November, December, and February and are referred on
monthly outliers.
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4. Discussion

Herein, we discuss how the analysis can contribute to the existing knowledge, in order
to design willow plantation for final treatment of effluent WWTP flows using a suite of
remote sensing datasets, gauged records, and surveys from willow crop factors.

The main findings and issues for further consideration are as follows:

1. A challenging problem in environmental engineering is the lack of long-term obser-
vations of several parameters related to a specific geoscience task. In this case, the
limited information of crop monthly variation is crucial for developing a reliable
modeling approach. Thus, a probabilistic Monte Carlo approach has been introduced
using as random variables the monthly crop willow factors based on previous surveys
in Ireland. The high uncertainty nature of these factors and their strong dependence
on local meteorological conditions proves that the role of probabilistic modeling
approach is necessary even though in this attempt, the probabilistic model did not
consider the stochastic nature of the other meteorological variables such as rainfall
and potential evapotranspiration. Future models are encouraged to use full stochastic
frameworks and freely available integrated computational tools [33–35]. In this study,
special attention has been given to Willow ET, which is a factor of local meteorological
conditions, willow species, and willow management. Following a global review of
57 scientific studies across 16 countries [16] there is a clear linear regression of the
water supply and Willow ET rate. The same review concludes that a critical thresh-
old of plant density is 5 plants/m2 since for higher plant densities, ET rates are not
linearly correlated.
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2. An important part of this study is the integration of rainfall gauge records along with
PET remote sensing dataset in real world problems. Potential Evapotranspiration
remains a challenging meteorological variable even in countries with advanced mete-
orological networks like Ireland. The recent advantages of using recent PET remote
sensing dataset [36] could provide benefits in several tasks of geosciences as the
“Electronic Age” offers new and attractive opportunities to hydrologists for remote
sensing (RS) of hydrological data [37] as well as offers perspectives in the domain of
forest hydrology [38]. In this study, the use of a recent remote sensing PET dataset in a
small-scale model highlights its benefit for further use in other geoscience disciplines.

3. In this study, monthly soil moisture has been assessed in conjunction with a determin-
istic model proposed by Met Éireann. In future studies, remote sensing soil moisture
products could be considered [39,40], which will benefit modeling accuracy.

4. The idea of the expansion of the paradigm on a national scale appears to be attractive
and will benefit Irish environmental biodiversity which is key for National Policy [41],
recognizing the vital role of ecological engineering in the design of sustainable ecosys-
tems that integrate human society with its natural environment for the benefit of
both [42].

5. The natural WWTP treatment systems appear to be attractive, efficient, and low-cost
solutions [43,44]. In conjunction with modern water reuse options [45], they could
especially benefit decentralized communities by decreasing the pressure in natural
water bodies. Monte Carlo approaches seem to be very promising in dealing with
multiple uncertainty environmental engineering problems [46].

5. Conclusions

The use of enhanced willow evapotranspiration rates has been discussed in this paper
as well as its use in treating the effluent flow of WWTP.

In this light, a monthly Monte Carlo water balance was introduced for assessing the
actual monthly willow evapotranspiration effluent WWTP flow withdrawn in a real willow
plantation system at Donard, co. Wicklow Ireland. The model was applied for the monthly
period 2003–2016 when a PET remote sensing spatial dataset was available along with
monthly rainfall gauges. The monthly willow cropping factors have been modeled as
random variables based on extended monitoring surveys on nine sites across the country.

Given the high uncertainty of the water balance model, the approach appears to be
promising for future design scopes associated with optimal extensions of the willow forestry
plantation system as treatment systems of the final WWTP outflows. Future research could
also focus on specific willow species/ages, water removal efficiency, and different model
configurations by providing final open tank evaporation prior surface runoff discharge or
catching dams to attenuate the surface surplus within the plantation site. Any other future
research ideas should be well documented with financial aspects of willows plantation
to prove that the use of this technique is simultaneously an environmental and cost-
effective solution.
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