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Abstract: Groundwater modeling in data-scarce regions faces significant challenges due to
the lack of comprehensive, high-quality data, impacting model accuracy. This systematic
review of Scopus-indexed papers identifies various approaches to address these challenges,
including coupled hydrological-groundwater models, machine learning techniques, dis-
tributed hydrological models, water balance models, 3D groundwater flow modeling,
geostatistical techniques, remote sensing-based approaches, isotope-based methods, global
model downscaling, and integrated modeling approaches. Each methodology offers unique
advantages for groundwater assessment and management in data-poor environments, often
combining multiple data sources and modeling techniques to overcome limitations. How-
ever, these approaches face common challenges related to data quality, scale transferability,
and the representation of complex hydrogeological processes. This review emphasizes the
importance of adapting methodologies to specific regional contexts and data availability.
It underscores the value of combining multiple data sources and modeling techniques to
provide robust estimates for sustainable groundwater management. The choice of method
ultimately depends on the specific objectives, scale of the study, and available data in the
region of interest. Future research should focus on improving the integration of diverse
data sources, enhancing the representation of complex hydrogeological processes in sim-
plified models, and developing robust uncertainty quantification methods tailored for
data-scarce conditions.

Keywords: data-scarce aquifer; ungauged aquifer; groundwater modeling; sustainable
groundwater resource management; uncertainty analysis; groundwater data lack

1. Introduction

Groundwater is a critical resource that plays an essential role in supporting human
life and the environment. It serves as a primary source of drinking water for approxi-
mately 50% of the global population and accounts for about 40% of the water used for
irrigation, making it indispensable for food production and agricultural sustainability [1].
In regions where surface water is scarce, groundwater often represents the only reliable
source of water, particularly in arid and semi-arid areas [2]. As the Earth’s population
continues to grow, projected to reach nearly 11 billion by 2100, the demand for food and
water will increase significantly, highlighting the need for the sustainable management of
groundwater resources [1]. The proper management of this limited resource is crucial to
support the growing demand and prevent depletion, which can have severe environmental
and socioeconomic consequences [2-5]. For the above-mentioned reasons, groundwater
modeling is crucial for sustainable water resource management due to its ability to provide
insights into the behavior of groundwater systems under various conditions [6-9].
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The quantitative modeling of groundwater systems represents an indispensable tool
for achieving sustainable water resource management [10]. In the recent literature, Secci
et al. [10] compared different modeling approaches (process-based models, data-driven
models, and system-dynamics models) for groundwater sustainable management, high-
lighting their characteristics and advantages. They found that process-based models
provide a theoretical framework for understanding groundwater dynamics but require
extensive parameterization, which can be challenging in heterogeneous aquifer systems.
Conversely, data-driven models leverage available data to predict groundwater behavior
but depend heavily on the quality and quantity of the input data, making them less ef-
fective when data are limited. Then, system dynamics modeling offers a holistic view by
incorporating socio-economic factors into groundwater management strategies, facilitating
stakeholder engagement and policy development. For example, widely used numerical
models such as MODFLOW [11] and FEFLOW [12] offer reliable simulations results but
needs robust datasets for proper calibration processes [13].

All these models provide critical insights into aquifer dynamics, enabling the predic-
tion of groundwater behavior under various water stress scenarios, including increased
withdrawals, changing precipitation patterns, and land-use modifications. This predic-
tive capability is vital for developing management strategies that balance human needs
with ecological sustainability [10]. Moreover, groundwater models assist in optimizing
groundwater protection efforts. They can identify vulnerable areas and assess the potential
risks associated with over-extraction or contamination, enabling planners to implement
effective conservation measures. Furthermore, groundwater modeling plays a pivotal role
in fostering integrated water resource management (IWRM) by explicitly incorporating
socio-economic factors into the decision-making process [9,14]. By coupling hydrological
simulations with economic considerations and social impact assessments, these models
facilitate scenario analysis that considers the needs of diverse stakeholders. The latter can
include agricultural communities, urban water utilities, environmental protection agencies,
and indigenous populations. This holistic approach empowers the development of adap-
tive management strategies that can evolve and respond to dynamic conditions, such as
population growth, climate change impacts, and evolving water demands [9,10,15].

Hydrogeological studies and aquifer modeling are often hindered by the absence of
long-term water table records and the difficulties in accessing relevant locations, making
it challenging to manage local resources effectively [4]. Therefore, a proper modeling
of groundwater resources can be challenging in data-scarce regions due to the lack of
sufficient hydrogeological data and piezometric level time-series. As a result, alternative
approaches and techniques must be explored to assess and manage groundwater resources
in such situations.

This review paper aims to explore various modeling techniques that have been em-
ployed to assess and manage groundwater resources in data-scarce regions. The focus
will be on the applicability, limitations, and potential for further advancements of these
techniques. The review will provide a comprehensive overview of the approaches used to
tackle the challenges of groundwater management in areas with limited data availability,
with the goal of informing future research and practical applications in this field.

The primary objective of this study is to address three key research questions regarding
the following:

e Data Scarcity and Groundwater Modeling: how do scientists in the recent lit-
erature address the challenges posed by data scarcity or lack when developing
groundwater models?

e  Methodological Evaluation: what are the strengths and weaknesses of various method-
ologies employed for groundwater modeling in data-scarce environments?
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e  Future Research Priorities: what are the promising avenues for future research in the
field of ungauged aquifer modeling to ensure sustainable groundwater management?

This review article is organized as follows: Section 2 details the systematic review
protocol employed to select relevant research papers for inclusion in this literature review.
The protocol’s application to the Scopus database is explained, ensuring a comprehensive
and unbiased selection of studies. Section 3 provides an in-depth analysis of the diverse
methodological approaches identified during the literature review process. These ap-
proaches are categorized and described, highlighting their key features and applications in
data-scarce regions. Section 4 offers a critical discussion of the methodological characteris-
tics, advantages, limitations, and uncertainties associated with each approach. This section
synthesizes findings across studies, comparing different methods to provide a comprehen-
sive overview of their strengths and weaknesses. Section 5 identifies research priorities and
future directions in the field of groundwater modeling in data-scarce regions. This section
draws on the gaps and challenges identified in the reviewed literature to suggest areas for
further investigation and methodological development. Section 6 concludes the review
by summarizing key findings, emphasizing the importance of adapting methodologies
to specific regional contexts, and highlighting the potential of integrated approaches for
sustainable groundwater management in data-limited environments.

2. Materials and Methods

In this study, a systematic literature review has been conducted to identify, select,
screen, and filter scientific articles from the Scopus database.

2.1. Literature Review Protocol

The search terms and keywords used are “Groundwater”, “Aquifer”, “Modeling”,
“Modelling”, “Data-Scarce”, “Data Scarce”, “Ungauged”, “Sustainable”, “Management”.
The search has been conducted both in the “KEY” field and in the “TITLE-ABS-KEY” field.
The KEY fields means that the search for a specific term will be conducted in the keywords
of the document. Keywords included terms selected by both authors and publishers. The
TITLE-ABS-KEY field means that a search for the terms will be conducted in the title, in
the abstract, and in the keywords of each document. This ensures that the search is broad
enough to consider enough information and documents. The above-mentioned words
have then been combined with “AND” and/or “OR” logical operators in order to take into
account synonymous, alternative, or equivalent terms and to perform a proper search of the
database. In particular, the following text combinations were used for searching in Scopus
database: “groundwater OR aquifer AND modelling OR modeling AND data-scarce OR un-

1,

gauged AND sustainable AND management”; “groundwater OR aquifer AND modelling
OR modeling AND data-scarce OR ungauged AND aquifer AND management”; “ground-
water AND modelling AND data-scarce AND aquifer AND management”; “groundwater
AND modelling AND ungauged AND aquifer AND management”; “groundwater AND
modelling AND ungauged AND aquifer AND sustainable AND management”. For all
the searches, the time range was set “between 2010 and 2024” to consider only recent and
updated references.

First, all duplicates from different searches were removed. Then, the search results
were processed following the PRISMA protocol [16] represented as flowchart in Figure 1. A
number of 35 records were identified through Scopus database searching. Cross-referencing
and manual search on the topic produced 28 extra records. From the combination of both
search sources, a total of 63 records were collected. Of those 63 records, 5 were excluded, as
they were not peer-reviewed scientific articles, and the remaining 58 were then screened.
Of the 58 screened articles, 13 of them were removed from the database due to lack of
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relevance, after reading the abstract and contents, and 7 were removed because full paper
was not found or accessible. At the end of the screening protocol, a total of 38 scientific
papers were collected and studied in depth for the purpose of this review.
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Figure 1. PRISMA [16] flowchart highlighting various stages of the literature review process.

2.2. Database Overview

As an initial overview of the article database, Figure 2 illustrates the temporal distri-
bution of publication years for the 38 scientific papers included in this review.

Figure 2 reveals a notable increase in publications from 2011 onwards, indicating
a growing interest and importance of ungauged aquifer modeling within the scientific
community. This trend highlights the increasing recognition of the challenges posed by data
scarcity in groundwater management and the need for innovative modeling approaches.

Figure 3 provides a visual representation of the journals where the 38 scientific articles
included in this review were originally published. By analyzing the distribution of articles
across different journals, we can gain insights into the specific research communities and
outlets that have been actively contributing to the field of ungauged aquifer modeling. This
information can help identify potential collaborations, track emerging trends, and assess the
overall impact of research in this area. Given the broad interest in groundwater modeling
and its implications for sustainable water resource management, understanding the diverse
range of journals involved is essential for a comprehensive overview of the field.



Hydrology 2025, 12, 11

50f23

Journal of Hydrology

10
6
5 5
3 3
2
1T ] 1
1 N =

2011 2013 2014 2017 2018 2019 2020 2021 2022 2023 2024

Figure 2. Temporal distribution of publication years for the 38 scientific papers included in the
systematic literature review.
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Figure 3. Distribution of selected scientific articles in the systematic literature review across peer-
reviewed journals.

2.3. Case Study Countries

Figure 4 provides a global overview of the location of case studies by countries in-
vestigated in the 38 scientific papers included in this review. By mapping the geographic
distribution of these case studies, we can identify regions where ungauged aquifer mod-
eling is particularly relevant and gain insights into the diverse hydrological settings and
challenges faced by researchers worldwide. A significant number of case studies are located
in developing countries, particularly in Africa and Asia. This underscores the importance
of groundwater resources in these regions, where water scarcity is a pressing issue, and
the potential benefits of improved groundwater management through modeling. The
diverse array of case study countries represented in Figure 4 underscores the global signifi-
cance and broad applicability of ungauged aquifer modeling. This geographical spread,
encompassing arid, semi-arid, and humid regions across various continents, highlights
the universal challenges and opportunities associated with groundwater management in

data-scarce environments.
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Figure 4. Global Distribution of Case Study Countries for Ungauged Aquifer Modeling within the
selected papers in the literature review.

3. Methodological Approaches

The selected database includes a total of 38 scientific papers presenting a diverse
array of methodologies for estimating and managing groundwater resources in data-scarce
regions. All papers have been investigated and classified by methodological approaches.
Table Al in Appendix A summarizes methodological approaches highlighting advantages,
limitations, input data requirements, and referencing database papers.

3.1. Coupled Hydrological-Groundwater Models

Coupled hydrological-groundwater models [17-22] offer a comprehensive approach
to simulating the complex interactions between surface water and groundwater systems
in data-scarce regions. These models typically integrate surface hydrological processes
with groundwater dynamics, allowing for a more holistic representation of the water
cycle. For instance, Ref. [17] employs a one-way coupling of the CREST hydrological
model with MODFLOW-NWT, enabling fine-resolution (500 m) modeling at regional scales.
Another approach [18] sees the introduction of a modified IHACRES rainfall-runoff model
adapted for river basins connected to deep groundwater aquifers, using a two-store routing
module to simulate groundwater and spring discharge. Ebrahim et al. [19] presents an
integrated approach using MODFLOW-OWHM, which combines remote sensing, rainfall-
runoff modeling, and 3D dynamic modeling to assess groundwater resources in hard-
rock semi-arid terrain. These coupled models offer several advantages, including the
ability to represent surface—groundwater interactions, incorporate remote sensing data, and
simulate complex hydrological processes. However, they also face challenges such as high
computational demands, potential error propagation between model components, and
the need for extensive parameterization. Despite these limitations, coupled hydrological-
groundwater models prove valuable for understanding water resource dynamics and
informing sustainable management practices in data-scarce environments.
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3.2. Machine Learning Technigues

Machine learning techniques [23-25] offer promising approaches for groundwater
modeling in data-scarce regions. Gaffoor et al. [23] compares ensemble and deep learning
algorithms, specifically Gradient Boosting Decision Trees (GBDT) and Long Short-Term
Memory Neural Networks (LSTM-NN), for modeling groundwater levels. These techniques
show strength in working with limited historical data, with LSTM capturing temporal
dependencies and GBDT performing well with small sample sizes. Rafik et al. [24] presents
a novel combination of SWAT hydrological modeling, downscaled GRACE satellite data,
and machine learning techniques (Random Forest and Support Vector Regression) for
groundwater level forecasting. This integrated approach leverages multiple data sources to
overcome data scarcity, providing both spatial and temporal groundwater level estimates.
Fletcher et al. [25] introduces an adaptive management framework that integrates Bayesian
learning with stochastic dynamic programming to assess opportunities for learning about
groundwater availability over time. This approach allows for flexible decision-making
under uncertainty, particularly valuable in data-scarce regions where initial uncertainty
is high but can be reduced through ongoing monitoring. While these machine learning
techniques offer significant advantages in predicting groundwater levels and supporting
adaptive management, they also face challenges related to data quality, model complexity,
and the need for some ground-truthing or validation data.

3.3. Distributed Hydrological Models

Distributed hydrological models, particularly the Soil and Water Assessment Tool
(SWAT), are widely used for simulating hydrological processes in data-scarce regions [26-28].
SWAT is a semi-distributed, physically based model that operates on a daily time step
and divides watersheds into sub-basins and hydrologic response units (HRUs). It offers a
comprehensive representation of hydrological processes, making it suitable for assessing
the impacts of land use changes, climate variations, and management practices on water
resources. In the Kilombero floodplain of Tanzania [27], SWAT was applied using a combi-
nation of local precipitation data and satellite-based rainfall estimates to overcome data
scarcity, achieving fair model performance with Nash-Sutcliffe Efficiency (NSE) values of
0.43 and 0.23 for calibration and validation periods, respectively. Similarly, in the upper
Mara River Basin in Kenya [28], SWAT was employed to evaluate the impacts of land use
and climate change on hydrology, utilizing coarse resolution datasets and satellite-derived
rainfall estimates. While these models offer detailed process representation and the ability
to simulate complex interactions between land use, climate, and hydrology, they face
challenges in data-scarce environments. These include extensive parameterization require-
ments, which can be difficult to fulfill with limited data, and the need for careful calibration
and validation. Despite these limitations, distributed models like SWAT prove valuable for
understanding water resource dynamics and informing sustainable management practices
in data-poor regions.

3.4. Water Balance Models

Water balance models [29-32] offer a valuable approach for estimating groundwater
recharge and resources in data-scarce regions. These models typically utilize readily
available spatial data such as land use/land cover maps, soil maps, and digital elevation
models to provide spatially explicit recharge estimates. For instance, Ref. [32] employs
the WetSpass spatially distributed water balance model integrated with GIS and remote
sensing for groundwater recharge estimation in the Upper Gelana Watershed, Ethiopia.
This method is particularly suitable for data-scarce regions as it incorporates land use
and soil data. An inverse hydrogeological balance method has been applied in [30,31]
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at annual and monthly scales, respectively, highlighting the role of evapotranspiration
assessment in groundwater resource estimation. While these water balance models offer
the advantage of large-scale applicability with limited data, they may oversimplify complex
hydrological processes and often rely on empirical relationships. The temporal resolution
is typically limited, with many models providing only yearly averages. Despite these
limitations, water balance models remain a valuable tool for initial groundwater resource
assessment in data-poor environments, offering a balance between data requirements and
spatial coverage.

3.5. 3D Groundwater Flow Modeling

Three-dimensional groundwater flow modeling, particularly using MODFLOW, is a
powerful approach for simulating complex groundwater systems in data-scarce regions.
Refs. [20,33]’s method allows for the detailed representation of aquifer geometry and prop-
erties, enabling the quantification of inter-basin groundwater flow and complex boundary
conditions. In [33], MODFLOW-2005 was used to develop a steady-state groundwater flow
model for the Gallocanta Lake watershed in Spain, successfully quantifying inter-basin
groundwater flow exchanges with adjoining basins. The model achieved good calibration,
with a Nash-Sutcliffe Efficiency Index of 0.8, despite data scarcity. Rodiger et al. [20]
employed MODFLOW as part of the MODFLOW-OWHM (One-Water Hydrologic Flow
Model) to assess the impact of groundwater development and climate change on Jor-
dan’s multi-aquifer system. This integrated approach combines surface and groundwater
processes, accounting for climate change scenarios on a national scale. However, these
models face challenges in data-scarce environments, as they require significant geological
and hydrogeological data for parameterization. The models may also simplify complex
aquifer interactions due to data limitations. Despite these challenges, 3D groundwater flow
modeling with MODFLOW proves to be a valuable tool for understanding groundwater
dynamics and informing sustainable management practices in data-limited regions.

3.6. Geostatistical and Geophysical Techniques

Geostatistical techniques, particularly ordinary kriging [34], offer valuable approaches
for analyzing groundwater table variability and trends in data-scarce regions. The study
in Sylhet, Bangladesh, applied ordinary kriging to interpolate groundwater levels from
46 observation wells, providing insights into spatial and temporal variations over a
15-year period. This method allows for the spatial interpolation of groundwater levels,
the quantification of spatial autocorrelation, and an estimation of uncertainty. The key
advantage of kriging is its ability to provide predictions for ungauged areas, which is cru-
cial for identifying vulnerable zones and informing groundwater management decisions.
Varouchakis et al. [35] further enhanced this approach by incorporating physical laws and
local geographic features into residual kriging, improving prediction accuracy in data-
scarce conditions. However, these techniques face limitations, such as the assumption of
spatial stationarity and a sensitivity to data quality and distribution. The accuracy of kriging
predictions heavily depends on the spatial distribution and quality of available data points.
Additionally, these methods may not fully capture complex hydrogeological processes.
Notably, Mohamed et al. [36] employ hydro-geophysical monitoring using gravity data
to assess the North-Western Sahara Aquifer System’s groundwater resources, showcasing
the potential of geophysical methods in areas with limited traditional data. Despite chal-
lenges, geostatistical techniques prove to be valuable tools for understanding groundwater
dynamics and supporting sustainable management practices in data-limited environments.
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3.7. Remote Sensing-Based Approaches

Remote sensing-based approaches [32,37-44] offer valuable solutions for estimating
groundwater resources in data-scarce regions. Siavashani [37] explored the use of satellite-
based climate data from the CHADFDM (Climate Hazards Group InfraRed Precipitation
with Stations Data Fusion for Drought Monitoring) platform for groundwater recharge
estimation in arid and semi-arid areas. This approach provides continuous spatial and
temporal coverage of precipitation and temperature data, which is crucial for recharge
estimation in regions with limited ground-based observations. Demisse et al. [32] utilized
the WetSpass model integrated with GIS and remote sensing tools to estimate groundwater
recharge in the Upper Gelana watershed, Ethiopia. This method leverages readily available
spatial data such as land use/land cover maps, soil maps, and digital elevation models to
provide spatially explicit recharge estimates. Jodar et al. [38] combined lumped hydrological
models with remote sensing data, particularly MODIS snow cover and albedo products, to
evaluate water resources in semi-arid, high-altitude ungauged watersheds.

Sun et al. [39] demonstrates the use of remote sensing and GIS techniques to map
prospective water resources and monitor land use/land cover changes in arid regions,
providing valuable insights into spatially explicit recharge estimates.

Central Asia was investigated by [40,41], respectively. [40] investigated the impact
of land-cover change on groundwater levels in the Tarim Basin, using remote sensing
and hydrological modeling to understand the dynamics of groundwater depletion in
desert regions, and [41] mapped groundwater-dependent ecosystems in arid Central Asia,
using remote sensing and GIS to identify areas vulnerable to land degradation due to
groundwater extraction.

Springer et al. [42] emphasized the role of space-based observations for groundwa-
ter resource monitoring over Africa, highlighting the use of satellite data to fill gaps in
ground-based observations and provide continuous spatial and temporal coverage. Hasan
et al. [43] assessed physical water scarcity in Africa using GRACE and TRMM satellite
data, demonstrating the utility of satellite-based observations in quantifying groundwater
depletion and surface water changes. Feng et al. [44] evaluated groundwater depletion
in North China using GRACE data and ground-based measurements, highlighting the
importance of integrating satellite and in situ data for accurate assessments.

These approaches demonstrate the potential of remote sensing data to overcome
limitations in ground-based observations and provide continuous spatial and temporal
coverage of key hydrological variables. However, they also face challenges such as the
need for validation with ground-based data and potential inaccuracies in capturing local-
scale heterogeneities. Despite these limitations, remote sensing-based approaches prove to
be valuable tools for understanding groundwater dynamics and supporting sustainable
management practices in data-limited environments.

3.8. Isotope-Based Methods

Isotope-based methods [45,46] offer valuable insights into groundwater recharge
processes and aquifer interactions in data-scarce regions. Mattei et al. [45] presents an
innovative approach using pore water isotope fingerprints to understand spatiotemporal
groundwater recharge variability in ungauged watersheds. This method extends 1D unsat-
urated zone flow modeling from the profile scale to the watershed scale using GIS-based
index methods. The approach allows for the estimation of soil hydraulic parameters and
recharge rates based on a single field campaign, without requiring long-term monitoring.
It successfully captures both the dynamics and quantity of recharge at different scales,
with results comparing well to those from spatial water balance models calibrated using
long-term discharge data. Rusli et al. [46] combined environmental water tracer (EWT) data



Hydrology 2025, 12, 11

10 of 23

analysis, including stable isotopes, with numerical groundwater flow modeling to quantify
aquifer interactions. This integrated approach provides both qualitative and quantitative
insights into groundwater dynamics, helping to validate model performance in data-scarce
areas. However, these methods face some limitations, such as the need for specialized
isotope analysis, potential uncertainties in age estimates, and challenges in representing
complex karst or fractured systems. Despite these constraints, isotope-based methods prove
to be powerful tools for understanding recharge processes and groundwater dynamics in
data-limited environments, offering unique insights that may not be obtainable through
other techniques.

3.9. Global Model Downscaling

Global model downscaling, Res. [38,47] offers a valuable approach for improving
groundwater resource estimation in data-scarce regions. Ben-Salem et al. [47] focused on
mapping steady-state groundwater levels in the Mediterranean region, specifically the
Iberian Peninsula, by combining global groundwater models with geostatistical downscal-
ing techniques and in situ observations. This method leverages the wide spatial coverage of
global models while enhancing spatial resolution through downscaling. The study found
that conditioning the average simulated water table depth with at least 50% of available
observations (approximately three wells per 1000 km?) resulted in a well-reproduced spatial
groundwater pattern (R? = 0.65). Therefore, Ref. [38] combined a lumped hydrological
model (HBV) with remote sensing data to evaluate water resources in semi-arid, high-
altitude ungauged watersheds. This innovative approach allows for the assessment of
water resources in challenging environments where traditional data collection is difficult.
Both studies highlight the potential of integrating global models with local data and re-
mote sensing products to overcome limitations in data-scarce regions. However, these
approaches still face challenges, such as the reliance on the accuracy of global models and
the need for some in situ data for validation, which can be limited in truly data-scarce areas.

3.10. Integrated Modeling Approaches

Integrated modeling approaches [19,24,25,48,49] offer comprehensive solutions for
groundwater assessment and management in data-scarce regions. Ref. [19] presented an in-
tegrated hydrogeological modeling approach using MODFLOW-OWHM, which combines
remote sensing, rainfall-runoff modeling, and 3D dynamic modeling to assess groundwater
resources in hard-rock semi-arid terrain. This approach allows for a detailed representation
of surface-groundwater interactions and irrigation abstraction. Rafik et al. [24] showcased
a novel combination of SWAT hydrological modeling, downscaled GRACE satellite data,
and machine learning techniques for groundwater level forecasting, integrating multiple
data sources to overcome data scarcity. Klaas et al. [49] introduced the Head-Guided
Zonation method combined with particle-tracking simulation for developing groundwater
vulnerability zones in karst areas, allowing for the spatial variation of aquifer properties
with minimal input data. Fletcher et al. [25] presented an adaptive management framework
that integrates Bayesian learning with stochastic dynamic programming, enabling flexible
decision-making under uncertainty. Mazzoni et al. [50] focused on forecasting water budget
deficits and groundwater depletion in major fossil aquifer systems in North Africa and
the Arabian Peninsula, utilizing long-term climate and hydrological data to predict future
water scarcity. Pan et al. [51] presented an integrated modeling approach to assess the
impact of climate change on groundwater and surface water in the South Aral Sea area,
combining climate models with hydrological and groundwater flow models to predict
future water resource availability. Alcala et al. [52] proposed a feasible methodology for
groundwater resource modeling in sparse-data drylands, applying it to the Amtoudi Oasis
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in the northern Sahara. This approach combines limited field data with remote sensing and
modeling techniques to support sustainable groundwater use. Again, in the Sahara region,
Ref. [53] addressed the issue of hydrologic data scarcity in the Tindouf basin, presenting
strategies for dealing with limited data through the use of remote sensing, modeling, and
adaptive management approaches.

These papers collectively underscore the importance of leveraging multiple data
sources and advanced technologies to overcome data scarcity, providing robust estimates
and sustainable management strategies for groundwater resources in arid and semi-arid
regions. Integrated approaches offer the advantage of combining multiple data sources
and modeling techniques to provide comprehensive water resource assessments. However,
they often face challenges related to data quality, scale transferability, and the representa-
tion of complex hydrogeological processes. The choice of integrated modeling approach
ultimately depends on the specific context, available data, and management objectives of
the study area.

4. Discussion
4.1. Methodologies Comparison

The methodologies presented in the selected papers showcase a wide range of ap-
proaches for estimating and managing groundwater resources in data-scarce regions. Cou-
pled hydrological-groundwater models [17-19] offer detailed process representation but
require significant data inputs compared with simpler water balance models [29,31,32]
which can provide useful insights with limited data. Ref. [29] used readily available phys-
iographic data to estimate runoff coefficients and natural aquifer recharge. This method is
particularly suitable for large-scale recharge estimation in data-scarce regions, although
they may oversimplify complex hydrological processes.

Comprehensive hydrological models like SWAT [26-28] provide detailed process
representation but face parameterization challenges in data-poor environments. Physical-
based groundwater models like MODFLOW, FEFLOW, and SWAT are powerful tools for
simulating complex hydrogeological systems, but their application in data-scarce regions
presents significant challenges. Modelers have developed various strategies to overcome
the issue of data scarcity when using these models. A common approach is the integration
of remote sensing data to supplement limited ground-based observations. For instance,
in [17], Khadim et al. coupled the CREST hydrological model with MODFLOW-NWT,
leveraging remote sensing data to overcome data scarcity and provide a comprehensive
view of the aquifer system at a fine resolution (500 m). Similarly, Ref. [27] demonstrated the
use of satellite-based rainfall estimates (RFE) in combination with local precipitation data
to drive a SWAT model in the Kilombero floodplain, Tanzania. Another strategy involves
the use of global datasets and downscaling techniques; [47] showcased an approach that
combines global groundwater models with geostatistical downscaling and limited in situ
observations to map steady-state groundwater levels in the Mediterranean region. This
method allows modelers to leverage large-scale datasets while improving spatial resolution
through downscaling techniques.

Modelers also employ innovative parameterization methods to address data limita-
tions. In [21], Griffiths et al. describe the parameterization of a national-scale groundwater
model (TopNet-GW) for New Zealand using a priori parameter sets derived from national
hydrogeological datasets. This approach enables groundwater modeling in ungauged
catchments at various scales, demonstrating how readily available datasets can be utilized
to overcome local data scarcity. The integration of multiple data sources and modeling
techniques is another key strategy. Ref. [24] presents a novel combination of SWAT hy-
drological modeling, downscaled GRACE satellite data, and machine learning techniques
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for groundwater level forecasting in Morocco region. This integrated approach helps fill
gaps in ground-based observations and provides both spatial and temporal groundwater
level estimates. Researchers also adapt model structures to suit data-scarce conditions.
In [22], Sahoo et al. introduced an enhanced hillslope-storage Boussinesq model that in-
corporates surface ponding, unsaturated zone processes, bedrock leakage, and root-zone
water balance, making it suitable for data-scarce regions. Such adaptations allow for the
representation of key hydrological processes with minimal data requirements. In karst
aquifer systems, where data scarcity is often compounded by complex hydrogeology, ap-
proaches like the Head-Guided Zonation (HGZ) method [49] allow for spatial variation
of aquifer properties with minimal input data. This method divides the model domain
into zones of piecewise constant hydraulic properties based on available groundwater
level data, providing a way to represent spatial variability in aquifer properties despite
limited data. Modelers are also increasingly adopting adaptive management frameworks,
as demonstrated in [25], which integrates Bayesian learning on groundwater observations
with stochastic dynamic programming. This approach allows for the quantification of learn-
ing potential in environmental modeling and supports decision-making under uncertainty,
particularly valuable in data-scarce regions where initial uncertainty is high but can be
reduced through ongoing monitoring. While these strategies help overcome data scarcity
to some extent, it is important to note that they often involve trade-offs between model
complexity, data requirements, and uncertainty.

All the above-mentioned models provide detailed insights into system dynamics but
often require extensive parameterization and may struggle with feedback complexities in
data-limited environments. In contrast, data-driven models, particularly machine learning
techniques like GBDT and LSTM-NN [23], can work effectively with limited historical data,
capturing temporal dependencies and performing well with small sample sizes. However,
they may not capture underlying physical processes not represented in the training data.
When employing machine learning (ML) models [23,24] to predict groundwater levels in
data-scarce regions, ensuring model performance despite limited data is a critical challenge.
The researchers addressed this issue through several strategies to guarantee the robustness
of their models. Firstly, the use of ensemble and deep learning algorithms, specifically
Gradient Boosting Decision Trees (GBDT) and Long Short-Term Memory Neural Networks
(LSTM-NN), was instrumental [23]. These algorithms are designed to work effectively with
small sample sizes and limited historical data. For instance, LSTM-NN captures temporal
dependencies in the data, which is crucial for predicting groundwater levels over time,
while GBDT performs well with small sample sizes and can handle missing data points
efficiently. To further enhance model performance, in [23], Gaffoor et al. focused on careful
data preprocessing and feature engineering. This involved selecting relevant input features
that are most correlated with groundwater levels and transforming the data to meet the
assumptions of the models. For example, handling missing data points and normalizing
the input data helped in improving the model’s stability and accuracy. Additionally, they
employed cross-validation techniques to evaluate the model’s performance on unseen data.
This approach helps in preventing overfitting and provides a more realistic estimate of the
model’s predictive power in real-world scenarios.

The integration of remote sensing data [24,32,37—44] provides broad spatial coverage, ad-
dressing data scarcity issues, but may sacrifice local-scale accuracy. For example, Refs. [32,37]
highlight the use of satellite-based datasets like CHADFDM and MODIS to provide con-
tinuous spatial and temporal coverage of precipitation, evapotranspiration, and other
hydrological variables. This helps in overcoming the limitations of sparse ground-based
observations and provides essential input data for models like MODFLOW and SWAT.
Geostatistical methods [34,35] excel in spatial interpolation but may not capture underlying



Hydrology 2025, 12, 11

13 of 23

physical processes. Ref. [34] demonstrates the use of kriging to analyze groundwater table
variability and trends, providing insights into areas with limited data points. This approach
helps in quantifying spatial autocorrelation and providing uncertainty estimates, which are
crucial in data-scarce environments.

Environmental tracer methods [45,46] offer unique insights into groundwater dynam-
ics but are often limited in spatial and temporal resolution. The Head-Guided Zonation
method [49] offers a tailored approach for karst aquifers but may oversimplify complex
heterogeneities. Adaptive management approaches [25] introduce flexibility in decision-
making but require long-term commitment to data collection. In [25], Fletcher et al. inte-
grated Bayesian learning with stochastic dynamic programming to assess opportunities
for learning about groundwater availability over time. This approach allows for flexible
decision-making under uncertainty, which is particularly valuable in data-scarce regions
where initial uncertainty is high but can be reduced through ongoing monitoring.

The choice between these approaches ultimately depends on the specific context,
available data, and management objectives, with many studies (e.g., [19,24,48]) integrating
approaches and combining multiple methods to provide the most robust assessments in
data-scarce regions.

The complementarity between these approaches is evident in integrated modeling
strategies, such as those presented in [24,46], which combine process-based models with
data-driven techniques and remote sensing data. This integration leverages the strengths
of each method, providing more robust estimates in data-scarce conditions. For instance,
the combination of SWAT modeling with machine learning and GRACE satellite data [24]
addresses both the need for physical process representation and the ability to work with
limited ground-based observations.

In practical applications, the choice between process-based and data-driven models
often depends on the specific context and available data. Process-based models are particu-
larly valuable when understanding the underlying physical mechanisms is crucial, such as
in climate change impact assessments [20]. Data-driven models, on the other hand, excel
in scenarios where rapid predictions are needed and historical data, though limited, is
available. The adaptive management framework presented in [25] demonstrates how these
approaches can be combined over time, using data-driven models for initial estimates and
gradually incorporating more process-based elements as data become available through
ongoing monitoring.

Ultimately, the complementarity of these methods suggests that a hybrid ap-
proach, tailored to the specific challenges and data availability of each region, may
provide the most comprehensive and reliable groundwater resource assessments in
data-scarce environments.

4.2. Advantages and Benefits

The diverse methodologies for estimating and managing groundwater resources in data-
scarce regions offer several advantages and benefits. Coupled hydrological-groundwater
models [17-19] provide comprehensive representations of surface-groundwater interactions,
allowing for fine-resolution modeling at regional scales. Spatially distributed water balance
models [29-32] offer the ability to estimate recharge over large areas with limited data,
incorporating land use and soil information. Machine learning techniques [23,24] can work
effectively with limited historical data, capturing temporal dependencies and performing
well with small sample sizes. The integration of remote sensing data [24,32,37-44] helps
overcome limitations in ground-based observations, providing continuous spatial and
temporal coverage of key variables like precipitation and evapotranspiration. In [39], Sun
et al. demonstrate the use of remote sensing and GIS techniques for mapping prospective
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water resources and monitoring land use/land cover changes in arid regions. This approach
provides spatially explicit recharge estimates and is particularly valuable in areas with
limited ground-based data.

Environmental tracer methods [45,46] offer insights into recharge processes and aquifer
interactions without requiring long-term monitoring, providing both qualitative and quan-
titative information. Adaptive management approaches [25] allow for flexible decision-
making under uncertainty, incorporating learning from new data over time. The use
of global models with downscaling techniques [47] leverages large-scale datasets for re-
gional applications, improving spatial resolution through geostatistical methods. In [36],
Mohamed et al. employed hydro-geophysical monitoring using gravity data to assess
groundwater resources, showcasing the potential of geophysical methods in areas with
limited traditional hydrological data. By combining GRACE satellite data with GLDAS
land surface models, the approach provides a comprehensive view of groundwater storage
changes at a regional scale. This integration allows for continuous spatial and temporal
coverage, overcoming limitations of sparse ground-based observations in data-scarce re-
gions. The method enables the estimation of long-term average recharge and the analysis
of groundwater mass balance components.

Three-dimensional groundwater flow modeling with MODFLOW [30,33] allows for
the detailed representation of aquifer geometry and properties, enabling the quantification
of inter-basin groundwater flow.

The combination of multiple data sources and modeling techniques [19,24,48] pro-
vides more robust estimates in data-scarce environments. Refs. [50,51] present integrated
modeling approaches that combine multiple data sources and modeling techniques to
provide comprehensive water resource assessments under various climate change and
socioeconomic scenarios. These methods allow for the evaluation of future water scarcity
and groundwater depletion rates, which is crucial for long-term water resource planning.
In [40], Wang et al. utilize remote sensing and hydrological modeling to understand the
impact of land-cover change on groundwater levels, demonstrating the value of integrating
multiple data sources for an improved understanding of groundwater dynamics. Moreover,
in [44], the effectiveness of the integration of GRACE satellite data with ground-based
measurements for evaluating groundwater depletion is demonstrated, highlighting the
synergistic benefits of combining multiple data sources.

Enhanced hillslope-storage Boussinesq models [22] account for multiple hydrological
processes and incorporate surface and subsurface interactions. Head-Guided Zonation
with particle-tracking simulation [49] allows for the spatial variation of aquifer properties
with minimal input data. Overall, each of these approaches demonstrates the potential
to overcome data limitations and provide valuable insights for sustainable groundwater
management in challenging environments.

4.3. Limits and Challenges

Despite their advantages, the methodologies presented in the literature review face
several limitations and challenges in data-scarce environments. Coupled hydrological-
groundwater models [17-19] may struggle with feedback complexities and error propa-
gation between components. Spatially distributed models [29,32] often rely on empirical
relationships and may oversimplify complex hydrological processes, particularly in karst
or fractured rock systems. Machine learning approaches [23,24] are heavily dependent
on data quality and quantity, and may not capture underlying physical processes not
represented in historical data. Remote sensing-based methods [24,37—44] require validation
with ground-based data and may not capture local-scale heterogeneities, with accuracy
varying by region and sensor type. For instance, the knowledge-driven Analytical Hierar-
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chy Process (AHP) technique used in [39] relies heavily on expert judgment for weighting
criteria, which can introduce subjectivity and potential bias.

Environmental tracer methods [45,46] can be limited by uncertainties in age estimates
and coarse spatial resolution. Comprehensive models like SWAT [26-28] require extensive
parameterization, which is challenging in data-scarce conditions and may lead to equifi-
nality issues. Geostatistical methods [34,35] assume the stationarity of spatial correlation,
which may not hold in complex hydrogeological settings. Many approaches struggle with
representing karst systems [48,49] due to their inherent complexity and heterogeneity.
Global groundwater models [20,47] face challenges in representing local-scale processes
and heterogeneities due to their coarse resolution. Papers focusing on data from GRACE
satellites [40,42—44] face limitations in spatial and temporal resolution, with uncertainties
increasing for smaller study areas. The coarse resolution of GRACE data (typically around
300 km) makes it challenging to apply these methods at local scales relevant for groundwa-
ter management. Additionally, separating groundwater signals from other water storage
components requires auxiliary datasets, which may introduce additional uncertainties.
The use of steady-state assumptions in some models [21,33] may not capture temporal
variability in groundwater-surface water exchanges. Moreover, the integration of multiple
data sources in [36,50] helps to overcome some limitations of individual datasets but also
introduces challenges in data harmonization and error propagation.

Integrated modeling approaches [19,48] often require extensive data from multiple
sources and may simplify complex processes due to data limitations. These modeling
approaches also face challenges related to parameter estimation and model structure
in data-scarce environments [50,51]. The lack of comprehensive ground-based observa-
tions for calibration and validation can lead to significant uncertainties in model outputs.
Furthermore, representing complex groundwater—surface water interactions and human
interventions in these models remains a challenge.

Adaptive management frameworks [25] require long-term commitment to data collec-
tion and model updating, which can be challenging in resource-constrained environments.
Papers focusing on specific regions or aquifer systems [41,52,53] highlight the difficulties
in transferring methodologies between different hydrogeological settings. The unique
characteristics of each study area, such as the complex geology of karst systems or the deep
aquifers in arid regions, require tailored approaches that may not be easily generalizable.

A common challenge across many of these studies is the validation of results in data-
scarce regions. The lack of comprehensive ground-based monitoring networks makes it
difficult to assess the accuracy of remotely sensed or modeled groundwater estimates. Ad-
ditionally, many of these methods struggle to capture the dynamic nature of groundwater
systems, particularly in regions experiencing rapid changes due to climate variability or
human activities.

Overall, many of these methods face challenges related to data quality, scale trans-
ferability, and the representation of complex hydrogeological processes in data-scarce
regions. Finally, while these advanced techniques offer valuable insights into groundwater
resources, there remains a gap between scientific findings and practical application for
groundwater management in many African [36,39,42,43,52,53] and Middle Eastern coun-
tries [40,41,44,51]. Translating complex methodologies into actionable information for local
water resource managers and policymakers remains a significant challenge.

4.4. Input Data Requirement

The input data requirements for groundwater modeling in data-scarce regions vary
across the methodologies explored, but generally encompass a range of spatial and temporal
datasets. For coupled hydrological-groundwater models [17-22], key inputs include digital
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elevation models, land use/land cover data, soil data, meteorological data (precipitation,
temperature), geological data, and limited groundwater level observations for calibra-
tion [17,19], or streamflow time series [18]. Spatially distributed water balance models like
WetSpass [32] require land use/land cover maps, soil maps, digital elevation models, mete-
orological data, and limited groundwater level data for validation. Inverse hydrogeological
models [30,31] require precipitation, temperature and/or aridity index information, digital
elevation models, and land cover data. Machine learning approaches [23,24] typically need
historical groundwater level data, meteorological data, and potentially remote sensing
data like GRACE. Refs. [39,40] utilize remote sensing and GIS data, including digital ele-
vation models, land use/land cover maps, geological information, and climate data such
as rainfall. Refs. [50,51] integrate multiple data sources, including climate data, hydrologi-
cal observations, and socioeconomic information. Integrated modeling approaches, such
as [53], address hydrologic data scarcity by leveraging a combination of limited ground
observations, remote sensing data, and modeling outputs. Comprehensive hydrological
models such as SWAT [26-28] demand extensive parameterization, including digital eleva-
tion models, land use/land cover data, soil data, meteorological data, and streamflow data
for calibration. Three-dimensional groundwater flow modeling with MODFLOW [20,33]
requires detailed geological data, aquifer properties, recharge estimates, boundary condi-
tions, groundwater level observations, and streamflow data when available. Geostatistical
methods [34,35] primarily need groundwater level measurements and well location co-
ordinates. Satellite-based approaches [37] rely heavily on remote sensing datasets, often
complemented by ground-based observations for validation, and [36] relies on gravity
data from satellite observations, specifically GRACE data, along with land surface model
outputs. Environmental tracer methods [45,46] require specialized isotope analysis data
along with hydrogeological information. The national-scale groundwater parameterization
approach [21] utilizes extensive national hydrogeological datasets, digital elevation models,
river network data, and geological maps.

Overall, while the specific data requirements vary, most methods benefit from a
combination of spatial datasets (e.g., topography, geology, land use), temporal datasets (e.g.,
meteorological data, groundwater levels), and ancillary information on aquifer properties
and boundary conditions.

4.5. Outputs and Uncertainties Handling

The methodological approaches explored in the reviewed papers produce various
outputs and handle uncertainties in different ways. Coupled hydrological-groundwater
models [17-22] provide comprehensive spatial and temporal outputs of groundwater levels
and fluxes but face uncertainties from error propagation between model components. To
address this, Ref. [17] conducted error propagation analysis to quantify how bias in forcing
datasets contributes to systematic and random errors, while [18] conducted a sensitivity
analysis to model parameters. Physiography-based indirect methods [29] yield estimates
of runoff coefficients and recharge rates, with uncertainties stemming from simplifications
of complex hydrological processes.

Machine learning (ML) techniques in [23] offer predictions of groundwater levels with
associated confidence intervals, handling uncertainties through ensemble approaches and
probabilistic outputs. The integration of multiple data sources, such as remote sensing data
and limited ground-based observations, was crucial in augmenting the available dataset.
This multi-source approach helped in filling gaps in the historical data and provided
a more comprehensive view of the groundwater system, thereby enhancing the overall
performance and reliability of the ML models. In summary, the researchers guaranteed the
performance of their ML models by leveraging ensemble and deep learning algorithms,
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careful data preprocessing, cross-validation techniques, and the integration of multiple
data sources. These strategies collectively helped in mitigating the challenges associated
with limited data, ensuring that the models could provide accurate and reliable predictions
of groundwater levels in data-scarce regions.

Distributed hydrological models like SWAT [26-28] produce detailed water balance
components and streamflow estimates, with uncertainties related to parameter equifinal-
ity. These studies often use sensitivity analysis and multi-objective calibration to address
uncertainties. The inverse hydrogeological balance method application in [30] provides
spatially distributed groundwater resource estimation but uncertainties are linked to DEM
resolution and ET calculation methods. In [33], MODFLOW was used to assess inter-basin
groundwater flow, providing detailed groundwater level and flow fields. It handles uncer-
tainties through careful calibration and validation, achieving a Nash-Sutcliffe Efficiency
Index of 0.8. Geostatistical techniques [34,35] produce interpolated groundwater level
maps with estimation variances, explicitly quantifying spatial prediction uncertainties.
Satellite-based approaches [36] offer continuous spatial and temporal coverage of recharge
estimates but face uncertainties in the accuracy of remote sensing products. These studies
often validate results against ground-based observations. In [36], Mohamed et al., who
used hydro-geophysical monitoring with gravity data, addressed uncertainty by combining
multiple data sources, including GRACE satellite data, GLDAS land surface models, and in
situ observations. This integrated approach helps to reduce uncertainties associated with
individual datasets. In [50], Mazzoni et al. conducted a comprehensive error analysis to
assess uncertainties in water budget modeling, calculating average standard deviation er-
rors for spatial approximations and propagating these errors through the entire simulation.
Alcala et al. [52] addressed uncertainty in sparse-data drylands by combining limited field
data with remote sensing and modeling techniques. In [43,51], researchers used ensemble
approaches, combining multiple climate models or scenarios to capture a wider range of
potential outcomes and associated uncertainties. Ref. [53] specifically focused on dealing
with hydrologic data scarcity, likely employing techniques such as data assimilation or
Bayesian methods to quantify and reduce uncertainties.

Integrated modeling approaches [24,46] provide comprehensive water resource as-
sessments, handling uncertainties through multi-model ensembles and data assimilation
techniques. The adaptive management framework presented in [25] produced dynamic
water resource plans with quantified learning potential, explicitly incorporating uncertainty
into decision-making processes.

In addition, Ref. [54] provided a comprehensive review of uncertainty sources in
groundwater recharge estimation, focusing on data-scarce tropical, arid, and semiarid re-
gions. While not presenting a specific methodology, this review offers valuable insights into
the challenges and potential solutions for recharge estimation in data-limited environments.
This paper emphasizes the importance of uncertainty analysis in recharge estimation and
highlights that most studies use multiple methods to provide a range of recharge estimates
rather than conducting detailed uncertainty analyses for individual methods. This ap-
proach, while providing insight into the potential range of recharge, lacks the ability to
identify uncertainties in individual methods or input data.

Overall, while the specific outputs and uncertainty handling methods vary, there is a
growing trend towards more comprehensive uncertainty quantification and communication
in groundwater modeling studies.

5. Research Priorities and Future Directions

Based on the reviewed papers, several key research priorities emerge for groundwater
modeling in data-scarce regions. One promising direction is the integration of multi-source
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data, combining traditional ground-based measurements with remote sensing and geo-
physical techniques. Scientists could explore ways to merge GRACE satellite data with
ground-based piezometric measurements and geophysical surveys to provide a more com-
prehensive understanding of groundwater dynamics at various scales. This approach could
be particularly valuable in regions where traditional monitoring networks are sparse or
non-existent. For instance, Ref. [24] highlights the potential of integrating SWAT hydro-
logical modeling, downscaled GRACE satellite data, and machine learning techniques for
groundwater level forecasting. Future research should explore more sophisticated ways
to merge remote sensing data, global model outputs, and limited ground observations to
improve model accuracy and reliability.

Another important research direction is the development of advanced machine learn-
ing and deep learning algorithms specifically tailored for groundwater modeling in data-
scarce environments, as highlighted in [23], which compared ensemble and deep learning al-
gorithms. Future studies could focus on transfer learning or federated learning approaches,
which could help address the challenges of limited local data by leveraging knowledge
from data-rich regions or related domains. Additionally, researchers should investigate
the potential of hybrid models that combine physics-based and data-driven approaches,
potentially offering more robust and interpretable results in data-limited contexts.

Improving methods for downscaling global or regional datasets to local scales is
another crucial research area, as emphasized in [38,47]. This could involve developing
more sophisticated statistical or machine learning techniques for disaggregating coarse
resolution remote sensing data or global model outputs to provide meaningful inputs for
local groundwater models. Researchers should also focus on developing robust uncertainty
quantification methods that account for the multiple sources of uncertainty in data-scarce
regions, including input data, model parameters, and conceptual model uncertainties.

Additionally, there is a pressing need to develop robust uncertainty quantification
methods that account for the multiple sources of uncertainty in data-scarce regions, includ-
ing input data, model parameters, and conceptual model uncertainties [54].

Future research should also focus on incorporating citizen science data and local knowl-
edge into groundwater models to help fill data gaps and improve model performance. This
may involve developing new data collection protocols and quality control measures for
citizen-generated data, as suggested by the citizen science initiative in [17]. To effectively
implement this approach, several practical steps can be taken. Firstly, developing standard-
ized data collection protocols tailored to citizen scientists is crucial. These protocols should
be simple yet rigorous, ensuring data quality while remaining accessible to non-experts.
For instance, citizens could be trained to measure and report groundwater levels in private
wells using low-cost water level meters, following a consistent methodology. Quality
control measures could include automated data validation checks, cross-referencing with
existing data, and periodic expert verification. Additionally, user-friendly mobile applica-
tions could be developed to facilitate data collection and submission, incorporating GPS
location tagging and photo documentation to enhance data reliability. To integrate local
knowledge, structured interviews and participatory mapping exercises could be conducted
with long-term residents to capture historical trends and identify critical groundwater
features. This qualitative information could then be systematically coded and incorporated
into model parameterization or used to validate model outputs. Furthermore, establishing
a centralized, open-access database for citizen-generated data would enable researchers
and water managers to easily incorporate this information into their models. Research,
then, is also needed on how to effectively combine hard data with soft information, such as
expert knowledge and qualitative observations, in model development and calibration.
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Developing adaptive modeling frameworks that can evolve as new data become avail-
able is another important direction. This includes creating flexible model structures that
can be easily updated and methods for assimilating new data streams in real-time. Such
adaptive approaches are crucial for supporting sustainable groundwater management in
regions where data availability may change over time, as evidenced in [25]. To achieve
these research directions, key technological innovations will be required, such as the devel-
opment of low-cost, robust sensors for groundwater monitoring, improved algorithms for
processing and interpreting remote sensing data, and advanced computational techniques
for handling large, heterogeneous datasets in groundwater modeling applications.

Finally, there is a need for more comprehensive studies that compare and integrate
different modeling approaches, as seen in [24,46]. This could involve systematic compar-
isons of various techniques (e.g., physical-based models, data-driven approaches, and
hybrid methods) across different hydrogeological settings and data availability scenarios.
Such comparative studies would help identify the most appropriate modeling strate-
gies for different contexts and guide future research efforts in groundwater modeling for
data-scarce regions.

6. Conclusions

This comprehensive literature review of 38 papers reveals a diverse array of method-
ologies for estimating and managing groundwater resources in data-scarce regions and
for uncertainty handling. The approaches range from coupled hydrological-groundwater
models and machine learning techniques to satellite-based datasets, isotope fingerprinting
methods, and geophysical monitoring using gravity data. Each methodology offers unique
advantages in addressing specific aspects of groundwater assessment and management in
data-poor environments. The integration of remote sensing data, machine learning algo-
rithms, and global model downscaling techniques has shown promise in overcoming data
limitations. For instance, Refs. [32,37,38] demonstrate the value of satellite-based datasets
like CHADFDM and MODIS in providing continuous spatial and temporal coverage of
crucial hydrological variables. Machine learning approaches, such as those presented
in [23,24], offer the ability to make accurate predictions with limited historical data, cap-
turing temporal dependencies and performing well with small sample sizes. However,
these methods also face challenges related to data quality, scale transferability, and the
representation of complex hydrogeological processes.

This review highlights a trend towards combining multiple data sources and modeling
techniques to provide more robust estimates. For instance, several studies integrate remote
sensing data with traditional hydrological models or combine machine learning with
physical-based approaches. This multi-faceted approach allows researchers to leverage the
strengths of different methodologies while mitigating their individual weaknesses.

Innovative approaches for data-scarce regions are also emerging, showcasing the po-
tential of hydro-geophysical monitoring using gravity data to assess groundwater resources
in areas with limited traditional hydrological data [36], or proposing a feasible methodology
for groundwater resource modeling in sparse-data drylands, combining limited field data
with remote sensing and modeling techniques [52].

The adaptive management frameworks and uncertainty analysis methods presented
in some studies offer valuable insights into decision-making under uncertainty, which is
crucial in data-scarce environments.

Despite the advancements, challenges persist. Many methods struggle with repre-
senting complex systems such as karst aquifers or capturing local-scale heterogeneities.
The trade-off between model complexity and data requirements remains a significant con-
sideration in choosing appropriate methodologies. Papers focusing on specific regions
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or aquifer systems (e.g., [41,52]) highlight the difficulties in transferring methodologies
between different hydrogeological settings.

A common challenge across many studies is the validation of results in data-scarce
regions. The lack of comprehensive ground-based monitoring networks makes it difficult
to assess the accuracy of remotely sensed or modeled groundwater estimates. Additionally,
many methods struggle to capture the dynamic nature of groundwater systems, particularly
in regions experiencing rapid changes due to climate variability or human activities.

Future research should focus on improving the integration of diverse data sources, en-
hancing the representation of complex hydrogeological processes in simplified models, and
developing robust uncertainty quantification methods tailored for data-scarce conditions.

Ultimately, the choice of methodology depends on the specific context, available
data, and management objectives of the study area, emphasizing the need for flexi-
ble and adaptable approaches in groundwater resource estimation and management in
data-scarce regions.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Table Al. Classification of Methodological approaches, Advantages, Limitations, Input data require-

ments, and References.

Methodology Type Advantages Limitations Input Data Required Reference
Digital elevation model
Comprehensive representation of
surface-groundwater interactions Land use/land cover data
May not fully capture complex feedback
Fine-resolution modeling at regional scales between surface and groundwater Soil data
Coupled hydrological- [17-22]
groundwater models Incorporates both surface water and Prone to error propagation Meteorological data
groundwater processes
Computationally intensive Geological data
Accounts for multiple
hydrological processes Limited groundwater
level observations
Historical groundwater
Can work with limited historical data Performance depends on data quality level data
and quantity
. . . Meteorological data
Ma::clﬁiilezrersung Captures temporal dependencies May not capture complex [23-25]
! . PP hydrogeological processes Remote sensing data
Potential for accurate predictions in ( GRACE)
data-scarce environments . . .. €8
Requires careful tuning and training
Hydrological model outputs
Digital elevation model
Comprehensive representation of Requires extensive parameterization
hydrological processes Land use/land cover data
Distributed hydrological . Computationally intensive for . .
models (e.g., SWAT) Suitable for large catchments long-term simulations Soil data [26-28]
Incorporates land use and May struggle with groundwater processes Meteorological data
management practices
Streamflow data for calibration
Suitable for large-scale recharge estimation May oversimplify complex Land use/land cover maps
hydrological processes .
Uses readily available data Soil maps
Water balance models [29-32]

Provides spatially explicit
recharge estimates

Limited temporal resolution (often annual)

Relies on empirical relationships

Digital elevation model

Meteorological data
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Table A1. Cont.
Methodology Type Advantages Limitations Input Data Required Reference
Detailed geological data
Detailed representation of aquifer . . .
eometry and properties Requires extensive geological and Aquifer properties
8 y prop hydrogeological data ! prop
3D groundwater flow Can simulate complex Rechar; timat
modeling (e.g., b?)u; dau acgrfgitigr?s Challenging to parameterize in echarge estumates [20,33]
MODFLOW) ry data-scarce conditions i
Boundary conditions
Enables quantification of inter-basin Computationally intensive
groundwater flow P y Groundwater level
observations
Groundwater level
. s . Assumes stationarity of spatial correlation measurements
Provides spatial interpolation and
Geostatistical and uncertainty estimates May not capture complex Well location coordinates
eophysical techniques Can work with limited data points hydrogeological processes [34-30]
geophy ! P Auxiliary variables (e.g.,
I . . Accuracy depends on spatial distribution elevation, distance to rivers)
ncorporates spatial autocorrelation .
of data points
Gravity data
Provides continuous spatial and . 1oL . Satellite imagery
Requires validation with
temporal coverage ground-based data (e.g., GRACE, MODIS)
Remote sensing-based Overcomes limitations of . Digital elevation model [32,37-44]
approaches . May not capture local-scale heterogeneities
ground-based observations
Accuracy varies by region and sensor type Limited ground-based
Suitable for large-scale applications y yreg yp observations for validation
Provides insights into recharge processes Water samples
without long-term monitoring Requires specialized isotope analysis
Precipitation isotope data
Isotope-based methods Captures both dynamics Limited spatial resolution [45,46]
and quantity of recharge Soil physical properties
Uncertainties in age estimates
Useful for ungauged watersheds Meteorological data
Leverages global models for Global model outputs
regional applications Relies on accuracy of global models In-situ groundwater
Global mo_del Improves spatial resolution May not capture local-scale heterogeneities level observations [38,47]
downscaling
Incorporates local observations to Requires some in-situ data for validation Digital elevation model
enhance accuracy Hydrogeological data
. . Various data types depending
Combines mulnplg data sources Complex to implement and calibrate on integrated models
and techniques
Integrated modeling Provides comprehensive water May propagate errors across multiple Remote sensing data [19,24},25,
approaches model components 48-53]
resource assessments . .
In-situ observations
- Computationally intensive
Addresses data scarcity issues Hydrogeological data
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