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Abstract: Precipitation is a fundamental component of the hydrologic cycle and is an
extremely important variable in meteorological, climatological, and hydrological studies.
Reliable climate information including accurate precipitation data is essential for identifying
precipitation trends and variability as well as applying hydrologic models for purposes
such as estimating (surface) water availability and predicting flooding. In this study, I
compared precipitation rates from five reanalysis datasets and one analysis dataset—the
European Centre for Medium-Range Weather Forecasts Reanalysis Version 5 (ERA-5),
the Japanese 55-Year Reanalysis (JRA-55), the Modern-Era Retrospective Analysis for
Research and Applications Version 2 (MERRA-2), the National Center for Environmental
Prediction/National Center for Atmospheric Research Reanalysis 1 (NCEP/NCAR R1),
the NCEP/Department of Energy Reanalysis 2 (NCEP/DOE R2), and the NCEP/Climate
Forecast System Version 2 (NCEP/CFSv2)—with the merged satellite and rain gauge
dataset from the Global Precipitation Climatology Project in Version 2.3 (GPCPv2.3). The
latter was taken as a reference due to its global availability including the oceans. Monthly
mean precipitation rates of the most recent five-year period from 2019 to 2023 were chosen
for this comparison, which included calculating differences, percentage errors, Spearman
correlation coefficients, and root mean square errors (RMSEs). ERA-5 showed the highest
agreement with the reference dataset with the lowest mean and maximum percentage
errors, the highest mean correlation, and the smallest mean RMSE. The highest mean and
maximum percentage errors as well as the lowest correlations were observed between
NCEP/NCAR R1 and GPCPv2.3. NCEP/DOE R2 showed significantly higher precipitation
rates than the reference dataset (only JRA-55 precipitation rates were higher), the second
lowest correlations, and the highest mean RMSE.

Keywords: precipitation; reanalysis datasets; merged satellite and rain gauge dataset; global

1. Introduction
Access to reliable and high-quality climate information is essential in coping with cur-

rent and future climate variability and change [1]. The availability of accurate precipitation
data is of fundamental importance for applying hydrologic models for purposes such as
water resource management, irrigation planning, hydropower operations, and forecasting
of floods and droughts [2]. Accurate precipitation data are also needed for calibrating
remote sensing products [3] and climate models [4] to facilitate future projections.

Particularly in high mountainous regions, climate information is often highly uncer-
tain. The complex terrain and orographic effects cause high spatiotemporal variability in
precipitation [5,6] which is often not captured by the comparatively few climate stations.
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For example, in the Tarim River basin in northwestern China, climate stations are predomi-
nantly located in the lowlands and in the valleys of the mountains, where access is easy;
very few stations are present at higher elevations [7,8]. Scarcity of climate data has also
been reported from the Asian Himalayas [9–11] and the Tibetan Plateau [12,13] and from
the South American Andes [6,14], the African Atlas mountains [15,16] and the Ethiopian
highlands [17].

Particularly in regions where in situ ground observations are scarce, reanalysis data
often seem to be the best option. Global reanalysis datasets are globally complete and
are therefore sometimes referred to as “maps without gaps” [18,19]. After previous re-
search in the 1980s [20,21], concentrated efforts have been made to generate multi-year
global reanalyses since the early 1990s [22,23]. A retrospective analysis, also known as
reanalysis, is produced via a frozen data assimilation system and numerical weather pre-
diction model [24] that, by ingesting available observations, achieves hindcasting [25]. The
goal of a climate reanalysis is to generate consistent and accurate climate datasets for a
longer period.

Global reanalyses not only provide global spatial coverage; they also do not have gaps
in time series. However, the reliability of the reanalysis data varies in time and space. If no
in situ observations are available for a region, the quality of the reanalysis will be reduced,
especially in that region. In situations where observations are missing, the reanalysis relies
on imperfect information; therefore, as reanalysis data are available for regions where
ground observational data are scarce, their limitations should be known and accounted
for [26].

Another reason that reanalysis data are attractive is the enormous number of at-
mospheric variables available. The first global atmospheric reanalysis provided by U.S.
agencies, the National Center for Environmental Prediction/National Center for Atmo-
spheric Research Reanalysis 1 (NCEP/NCAR R1), already offered numerous atmospheric
variables on multiple vertical levels. In addition to air temperature and geopotential height
at 17 levels, many other variables such as relative humidity of the total atmospheric col-
umn, runoff, potential evaporation rate, water equivalent of accumulated snow depth, and
precipitation rate were provided; some of these variables, such as air temperature and
geopotential height, were designated as type A variables in NCEP/NCAR R1, indicating
the most reliable class that is strongly influenced by observed data [22]. Precipitation rate
was classified as a type C variable that is completely determined by the model [22] and thus
should be used with caution [27]. In some of the more modern reanalyses, for example, in
MERRA-2, precipitation observations are used in the assimilation process [28,29], possibly
making precipitation rates more realistic.

One of the difficulties in working with reanalysis data is that the accuracy of reanalysis
results is less well understood compared to the accuracy of observations [30]. Given the
large number of reanalysis projects, it is challenging to find the most appropriate reanalysis
with which to answer a research question, as there is uncertainty in any given reanalysis.

How large are the spatiotemporal differences between precipitation rates from reanaly-
sis datasets and a precipitation dataset that is based on in situ observations and information
from satellites? To allow for a more educated choice in the usage of precipitation data,
especially in areas where in situ observational data are sparse, this paper compares precipi-
tation rates from five reanalysis datasets and one analysis dataset with precipitation data
from a merged satellite and rain gauge dataset.
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2. Materials and Methods
2.1. Materials

In this study, precipitation rates from the European Centre for Medium-Range Weather
Forecasts Reanalysis Version 5 (ERA-5), the Japanese 55-Year Reanalysis (JRA-55), the
Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-
2), the NCEP/NCAR R1, the NCEP/Department of Energy Reanalysis 2 (NCEP/DOE
R2), and the NCEP/Climate Forecast System Version 2 (NCEP/CFSv2) were compared
with precipitation data from the merged satellite and rain gauge dataset from the Global
Precipitation Climatology Project in Version 2.3 (GPCPv2.3) over the most recent five year
period from 2019 to 2023. All datasets provide precipitation rates globally and include
the oceans. This was also the main reason for choosing GPCPv2.3 as the reference dataset
over other precipitation datasets. General information about all datasets is summarized in
Table 1. The following subchapters provide more detailed information about each dataset.

2.1.1. ERA-5

ERA-5 is the newest reanalysis conducted by ECMWF within the Copernicus Climate
Change Service (C3S) and replaced the ERA-Interim reanalysis. Hersbach et al. [19] pro-
vided a comparison of ERA-5 with ERA-Interim as well as details of the ERA-5 global
reanalysis. Additional information was taken from the ERA-5 data documentation [31].
ERA5 is produced using four-dimensional variational (4D-Var) data assimilation and model
forecasts in the Integrated Forecasting System (IFS) Cy41r2, which has been used oper-
ationally since 2016. From the surface up to 0.01 hPa, the atmosphere is resolved using
137 levels. The atmospheric model in the IFS is coupled to a land surface model and an
ocean wave model [31]. Information on precipitation stems mostly from satellite obser-
vations; however, ERA5 uses information on rain rate from ground-based radar–gauge
composite observations, produced since 2009, in addition [19]. In ERA-5, total precipitation
is provided in meters of water equivalent. The precipitation data [32] were downloaded
from the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) in their native
units and were subsequently converted to [mm/day]. A summary of the ERA5 atmospheric
reanalysis was given by Hersbach et al. [33].

2.1.2. JRA-55

JRA-55 is the second Japanese global reanalysis provided by the Japan Meteorological
Agency (JMA) and followed JRA-25. Kobayashi et al. [34] and Harada et al. [35] provided
details about JRA-55 as well as a comparison with JRA-25. From December 2009 to January
2024, JRA-55 was produced using the TL319 version of the JMA operational 4D-Var data
assimilation system. From the surface up to 0.1 hPA, the atmosphere was resolved in
60 levels. In addition to observations used in ERA-40 and those archived by JMA, JRA-55
also incorporated reprocessed satellite data from major meteorological satellite centers as
well as several observational datasets, including homogenized radiosonde temperature
observations [34]. However, rain gauge data were not used in the assimilation process, and
total precipitation was considered a two-dimensional average diagnostic field [36]. Total
precipitation provided in [mm/day] was downloaded from the NCAR Computational and
Information Systems Laboratory [37]. A summary of the dataset was given by Kobayashi
et al. [38].

2.1.3. MERRRA-2

MERRA-2, the successor of MERRA, is the most recent atmospheric reanalysis pro-
duced by NASA’s Global Modeling and Assimilation Office (GMAO). Gelaro et al. [28]
provided details about the reanalysis. For MERRA-2, an updated version of the God-
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dard Earth Observing System (GEOS), the GEOS-5 atmospheric general circulation model,
was developed [39]. MERRA-2 is produced using 3D-Var data assimilation and is the
first reanalysis to assimilate aerosol observations [28]. From the surface up to 0.01 hPA, the
atmosphere is partitioned into 72 levels [28]. MERRA-2 corrects the model-generated precip-
itation with precipitation observations before reaching the land surface [29]. In MERRA-2,
total precipitation is provided in [kg/(m2s)]. Precipitation data from MERRA-2 [40] were
downloaded in their native units via the Climate Explorer [41] and were then converted
to [mm/day]. An outline of the NASA’s MERRA-2 reanalysis was given by Bosilovich
et al. [42].

2.1.4. NCEP/NCAR R1

The NCEP and NCAR have been cooperating on the NCEP/NCAR Reanalysis 1 since
1991 [22]. It is the first global atmospheric reanalysis provided by U.S. agencies that was
initially planned to cover 40 years from 1957 to 1996 [22] and was then extended backwards
to 1948 [27]. NCEP/NCAR R1 uses a frozen state-of-the-art global data assimilation
system [27] and is updated until today. The following information on the dataset was
taken from Kalnay et al. [22]. NCEP/NCAR R1 is produced using 3D-Var data assimilation
and assimilates rawinsonde observations; surface marine data from ships, buoys, and
ocean stations; aircraft data; land synoptic data; and satellite information. From the
surface up to 2.7 hPA, the atmosphere is resolved using 28 levels. The frozen climate
data assimilation system allows researchers to evaluate whether current climate anomalies
are significant when compared to a long reanalysis with an unchanged data assimilation
system. In NCEP/NCAR R1, precipitation is considered a Type C variable that is completely
determined by the model.

Today, due to the frozen data assimilation system, the resolution of NCEP/NCAR
R1 lags behind the more modern reanalyses. In NCEP/NCAR R1, precipitation rates
are provided in [kg/(m2s)]. Precipitation rates from NCEP/NCAR R1 were retrieved
from the website of the Physical Sciences Laboratory (PSL) of the National Oceanic and
Atmospheric Administration (NOAA) [43]. They were downloaded in their native units
and were subsequently converted to [mm/day].

2.1.5. NCEP/DOE R2

After the main production phase of NCEP/NCAR R1, several human processing
errors were discovered that could not be fixed anymore at the time they were found, and
therefore another reanalysis project, NCEP/DOE R2, was started in 1998 [44]. Details
of NCEP/DOE R2 were provided in Kanamitsu et al. [44], and the brief description of
the dataset provided here is based on this publication. In addition to fixing the human
processing errors present in NCEP/NCAR R1, the forecast model and data assimilation
system in NCEP/DOE R2 were upgraded, and a diagnostic package was developed. The
3D-Var data assimilation process and the spatial and temporal resolutions were kept. The
raw observational data used in the assimilation process are similar to NCEP/NCAR R1.
However, in NCEP/DOE R2, observed 5-day mean “pentad” precipitation values, based
on a global precipitation analysis that merged satellite and gauge measurements [45], was
implemented as forcing. The period covered by NCEP/DOE R2 extends back only until
1979 and is restricted to the satellite period. NCEP/DOE R2 is an upgraded and human-
error-fixed version of NCEP/NCAR R1 but not a next-generation reanalysis. Therefore,
the resolution of NCEP/DOE R2 lags behind the more modern reanalyses as well. As
in NCEP/NCAR R1, precipitation rates in NCEP/DOE R2 are provided in [kg/(m2s)].
Precipitation rates from NCEP/DOE R2 were retrieved from the website of the NOAA
PSL [46]. They were downloaded in their native units and then converted to [mm/day].



Hydrology 2025, 12, 4 5 of 21

2.1.6. NCEP/CFSv2

NCEPs’ CFSv2 is the second version of the NCEP Climate Forecast System and has
been used operationally since March 2011 [47]. Saha et al. [47] described NCEP/CFSv2 in
detail, and the outline given here is based on this publication. Some differences from the
first Climate Forecast System (CFSv1) are its upgraded four-level soil model, an interactive
three-layer sea ice model, and rising CO2 concentrations. Even though the ocean and sea ice
models are identical to those used in the Climate Forecast System Reanalysis (CFSR) [48],
the atmospheric and the land surface components are slightly different. The differences
lie mainly in the physical parameterization of the atmospheric model and some tuning
parameters in the land surface model. As in CFSv1, the atmosphere is vertically resolved
in 64 levels [49], from the surface up to 0.266 hPA [48]. So far, all of NCEPs CFS products
have been produced using 3D-Var data assimilation [50]. In CFSv2, observed precipitation
is used as forcing for the land model [51]. Total precipitation in NCEP/CFSv2 is provided
in [kg/(m2s)]. Precipitation data from NCEP/CFSv2 were downloaded from the NCAR
Research Data Archive [52] in their native units and were subsequently converted to
[mm/day].

2.1.7. GPCPv2.3

The GPCP was established as part of the Global Energy and Water Cycle Exchanges
(GEWEX) activity under the World Climate Research Program (WCRP) in 1986 [53]. The
mission of the GPCP has been to produce global analyses of area- and time-averaged
precipitation data to be used in climate research [54]. Over the years, techniques were
developed to combine precipitation estimates from satellite data and precipitation gauge
observations [53,55], and the GPCP Version 1 Combined Precipitation Data Set was released
in 1996. Traditionally, the GPCP precipitation datasets merge satellite-based estimates over
ocean and land with the precipitation gauge analyses over land from the Global Precipita-
tion Climatology Centre (GPCC) in Germany [53,55,56]. The GPCPv2.3 became available
in 2016 [57]. Passive microwave-based (PMW) rainfall estimates from the Special Sensor
Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS),
infrared rainfall estimates from a series of geostationary and polar-orbiting satellites, and
observations from surface rain gauges from the GPCC are used in this product [58]. More
details about the dataset were provided in Adler et al. [56]. Average monthly rates of pre-
cipitation from GPCPv2.3 were downloaded in [mm/day] from the website of the NOAA
PSL [59].

Table 1. Overview of the datasets used for monthly precipitation data.

Dataset Abbreviation
Highest Spatial

Resolution
(lat × lon)

Time Period,
Highest Temporal

Resolution
Source

European Centre for
Medium-Range

Weather Forecasts
Reanalysis version 5

ERA-5 0.25◦ × 0.25◦ 1940–now,
hourly

Hersbach et al. [19]
https://cds.climate.

copernicus.eu/
datasets/reanalysis-
era5-single-levels-
monthly-means
(accessed on 1

December 2024)

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means
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Table 1. Cont.

Dataset Abbreviation
Highest Spatial

Resolution
(lat × lon)

Time Period,
Highest Temporal

Resolution
Source

Japanese 55-Year
Reanalysis JRA-55 1.25◦ × 1.25◦ 1958–2024,

3-hourly

Kobayashi et al. [34];
Harada et al. [35]

https://rda.ucar.edu/
datasets/d628001/

(accessed on 1
December 2024)

Modern-Era
Retrospective Analysis

for Research and
Applications version 2

MERRA-2 0.5◦ × 0.625◦ 1980–now, hourly

Gelaro et al. [28]
https://disc.gsfc.nasa.

gov/datasets/M2
TMNXAER_5.12.4

/summary
(accessed on 1

December 2024)

National Center for
Environmental

Prediction/National
Center for

Atmospheric Research
reanalysis 1

NCEP/NCAR R1 1.875◦ × 1.904128◦ 1948–now, 6-hourly

Kalnay et al. [22];
Kistler et al. [27]

https://psl.noaa.gov/
data/gridded/data.
ncep.reanalysis.html

(accessed on 1
December 2024)

National Center for
Environmental Predic-

tion/Department of
Energy Reanalysis 2

NCEP/DOE R2 1.875◦ × 1.904128◦ 1979–now, 6-hourly

Kanamitsu et al. [44]
https://psl.noaa.gov/

data/gridded/data.
ncep.reanalysis2.html

(accessed on 1
December 2024)

National Center for
Environmental

Prediction/Climate
Forecast System

Version 2

NCEP/CFSv2 0.204◦ × 0.205◦ 2011–now, monthly
(based on 6-hourly)

Saha et al. [47]
https://rda.ucar.edu/

datasets/d094002
(accessed on 1

December 2024)

Global Precipitation
Climatology Project

version 2.3
GPCPv2.3 2.5◦ × 2.5◦ 1979–now, monthly

Adler et al. [56]
https://psl.noaa.gov/

data/gridded/data.
gpcp.html

(accessed on 1
December 2024)

2.2. Methods
2.2.1. Calculations with Mean Values

At the outset of research, mean values of all grid cell time series in the different datasets
were calculated to produce one map for each dataset showing the mean precipitation rates
for the period from 2019 to 2023. These data were then regridded to a 2.5◦ spatial resolution
to allow for spatial comparisons with the reference dataset GPCPv2.3. Regridding was
carried out with a box averaging method, where the area-weighted integral of all input
grid boxes which intersect an output grid box is divided by the area of the output grid
box [60]. To visualize the differences between the various datasets and GPCPv2.3, the
mean values of GPCPv2.3 were subtracted from the mean values of all other datasets,
and the differences were plotted in maps. It is crucial to consider that especially in arid

https://rda.ucar.edu/datasets/d628001/
https://rda.ucar.edu/datasets/d628001/
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://rda.ucar.edu/datasets/d094002
https://rda.ucar.edu/datasets/d094002
https://psl.noaa.gov/data/gridded/data.gpcp.html
https://psl.noaa.gov/data/gridded/data.gpcp.html
https://psl.noaa.gov/data/gridded/data.gpcp.html
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regions, small differences in precipitation can represent a large percentage or even exceed
the total annual precipitation. Therefore, percentage errors between the different datasets
and GPCPv2.3 were calculated and visualized in maps. To show the effect that the often
small daily differences have on an annual scale, mean annual total global precipitation
was calculated.

Histograms of each dataset were plotted to check for normal distribution. None of
the datasets was normally distributed; all were heavily skewed towards low precipitation
values. To account for this, it was decided to calculate spatial Spearman rank correlation
coefficients between each dataset and GPCPv2.3. Moreover, the spatial root mean square
errors (RMSEs) between all datasets and GPCPv2.3 were calculated. Details about the
Spearman Rank Correlation Coefficient and the RMSE can be found in Lohninger [61] and
Chai and Draxler [62], respectively.

2.2.2. Calculations with Monthly Values

After that, the datasets were used in monthly resolution. Again, the datasets were
regridded to a 2.5◦ spatial resolution with the method described above. I randomly chose
six grid points in all datasets (three over land and three over the ocean). These grid cell
time series were tested for normal distribution by plotting and interpreting histograms.
All datasets showed at least one time series that was not normally distributed and heavily
skewed towards low precipitation values. Therefore, the decision was made to once again
calculate Spearman rank correlation coefficients between each dataset and GPCPv2.3. Then,
the RMSEs between all datasets in monthly resolution and GPCPv2.3 were calculated.

3. Results
3.1. Results from Calculations with Mean Values

Figure 1 shows the maps of mean precipitation rates for the period from 2019 to 2023
for the different datasets. All datasets show a belt of high precipitation rates at about
5◦ north of the equator. The precipitation belt is more pronounced over the ocean and
with higher precipitation rates over the Pacific than over the Atlantic and especially over
the Indian ocean basins. Over the Indian ocean basin and the western Pacific, there is
a second band of high precipitation rates at about 5 to 10◦ south. In NCEP/NCAR R1,
NCEP/DOE R2, and JRA-55, the two bands cover a wider latitudinal range than in the other
datasets, with higher precipitation rates in NCEP/DOE R2 and JRA-55. Clear variations are
evident in the precipitation rates over tropical continental regions, including the northern
South American and the African continent as well as the Malay Archipelago. Differing
precipitation rates can also be observed over high-mountain Asia.

Mean values, mean differences, and maximum differences are documented in Table 2.
Looking at the mean values, it becomes clear that all of the precipitation datasets show
higher mean precipitation rates than GPCPv2.3, with the highest mean precipitation rate
in the JRA-55 dataset and the second highest in NCEP/DOE R2. Accordingly, the highest
mean differences are also seen between JRA-55 and GPCPv2.3, and the second highest are
observed between NCEP/DOE R2 and GPCPv2.3. By far the highest maximum difference,
however, is found between MERRA-2 and GPCPv2.3, followed by the maximum difference
between NCEP/DOE R2 and GPCPv2.3. The smallest mean and maximum differences
can be observed between NCEP/NCAR R1 and GPCPv2.3, followed by the mean and
maximum differences between ERA-5 and the reference dataset.
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Figure 1. Mean precipitation rates for the period from 2019 to 2023 for the different datasets. Data are
presented in a spatial resolution of 2.5 ◦. The maps show mean precipitation rates from (a) ERA-5,
(b) JRA-55, (c) MERRA-2, (d) NCEP/NCAR R1, (e) NCEP/DOE R2, (f) NCEP/CFSv2, and
(g) GPCPv2.3.
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Table 2. Area-weighted mean values [mm/day] of the different datasets that were previously
regridded to a common 2.5◦ × 2.5◦ spatial resolution for the period from 2019 to 2023, their mean and
maximum differences from GPCPv2.3 [mm/day], the mean and maximum percentage errors between
all datasets and GPCPv2.3 [%], mean total global precipitation for all datasets, and the Spearman
correlations coefficients (dimensionless) and root mean square errors (RMSEs) [mm/day] between all
datasets and GPCPv2.3.

Precipitation
Dataset

Mean
[mm/day]

Mean Dif-
ferences

[mm/day]

Maximum
Positive
Differ-
ences

[mm/day]

Mean Per-
centage

Errors [%]

Maximum
Percent-

age Errors
[%]

Mean Total
Global Pre-
cipitation
[km3/year]

Spatial
Spearman

Correlation
Coefficients

Spatial
RMSEs

[mm/day]

ERA-5 2.932 +0.264 9.701 28.9 521.1 ~546,000 0.965 0.720
JRA-55 3.338 +0.670 7.822 37.6 913.6 ~622,000 0.952 1.343

MERRA-2 2.964 +0.296 29.332 32.3 556.9 ~552,000 0.959 1.176
NCEP/NCAR R1 2.800 +0.132 7.590 48.1 11,927.8 ~522,000 0.870 1.165
NCEP/DOE R2 3.238 +0.570 12.224 40.6 525.3 ~603,000 0.931 1.486
NCEP/CFSv2 3.205 +0.537 10.024 45.8 1,421.9 ~597,000 0.955 0.981

GPCPv2.3 2.668 0 0 0 0 ~497,000 1 0

Figure 2 spatially illustrates the differences between all datasets and the reference
dataset GPCPv2. The perceived differences in the precipitation belts observed when looking
at the mean precipitation rates before are now quantitatively expressed. In particular, JRA-
55 and NCEP/DOE R2 show much higher precipitation rates over the ocean at 5◦ north
compared to GPCPv2.3. ERA-5 and NCEP/CFSv2 depict slightly higher precipitation rates
at 5◦ north than GPCPv2.3. MERRA-2 shows several grid cells in tropical regions over
land with very high differences. Both the maximum difference of 29.332 mm/day and the
second highest difference, 24.678 mm/day, can be found on New Guinea. A third very
high difference, 24.114 mm/day, is observed over Colombia, with several adjacent cells
over coastal northwestern South America showing high differences as well. Other areas
showing higher precipitation in MERRA-2 compared to GPCPv2.3 include the Atlantic
coast of Central Africa, the East African Rift Valley, the Himalayas, and the Tibetan Plateau,
and generally the Malay Archipelago. However, over the ocean, the differences between
MERRA-2 and GPCPv2.3 are comparatively small. At 5◦ north latitude, NCEP/NCAR
R1 shows higher precipitation rates in the western Pacific but lower precipitation rates
than GPCPv2.3 in the eastern tropical Pacific and in the Atlantic. Compared to GPCPv2.3,
NCEP/DOE R2 depicts much higher precipitation values over southern Central America
and the adjacent ocean area, as well as over the northern Indian Ocean basin and the Banda
Sea. The grid cells with much lower precipitation rates than GPCPv2.3 can be detected
east of New Guinea in both NCEP/NCAR R1 and NCEP/DOE R2. The highest difference
between NCEP/CFSv2 and GPCPv2.3, 10.024 mm/day, is found off the southern west
coast of South America. Other than that, the differences over the ocean are comparatively
small. NCEP/CFSv2 shows a few grid cells over land with noticeably higher precipitation
rates compared to GPCPv2.3. Over land, there are noticeably higher precipitation values in
NCEP/CFSv2 over the Malay Archipelago, especially over New Guinea (9.405 mm/day)
and south of the Himalayas (6.998 mm/day).
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Figure 2. Differences between all datasets and the reference dataset for the period from 2019 to 2023.
The maps show differences between precipitation rates from (a) ERA-5 and GPCPv2.3, (b) JRA-55
and GPCPv2.3, (c) MERRA-2 and GPCPv2.3, (d) NCEP/NCAR R1 and GPCPv2.3, (e) NCEP/DOE
R2 and GPCPv2.3, and (f) NCEP/CFSv2 and GPCPv2.3.

The fact that larger differences in precipitation rates are not only observed in humid
regions, but also in semi-arid regions such as the Tibetan Plateau, prompted the decision to
calculate percentage errors. Looking at the mean and maximum percentage errors between
the different precipitation datasets and the reference dataset in Table 2, ERA-5 shows—with
28.9% and 521.1%, respectively—the lowest percentage errors. The highest mean and by
far the highest maximum percentage errors are detected between NCEP/NCAR R1 and the
reference dataset. The mean percentage error between NCEP/NCAR R1 and GPCPv2.3
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is 48.1% and the maximum percentage error, found over Antarctica, is 11,927.8%. The
second highest mean and maximum percentage errors are observed between NCEP/CFSv2
and GPCPv2.3.

Figure 3 shows maps of percentage errors between all datasets and the reference
dataset GPCPv2.3. All of the precipitation datasets show high percentage errors (>200%)
over the Tibetan plateau and Central Asia and over western Greenland and Antarctica.
Very high percentage errors (>400%) can be found over the oceanic regions with sparse
precipitation along the west coasts of South America and/or southern Africa (>400%). In
addition to the above-mentioned regions of high percentage errors, ERA-5 shows percent-
age errors between 40% and 120% over the Sahara desert and the Sahel, errors of up to
200% over the Atacama desert, and errors of >400% over southern Patagonia. In JRA-55,
additional very high percentage errors of >400% can be observed over the Sahara, the Gulf
of Aden, and southern Patagonia. MERRA-2 shows percentage errors > 400% over the
Atacama desert and southern Patagonia. Percentage errors of 200% to up to 360% can be
found over the East African Rift Valley and of up to 280% over New Guinea. By far the
highest percentage errors are detected in NCEP/NCAR R1. Vast regions of Antarctica
show percentage errors of >400%, which can also be observed over the Caribbean Sea, the
coastal region of the Atacama desert, western Greenland, and Central Asia. The percentage
errors between NCEP/DOE R2 and GPCPv2.3 are smaller compared to NCEP/NCAR R1
but still comparatively high and widespread. Areas with percentage errors > 400% are
found over the Arabian Peninsula, the Sahara and the Atacama deserts, and over central
Mexico. Even though the percentage errors between NCEP/CFSv2 and GPCPv2.3 over the
oceanic regions along the west coasts of South America and southern Africa (>400%) are
pronounced, grid cells with percentage errors > 400% are only found over Central Asia and
over southern Patagonia. Over the Sahara desert and the Sahel, percentage errors are less
than 120% and over the Atacama desert are up to 280%.

The column with mean annual total global precipitation in Table 2 visualizes the effect
that the often small daily differences have on an annual scale. Over the course of a year,
JRA-55 has a total of 125,000 km3 precipitation more than GPCPv2.3; NCEP/DOE R2 has
106,000 km3 excess precipitation. The two datasets with the smallest annual differences in
precipitation, NCEP/NCAR R1 and ERA-5, still show excess precipitation of 25,000 km3

and 49,000 km3, respectively.
The rest of the results from the calculations with mean values can also be taken from

Table 2. The highest spatial Spearman rank correlation coefficient, 0.965, can be observed
between GPCPv2.3 and ERA-5, followed by MERRA 2. The lowest spatial Spearman
correlation coefficient, 0.87, is found between GPCPv2.3 and NCEP/NCAR R1, and the
second lowest between GPCPv2.3 and NCEP/DOE R2. The lowest RMSE, 0.72 mm/day,
is observed between ERA-5 and GPCPv2.3 and the highest, 1.486 mm/day, is between
NCEP/DOE R2 and GPCPv2.3.
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Figure 3. Percentage errors between all datasets and the reference dataset for the period from 2019 to
2023. The maps show percentage errors between precipitation rates from (a) ERA-5 and GPCPv2.3,
(b) JRA-55 and GPCPv2.3, (c) MERRA-2 and GPCPv2.3, (d) NCEP/NCAR R1 and GPCPv2.3,
(e) NCEP/DOE R2 and GPCPv2.3, and (f) NCEP/CFSv2 and GPCPv2.3.

3.2. Results from Calculations with Monthly Values

The Spearman rank correlation coefficients and the RMSEs between the different
datasets and GPCPv2.3 in monthly resolution are spatially illustrated in maps; the corre-
lation coefficients are depicted in Figure 4 and the RMSEs in Figure 5. Mean correlation
coefficients, mean RMSEs, and maximum RMSEs are compiled in Table 3.

All maps depicting Spearman rank correlation coefficients show no correlation with the
GPCPv2.3 dataset in regions with sparse precipitation, including the interior of Greenland
and Alaska, the Sahara, and the Cape Horn region and to a lesser extent the Tibetan Plateau,
the Gulf of Aden, and the oceanic region along the west coast of California. Areas with
negative correlation that are present in all maps include the oceanic regions with sparse
precipitation along the west coasts of South America and Southern Africa. All of the
oceanic west coast regions are over cold ocean currents. MERRA-2 shows the largest areas
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of negative correlation with GPCPv2.3, with the highest negative correlation coefficients
being as low as −0.682 on the west coast of southern Africa. Only NCEP/DOE R2 shows,
with −0.698, a higher negative correlation coefficient. It is located on the west coast of
South America. It is noticeable that compared to the other datasets, there are many more
areas with no or only small correlation between NCEP/NCAR R1 and NCEP/DOE R2 and
GPCPv2.3. It is also evident that both maps (Figure 3d) depict generally lower correlation
coefficients than the other maps.
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Figure 4. Spearman rank correlation coefficients between all datasets and the reference dataset in
monthly resolution for the period from 2019 to 2023. The maps show Spearman rank correlation
coefficients between (a) ERA-5 and GPCPv2.3, (b) JRA-55 and GPCPv2.3, (c) MERRA-2 and GPCPv2.3,
(d) NCEP/NCAR R1 and GPCPv2.3, (e) NCEP/DOE R2 and GPCPv2.3, and (f) NCEP/CFSv2
and GPCPv2.3.
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Figure 5. RMSEs between all datasets and the reference dataset in monthly resolution for the period
from 2019 to 2023. The maps show RMSEs between (a) ERA-5 and GPCPv2.3, (b) JRA-55 and
GPCPv2.3, (c) MERRA-2 and GPCPv2.3, (d) NCEP/NCAR R1 and GPCPv2.3, (e) NCEP/DOE R2
and GPCPv2.3, and (f) NCEP/CFSv2 and GPCPv2.3.

Table 3. Area-weighted mean Spearman correlation coefficients (dimensionless), root mean square
errors (RMSEs) [mm/day], and maximum RMSEs [mm/day] between the different regridded datasets
in monthly resolution and GPCPv2.3 for the period from 2019 to 2023.

Precipitation Dataset Mean Spearman
Correlation Coefficients

Mean RMSEs
[mm/day]

Maximum RMSEs
[mm/day]

ERA-5 0.787 1.036 10.097
JRA-55 0.776 1.420 9.142

MERRA-2 0.748 1.275 29.737
NCEP/NCAR R1 0.627 1.660 8.965
NCEP/DOE R2 0.633 2.016 16.862
NCEP/CFSv2 0.738 1.401 9.109

GPCPv2.3 1 0 0
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The mean Spearman correlation coefficients support this observation. The lowest
mean Spearman correlation coefficient, 0.627, can be observed between GPCPv2.3 and
NCEP/NCAR R1, followed by NCEP/DOE R2 with a mean correlation coefficient of 0.633.
The highest mean Spearman correlation coefficient, 0.787, can be found between GPCPv2.3
and ERA-5, and the second highest, 0.776, is between GPCPv2.3 and JRA-55.

The maps showing RMSEs mimic the maps illustrating the differences between all
datasets and the reference dataset GPCPv2.3. The maps with RMSEs between JRA-55 and
GPCPv2.3 as well as between the NCEP/DOE R2 and GPCPv2.3 display wide latitudinal
bands, with RMSEs between 5–10 mm/day around 5◦ north. The RMSEs between ERA-5
and GPCPv2.3 and between NCEP/CFSv2 and GPCPv2.3 show thinner bands and slightly
lower RMSEs between 3-5 mm/day at 5◦ north. The grid cells displaying high differences
between MERRA-2 and GPCPv2.3 in Figure 2 also depict high RMSEs between MERRA-2
and GPCPv2.3. As expected, the highest three RMSEs are observed for the same cells as
before on New Guinea and over Columbia. The highest RMSE, 29.737 mm/day, is found
for the same grid cell on New Guinea that showed the highest difference. Other areas
showing high RMSEs between MERRA-2 and GPCPv2.3 again include the Atlantic coast
of Central Africa, the East African Rift Valley, the Himalayas, and the Tibetan Plateau,
and generally the Malay Archipelago. The RMSEs between MERRA-2 and GPCPv2.3 are
comparatively small over the ocean; however, at 5◦ north latitude, we can see a band of
elevated RMSEs between 2–4.5 mm/day. As mentioned before, this band is also present in
the RMSEs between the other datasets and GPCPv2.3. The RMSEs between NCEP/NCAR
R1 and GPCPv2.3 in this band are with 4–7 mm/day higher than the RMSEs between
MERRA-2 and GPCPv2.3. With RMSEs between 2–4.5 mm/day, the band at 5◦ north
between NCEP/CFSv2 and GPCPv2.3 looks very similar to the band of RMSEs between
MERRA-2 and GPCPv2.3. Examining the RMSEs between NCEP/CFSv2 and GPCPv2.3,
we see individual grid cells with higher RMSEs, for example, on the Malay Archipelago,
south of the Himalayas, and over Central America. The highest RMSE, 9.109 mm/day,
is found over Columbia. Much higher RMSEs can be detected between NCEP/DOE R2
and GPCPv2.3. Three grid cells over Costa Roca and Panama show RMSEs of greater than
16 mm/day. Other areas with high RMSEs include southern India, Sri Lanka, and the
region between India and the Maldives, and as well as Indonesia.

The tabulated mean and maximum RMSEs show the lowest mean RMSE between ERA-
5 and GPCPv2.3, followed by MERRA-2. The highest mean RMSE is observed between
NCEP/DOE R2 and GPCPv2.3. The highest maximum RMSE can be found between
MERRA-2 and GPCPv2.3 and the second highest can be observed between NCEP/DOE R2
and GPCPv2.3. The lowest maximum RMSEs can be observed between NCEP/NCAR R1
and GPCPv2.3, closely followed by NCEP/CFSv2, JRA-55, and ERA-5.

4. Discussion
The first point that shall be discussed here is the reliability of the reference dataset

GPCPv2.3. The key limitations of GPCPv2.3 listed in Pendergrass et al. [57] include the
existence of residual inter-satellite differences at the boundaries between the areas of
coverage of the geo-infrared sensors as well as the potential bias in precipitation estimates
resulting from significant drifting of the equator-crossing time of some polar-orbiting
satellites during their period of service. Based on global water and energy budgets, it was
concluded that GPCPv2.3 underestimates precipitation specifically over the ocean [63].
Furthermore, the spatial resolution of 2.5◦ restricts the usage of the dataset. As mentioned
in the introduction, particularly in high mountainous regions, the terrain is complex, and
orographic effects cause high spatiotemporal variability in precipitation [5,6], which cannot
adequately be captured given this spatial resolution of the dataset. The monthly temporal
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resolution is another limiting factor. For hydrological modeling, even in data-scarce regions,
the precipitation data are used in at least daily resolution [64].

Despite its limitations, GPCPv2.3 has been used as a reference dataset in many studies
such as those of Beniche et al. [65], Anochi et al. [66], Sharma et al. [67], Nogueira [68], Li
et al. [69], and Hassler and Lauer [70]. In the study by Beniche et al. [65], precipitation
data from GPCPv2.3 were used to evaluate the impacts of El Niño Southern Oscillation
events on precipitation over North America and the Pacific. In that by Anochi et al. [66], the
GPCPv2.3 dataset was employed as a target with which to train machine learning models
and to validate precipitation forecasts for South America. The GPCP precipitation dataset
was used as ground truth for correcting Indian Summer Monsoon Rainfall as simulated
by the Indian Institute of Tropical Meteorology climate forecast system over the Indian
subcontinent [67]. In Nogueira [68], GPCPv2.3 was the reference used to evaluate the
performance of ERA-5 and ERA-Interim precipitation worldwide.

From the studies in which GPCPv2.3 was used as a reference dataset, the results
from Li et al. [69] and Hassler and Lauer [70] are most comparable to the ones of the
present study.

Li et al. [69] evaluated among other things the performance of precipitation data from
ERA-5, JRA-55, MERRA-2, and the CFSR against GPCPv2.3. Looking at the time period
from 1980 through 2018, they found that all datasets except MERRA-2 show wet biases in
precipitation over tropical regions, particularly over the Pacific and Atlantic region of the
Intertropical Convergence Zone (ITCZ). Similar to the maps from the correlation analyses
presented in this study, their maps depicting calculated correlation coefficients between
the annual precipitation anomalies in the different precipitation datasets and GPCPv2.3
annual precipitation anomalies show areas of no correlation for the eastern (dry region)
boundaries of the Pacific and Atlantic ocean basins.

In the study by Hassler and Lauer [70], GPCPv2.3 was compared with 10 other
precipitation datasets, of which 6 were from reanalyses and 4 were from observational
datasets. The comparison focused on the Tropics, the Pacific ITCZ, Central Europe, and the
South Asian Monsoon region for the time period from 1983 through 2016. Similar to the
results of this study, they found that ERA-5 for the most part agrees better with GPCPv2.3
than MERRA-2 and JRA-55. As in the present study, a strong overestimation of tropical
precipitation was found particularly for JRA-55 (especially over the ocean) but also for
MERRA-2 (especially over land) and to a lesser extent for ERA-5.

In an older study from Quartly et al. [71], correlation coefficients between GPCPv2
and NCEP/NCAR R1 as well as between GPCPv2 and NCEP/DOE R2 were calculated for
the period from 1979 to 2000. The study focused on the ocean and found generally lower
correlations between NCEP/DOE R2 and GPCPv2. Quartly et al. [71] also detected much
higher precipitation in NCEP/DOE R2 over the ocean as compared to NCEP/NCAR R1
and GPCPv2. Looking at the maps depicting Spearman correlation coefficients from the
present study, it becomes clear that even though our mean correlation coefficient between
NCEP/DOE R2 and GPCPv2.3 is slightly higher, the correlation over the ocean is lower as
compared to NCEP/NCAR R1 and GPCPv2.3. The strong overestimation of precipitation
in NCEP/DOE R2 is also evident in the present study, especially over the tropical ocean.

As the focus of this study is on providing guidance in the choice of precipitation data,
for example, for hydrologic modeling, the following paragraphs provide advice based on
the results presented in Section 3. The recommendations made here are valid for the period
from January 2019 to December 2023.

Precipitation rates from ERA-5 and JRA-55 showed very small deviations from the
reference dataset GPCPv2.3 over Europe and eastern South America. In the absence of
ground observational data, the use of precipitation data from both datasets seems acceptable
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in these areas. Over Australia, similarly small deviations were found between precipitation
rates from ERA-5 and the reference dataset, as well as between NCEP/CFSv2 and the
reference dataset. Using precipitation rates from ERA-5 and NCEP/CFSv2 in Australia
seems feasible if no ground observational data are available. ERA-5 also performed well
over Central and North America in all areas south of 40◦ north. In the absence of ground
observational data, applying precipitation rates from ERA-5 could be an option. Over the
North Atlantic and North Pacific Ocean basins that are south of 70◦ north, precipitation
rates from MERRA-2 closely resembled the reference dataset. The same is true over the
Indian Ocean basin and western South Pacific and over the extratropical eastern South
Pacific and South Atlantic north of 65◦ south. In these areas, MERRA-2 performed best
closely followed by ERA-5. In the case that no ground observational data are available, the
use of precipitation data from MERRA-2 is recommended here.

For many regions with sparse precipitation, high percentage errors between the dif-
ferent datasets and the reference dataset were found. Therefore, replacing ground obser-
vational data with precipitation rates from the datasets presented here is generally not
recommended. These regions include the Tibetan Plateau, parts of Central Asia, southern
Patagonia, the Atacama desert, the Sahara desert and the Sahel, western Greenland, East
Antarctica, and the oceanic regions of sparse precipitation along the west coasts of southern
Africa and of South America. As the absence of ground observational data in many of
these regions may force researchers to find alternative data sources, I will list for each of
these regions which precipitation dataset performed better than the others (although not
performing well).

Over the Tibetan Plateau and Central Asia, precipitation rates from ERA-5 and
NCEP/DOE R2 showed the smallest (but still considerable) deviations from the refer-
ence dataset. Over southern Patagonia, NCEP/NCAR R1 and NCEP/DOE R2 performed
better than the other datasets. Precipitation rates over the Atacama desert were compar-
atively satisfactorily represented by ERA-5 and JRA-55. Over the Sahara desert and the
Sahel, precipitation rates from ERA-5 showed the smallest deviations from the reference
dataset. Over western Greenland and East Antarctica, JRA-55 and NCEP/DOE R2 per-
formed better than the other datasets. Compared to the other datasets, NCEP/NCAR R1
satisfactorily represented precipitation rates over the oceanic region along the west coast of
southern Africa. The same is true for JRA-55 over the oceanic region along the west coast
of South America.

5. Conclusions
Particularly in data-sparse regions, it is tempting to use precipitation rates from

reanalysis datasets in hydrologic modeling. However, it needs to be taken into account
that the reliability of reanalysis data varies in time and space and differs according to
climate variables. Precipitation rates are among the more uncertain variables in reanalysis
datasets, especially in the first generation of global reanalyses such as NCEP/NCAR R1.
It is advisable to check for the limitations of precipitation data, especially from reanalysis
datasets, prior to their application. In this study, precipitation rates from the reanalysis
datasets ERA-5, JRA-55, MERRA-2, NCEP/NCAR R1, NCEP/DOE R2, and the analysis
dataset NCEP/CFSv2 were compared with precipitation data from the merged satellite
and rain gauge dataset GPCPv2.3 over the period from 2019 to 2023.

Overall, the precipitation rates from ERA-5 agreed best with the GPCPv2.3 reference
precipitation data: the smallest mean and maximum percentage errors, the highest mean
correlation, and the smallest mean RMSE were found for ERA-5. ERA-5 performed well
over Europe, Australia, and southern North America. However, even though the perfor-
mance of ERA-5 can be considered the best overall, there are still regions in which the
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application of precipitation rates from ERA-5 cannot be recommended. These regions in-
clude the Tibetan plateau and parts of Central Asia, western Greenland and East Antarctica,
the Atacama desert, southern Patagonia, the Sahara desert and the Sahel, and the oceanic
regions with sparse precipitation along the west coasts of South America and southern
Africa. It shall be mentioned here that even though ERA-5 showed considerable deviations
from the reference dataset in the above-mentioned regions, it still performed better than
the other datasets over the Sahara desert and the Sahel, as well as over the Atacama desert,
the Tibetan Plateau, and Central Asia.

JRA-55, MERRA-2, and NCEP/CFSv2 all performed well over the eastern part of
North America and Europe. MERRA-2 also performed well over the Indian Ocean basin,
and NCEP/CFSv2 exhibited good agreement with the reference dataset over Australia.
However, these three datasets performed poorly in several other regions. JRA-55 overes-
timated precipitation over the tropical ocean, and MERRA-2 did so over tropical land
regions. NCEP/CFSv2 overestimated precipitation in different geographical regions
over land including the Malay Archipelago, the region south of the Himalayas, and
southern Patagonia.

Even though NCEP/NCAR R1 showed the smallest mean differences from the refer-
ence dataset and therefore also the closest value for mean total global precipitation, the use
of precipitation rates from NCEP/NCAR R1 generally cannot be recommended. Precipita-
tion rates from NCEP/NCAR R1 showed the highest mean and by far the highest maximum
percentage errors as well as the lowest correlations with GPCPv2.3. The precipitation rates
from NCEP/DOE R2 were significantly higher than the reference dataset, and their usage
is also not recommended. Precipitation rates from NCEP/DOE R2 exhibited the second
lowest correlations with precipitation rates from GPCPv2.3 and the highest mean RMSE.
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