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Abstract: The assumption of stationarity in historical hydroclimatic data, fundamental to
traditional water resource planning models, is increasingly challenged by the impacts of
climate change. This discrepancy can lead to inaccurate model outputs and misinformed
management decisions. This study addresses this challenge by developing a novel monthly
data adjustment approach, the Runoff Curve Year–Type–Monthly (RC-YTM) method. The
application of this method is exemplified at five key California watersheds. The RC-YTM
method accounts for the increasing variability and shifts in seasonal runoff timing observed
in the historical data (1922–2021), aligning it with the contemporary climate conditions
represented by the period from 1992 to 2021 at the study watersheds. This method adjusts
both annual and monthly streamflow values using a combination of precipitation–runoff
relationships, quantile mapping, and water year classification. The adjusted data, reflecting
current climatic conditions more accurately than the raw historical data, serve as valuable
inputs for operational water resource planning models like CalSim3, commonly used in
California for water management. This approach, demonstrably effective in capturing
the observed climate change impacts on streamflow at monthly timesteps, enhances the
reliability of model simulations representing contemporary conditions, which can lead to
better-informed decision-making in water management, infrastructure investment, drought
and flood risk assessment, and adaptation strategies. While focused on specific California
watersheds, this study’s findings and the adaptable RC-YTM method hold significant
implications for water resource management in other regions facing similar hydroclimatic
challenges in a changing climate.

Keywords: hydroclimatic stationarity; climate change; data adjustment; runoff curve;
California

1. Introduction
1.1. Background

Computerized mathematical water resource models are indispensable tools in seeking
solutions to water and environmental problems and providing reliable feedback to water
managers. This is particularly true in areas with complex water issues, where water
resource models are routinely applied to simulate the operations of major water supply
systems under ever-increasing and competing water demands. In California, United
States, the water supply systems include the state-owned State Water Project (SWP) [1]
and federal-owned Central Valley Project (CVP) [2], which collectively supply water to
over two-thirds of the state’s population and over 150,000 km2 of farmland in the state.
For California, key modeling tools include a variety of types including water resource
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planning models (e.g., CalSim [3,4]), integrated hydrological models (e.g., C2VSim [5]),
and Delta hydrodynamic and water quality models (e.g., DSM2 [6] and SCHISM [7]).
In general, natural hydroclimatic data (observed, measured, or estimated) over the last
100 years have been the basis for developing model inputs for evaluation, planning, and
operational studies.

Water management systems (including the SWP and CVP) have been traditionally
designed and operated assuming hydroclimatic stationarity: the relevant design and/or
operational variables (e.g., precipitation and streamflow) have time-invariant mean and
variability values [8]. The scientific consensus on climate change has raised questions on
this assumption of stationarity [9] as well as whether the historical trace of natural hydrocli-
matology by itself is adequate to yield reliable modeling results moving forward [10,11]. To
ensure reliability in modeling results for what is understood to be representative of current
conditions’ performance, any non-stationarity in historical hydroclimatic variables needs
to be adjusted to reflect the current conditions (and existing into the near future). In this
way, the hydroclimatic stationarity is reestablished to a certain extent and thus the resulting
(modified) data and their associated modeling results can be applied for meaningful water
resource planning and management practices. Here, we describe the procedure developed
by the California Department of Water Resources for adjusting the historical hydrocli-
mate record spanning 1922–2021 to reflect current day climate conditions. The adjusted
hydroclimate record is used as input to the CalSim operations model, which is used by
natural resource and regulatory agencies and water users to explore the performance of the
SWP and CVP systems under various scenarios to inform water management, operational,
environmental, and investment decision making [3,4].

1.2. Literature Review

California has the highest inter-annual and intra-annual variability in precipitation
across the United States [12]. Most of the precipitation occurs during the winters while
hardly any precipitation occurs during the summers. This variability is largely dictated by
the number of big storms which are typically fueled by atmospheric river (AR) events [13]
the state receives during the winter seasons. Having a few less- or more-than-average
numbers of such storms can bring extreme drought or flooding to the state [12]. One
recent example is the drought to deluge from 2012 to 2017. The drought from 2012 to 2015
was record-breaking in terms of the limited number of storms received. The drought was
characterized by significant precipitation and snowpack deficits, high temperatures, and
low streamflow and reservoir levels [14,15], which led to economic losses in billions of
dollars [16]. The conditions changed dramatically in the winter season of 2016–2017 when
a record number of AR events brought well-above-average precipitation to the northern
part of the state, even prompting the evacuation of nearly 190,000 residents downstream of
a major water supply reservoir due to dam safety concerns after high flows caused damage
to the primary spillway [17]. This type of swing in precipitation has also been observed
throughout the instrumental period and is projected to intensify in the future, though no
significant changes in the total amount of annual precipitation have been observed [18–22].
In addition to increasing variability in precipitation, consistent warming has also been
observed and is projected to intensify across the state [23–26]. Both warming and highly
variable precipitation pose significant challenges to water resource management in the
state [27–29].

The non-stationarity in temperature has been long noted in the water management
community in California. Planning studies have been conducted to assess its impact on
water availability to inform the development of adaptive measures [30,31]. To date, how-
ever, these studies mostly focused on temperature data only and generally relied on simple
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detrending of temperature and assessing its impact on streamflow. This can largely be
attributed to the observation that this temperature trend is most apparent, most consistent,
and best explained by climate change. These studies employed similar detrending method-
ologies to remove the presumably linear warming trend in the temperature data. The
detrended temperature time series was run through a hydrologic model (e.g., VIC in [30],
SAC-SMA in [29], and SWAT in [32]) with un-modified historical precipitation to gener-
ate a streamflow sequence. This temperature detrended streamflow sequence was then
compared to the model-generated streamflow sequence with un-modified temperature and
precipitation data to evaluate how historical temperature warming trends affect streamflow.
While these studies help estimate the streamflow impacts of temperature warming on rising
snow lines, earlier snowmelt runoff, and increased evapotranspiration, they do not capture
the dynamic or thermodynamic atmospheric impacts of warming on precipitation [33].

Despite the availability of methods for imposing warming on historical data and
explorations of warming on water resource management in California, no methods or
exploration of broader changes in hydroclimate (including thermodynamic and dynamic
atmospheric changes) on an applicable scale in the state were reported in the literature, to
our best knowledge. This study aims to address this gap by directly adjusting streamflow
using a statistical approach that incorporates precipitation variability into the adjustment
process, rather than relying on a process-based hydrologic model. While the use of hydro-
logic models could prove a more physically based representation of temperature changes
on the watershed, this approach has several limitations: (1) model calibrations and routing
are not available for all watersheds critical to water management across the state; (2) model-
simulated streamflow amount and timing shifts for the same temperature changes often
vary across different hydrologic models; (3) differences in evapotranspiration simulation in
hydrologic models appears to be a key driver of differences; (4) conducting a comprehensive
comparison, selection, and refinement of hydrologic models is time-consuming and may
not lead to a consensus, as different models may have different strengths and weaknesses.
Working directly with the observed precipitation and streamflow dataset provides several
advantages: (1) streamflow data are the operational data traditionally applied to guide
various water resource planning and management practices (e.g., water year–type classi-
fication [34,35]); (2) streamflow presents an aggregate measure of climatological changes
and thus does not require that one identify, understand, and correctly simulate the physics
of each change; (3) it allows for more simplified statistical manipulations of the historical
data to represent current conditions.

Non-stationarity in streamflow has been typically explored in three board categories:
magnitude, timing, and frequency [36]. For instance, regarding magnitude, Das et al. [37]
reported that the fraction of winter runoff over total annual runoff notably increased
during the period of 1950–1999 across the western U.S., including California. In a separate
study, Regonda et al. [38] noted that the ratio of spring runoff over total annual runoff
has been decreasing in the Pacific Northwest and California during the same period. Both
studies attributed the temporal shift in season runoff to changes in (a) snow runoff timing
which shifted earlier due to increasing warming [39–43]; and (b) rain–snow partition with
precipitation falling as more rain rather than snow [44,45]. In addition, non-stationarity
in streamflow has also been examined in terms of the frequency of events. One common
approach to quantifying changes in frequency is the peak-over-threshold method which
focuses on the number of flood or drought events above/beneath a specific threshold during
a preset period [46,47]. The current study aims to tackle non-stationarity in streamflow
in major California watersheds from a water supply perspective and thus focuses on the
magnitude and timing aspects rather than the frequency of streamflow events.
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Numerous approaches have been applied to detect changes in the magnitude of
streamflow time series. They can be broadly categorized into three groups: regression-
based methods, pooling approaches, and abrupt change detection methods [36]. The
ordinary least square (OLS) linear regression is probably the most parsimonious approach
used to assess the strength of linear trends in hydroclimatic time series including flow time
series [48]. However, there are assumptions (e.g., normality and independence of the target
time series) to be met when applying the OLS. When some of these assumptions are not
met, non-parametric alternatives can be employed. The Mann–Kendall (MK) test [49,50]
is one of the most commonly used non-parametric trend analysis approaches. It requires
no linearity nor normality in the analysis time series. There are also variants of the MK
test that can address autocorrelation embedded in the analysis time series (e.g., [51,52]).
Once a significant trend is determined via the MK test (or its variants), the Thiel–Sen
approach [53,54] has often been applied next to estimate the slope of the trend. Sample size
can influence the robustness of trend analysis results [55,56], no matter what parametric or
non-parametric approaches are employed. Pooling methods are typically used when the
sample size of the target time series is limited. One such method is pooling observed or
simulated data from locations close to the target study locations to yield a larger dataset
with increased sample size and thus increased statistical robustness [57,58]. Abrupt changes
in streamflow time series normally imply human activities in the streams (e.g., diversions,
dam construction/removal). Change point analysis can be conducted to assess and detect
the timing in a time series when such abrupt changes occur. Among available change point
detection methods, the widely used Pettitt test [59] is shown to yield the most satisfactory
balance between detecting the change point and minimizing the possibility of false positive
outcomes [60]. The current study focuses on the full natural flow (with human influence
unaccounted for) with decent record lengths (around 100 years). The pooling method
and change point analysis are not applicable. Among the regression-based methods, the
MK test is one of the most popular monotonic trend analysis methods that require no
linearity nor normality assumption for the data. This study applies a modified version
of the Mann–Kendall approach to address the potential autocorrelation in the streamflow
time series.

1.3. Study Objectives

This study aims to develop an approach for the adjustment of the magnitude and
timing of streamflow data with precipitation variability change considered to reflect the cur-
rent hydroclimatic conditions. The original and adjusted streamflow data can be supplied
to water resource models to generate decision variables that better inform the decision-
making of water managers than their counterparts generated using the historical data
alone. Specifically, this study (1) examines the historical full natural flow (FNF) [32] data to
identify important signals that indicate shifted or changed conditions resulting from climate
changes or other drivers; (2) determines if these trends or changes warrant adjustments
to the historical FNF to reflect current conditions more reasonably for use in evaluation,
planning, and operational models and tools; and (3) develops alternative time series to
complement or replace the historically observed FNF for modeling purposes. Particularly,
this study develops a user-friendly browser-based dashboard to evaluate the results from
a range of data adjustment approaches against the unadjusted FNF data. In this study,
the proposed approach is illustrated for selected key watersheds meaningful for water
management in California. However, the framework is modular and can be applied to
other study areas.

The remainder of the paper is structured as follows: Section 2 covers the study area,
dataset, along with an evaluation of data stationarity. Section 3 introduces the study period,
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study metrics, and the adjustment method, while Section 4 presents the evaluation and
adjustment results. The scientific and practical implications, study limitations, and future
work are discussed in Section 5. Finally, Section 6 concludes the study.

2. Evaluation of Stationarity
2.1. Study Area and Datasets

This study focuses on watersheds draining into five key reservoirs which represent
the diverse hydrologic conditions impacting the SWP and CVP systems in a tractable
way: Shasta Lake (SIS), Lake Oroville (FTO), and Folsom Lake (AMF) in the northern
part of the Central Valley (also called Sacramento Valley) as well as Don Pedro Lake
(TLG) and Millerton Lake (SJF) in the southern part (also known as San Joaquin Valley)
(Figure 1). The upper Sacramento River watershed drains into Lake Shasta, California’s
largest reservoir. The upper Feather River watershed and American River watershed drain
into Lake Oroville and Folsom Lake, respectively. These three basins are important surface
water supply sources for the SWP (FTO) and CVP (SIS and AMF). The Tuolumne River
watershed and upper San Joaquin River watershed drain into Don Pedro Lake and Millerton
Lake, respectively. While these southern watersheds are smaller and contribute less flow,
they are located in higher elevations and thus more snow-dominated than their northern
counterparts. They provide important and different information about hydrologic changes
and tributary flow from watersheds that can impact SWP and CVP operations. Collectively,
these five study watersheds provide a sampling of watershed sizes, locations along the
longitudinal axis of the Central Valley, and variations of rain and snow dominance.
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(water year 1922–2021), FTO (water year 1906–2021), AMF (water year 1901–2021), TLG
(water year 1901–2021), and SJF (water year 1901–2021). Figure 2 depicts the corresponding
annual sum of FNF data time series. All inflows generally share a similar variation pattern,
with similar wet and dry spells in terms of both magnitude and timing. As expected,
inflows to the reservoirs (Shasta on the Sacramento River, Oroville on the Feather River,
and Folsom on the American River) in the Sacramento Valley are significantly higher than
their counterparts (Don Pedro on the Tuolumne River and Millerton on the San Joaquin
River) in the San Joaquin Valley. In addition to FNF, this study also utilizes monthly
watershed-averaged precipitation for each of the study locations. The precipitation data
are obtained from the PRISM Climate Dataset [61].
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2.2. Trend Analysis Method

The Mann–Kendall test [49,50] is a widely used non-parametric test for identifying
trends in time series data. It is effective for detecting trends in independent time series data.
However, in many practical applications, especially in hydrology and climate studies, the
data points in a time series are not independent. This lack of independence arises due to
various factors such as seasonality, climatic oscillations, and other temporal dependencies.
In such cases, applying the conventional Mann–Kendall test can lead to incorrect results
because it assumes data independence. The modified Mann–Kendall test of Hamed and
Rao [62] addresses this limitation by considering autocorrelation in the time series data.
Autocorrelation refers to the relationship between a data point and its past values, which
is a common feature in time series data. Ignoring this autocorrelation can result in spu-
rious trend detections or failure to detect true trends. The modified Mann–Kendall test
incorporates a correction for autocorrelation to account for the non-independence of data
points. This correction makes the test suitable for a wide range of applications in various
fields, including hydrology, climate science, and environmental studies (e.g., [55,56,63–66]).
After identifying a significant trend using the modified Mann–Kendall test, the Thiel–Sen
method [53,54] is subsequently used to calculate the trend’s slope.
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In order to mitigate the influence of natural fluctuations, including extreme values,
on the inherent trend within the streamflow data, this research refrains from directly
assessing trends in the unprocessed time series. Instead, trend analysis is conducted on the
30-year rolling average of the time series. Evidently, there is autocorrelation within these
30-year rolling datasets. Consequently, this study employs the modified Mann–Kendall
test to analyze these 30-year rolling datasets. This modification, which accommodates
autocorrelation, enhances the reliability of trend detection in contrast to the conventional
Mann–Kendall method.

2.3. Trend Analysis

In the process of trend analysis, we initiate the analysis by examining the 30-year
rolling average data for full natural flow (FNF) in five study watersheds at an annual scale.
The 30-year rolling average is applied to smooth out inter-annual variability, as shown in
Figure 2 above. Additionally, we evaluate the standard deviation (STD) and the coefficient
of variation (COV) of these rolling time series. The COV is calculated by taking the ratio
between the 30-year rolling STD and the 30-year rolling mean. The 30-year rolling STD and
COV shed light on the variation and volatility (i.e., variation in reference to the mean) of the
FNF data, respectively. Subsequently, we investigate trends in the seasonal contributions to
the 30-year rolling annual average, considering wet season, water supply season, and dry
season data.

Figure 3 depicts the trend analysis results on the annual scale. All five watersheds
exhibit an upward trend in the 30-year rolling average of the annual FNF time series (left
column of Figure 3). However, the trend is not statistically significant for Shasta and Feather
(with p-values > 0.05). For those two watersheds, an upward trend was evident until the
early 1980s. However, a downward trend is notable afterward. This signifies that these two
watersheds were getting wetter before the early 1980s and then trended drier afterward.
Looking through the entire period, however, there is no statistically monotonic trend. The
other three watersheds show a statistically significant wetting trend.

In contrast, five watersheds consistently show a distinct increase trend in the rolling
30-year STD time series (middle column of Figure 3). The increasing tendency for each
watershed is statistically significant (p-values < 0.05). The trend slope is steeper for Sacra-
mento watersheds (around 10 million m3/year) than for the San Joaquin watersheds (less
than 8 million m3/year). This is expected as the Sacramento watersheds, particularly the
largest two watersheds (i.e., Shasta River watershed and Feather River watershed), are
generally larger in size and yield higher flow compared to the San Joaquin watersheds
(Figures 1 and 2).

Similarly, all five watersheds exhibit a statistically significant upward trend in the
30-year rolling COV (right column of Figure 3). Conversely, the largest two watersheds
have the steepest trend slopes, less than half of their counterparts for the remaining three
study watersheds. This suggests that the largest watersheds are relatively more resilient
to increasing variabilities. It is worth noting that the 30-year rolling COV of each study
watershed is trending downward until around the 1970s and starts trending upward since
then. This coincides with the warming trend that has become more pronounced since the
early 1970s [67].

Trend analysis is further conducted at the seasonal scale (Table 1). Three seasons
within a water year (October of the previous calendar year to September of the current
calendar year) are considered: wet season (October–March), snowmelt season (April–July),
and dry season (August–September). Specifically, the modified Mann–Kendall test is
applied to the percentage of flow contribution of each of these three seasons to the total
annual flow (i.e., the ratio of seasonal runoff volume to annual total runoff volume). It is
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clear that the wet season is contributing more to annual total runoff while the snowmelt
season is contributing less for all study watersheds. This is consistent with what has been
reported in the literature (e.g., [45,68]) that the wet season is generally getting wetter and
more precipitation falls as rainfall rather than snowfall. For the dry season, the trend is
mixed, with the American River watershed observing a statistically significant decreasing
trend while the other four study watersheds exhibit an increasing trend. However, only the
Tuolumne River watershed shows a statistically significant upward trend.
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Table 1. Modified Mann–Kendall test results of seasonal percent of flow contribution for 30-year
rolling average trends.

Watershed

Snowmelt Season Dry Season Wet Season

Apr.–Jul.
Slope

Apr.–Jul.
p-Value

Aug.–Sep.
Slope

Aug.–Sep.
p-Value

Oct.–Mar.
Slope

Oct.–Mar.
p-Value

Shasta −5.71 0.035 0.196 0.58 5.252 0.03

Feather −12.55 0.001 0.12 0.498 12.67 0.001

American −13.82 0.002 −0.60 <0.001 14.11 0.002

Tuolumne −8.99 0.002 2.03 0.015 6.86 <0.001

San Joaquin −6.64 0.028 0.68 0.629 5.41 <0.001

In summary, the most evident and consistent signals found in the above trend analysis
include the increasing 30-year rolling standard deviation and coefficient of variation,
and the shift in seasonal runoff timing. After consideration of these analyses, as well
as consideration of recent studies projecting the impacts of climate change (e.g., Swain
et al. [22]) which indicate that emerging changes in hydrological behavior are consistent
with the early influence of climate change on California climate, DWR determined that
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adjustments to the historical streamflow time series that attempt to impart statistically
significant changes onto the historical record would be a necessary improvement to help
characterize current operating conditions.

3. Hydroclimate Adjustment
3.1. Study Periods

The basis of comparison within the established metrics begins with defining the
time periods for comparison (Table 2). Although historical FNF data are available for
most watersheds from 1906 to 2021, for consistency across all watersheds, 1922–2021 is
used as the key period of importance (hereafter referred to as the “observed period”). This
observed period is further subdivided into two periods: (1) the historical period (1922–1991)
and (2) the contemporary reference period (1992–2021). The contemporary reference
period is considered the most representative period of contemporary climate conditions,
which is consistent with the 30-year climate normal defined by the National Oceanic and
Atmospheric Administration (National Oceanic and Atmospheric Administration 2022).
For this study, the start of the period was shifted one year later (from 1991 to 1992) to allow
use of 2021, the most recent data available, while maintaining a 30-year climate window.
The historical period is considered to be representative of previous climate periods and thus
would be the period during which potential hydroclimate adjustments would be applied.

Table 2. Definition of study periods.

Period Definition Note

1921–2021 Observed Period The period for which historical data are available in
all watersheds.

1922–1991 Historical Period Target time period over which data will be adjusted.

1992–2021 Contemporary Reference Period Contemporary climate period.

Varies Reference Objective Period
Either observed period or contemporary reference
period, depending on whether a significant trend
exists in data (see Section 3.2).

3.2. Study Metrics

This study focuses on three analysis metrics. These metrics include the average (mean)
and standard deviation (STD) of the target time series, and the coefficient of variation (STD
divided by the average). The modified Mann–Kendall trend test is conducted during the
observed period (1922–2021) for each target variable at each watershed. If a significant
trend (p < 0.05) was calculated, then the reference objective period used for comparison
was set as the contemporary reference period 1992–2021. If no significant trend was found,
then the reference objective period was set as the observed period 1922–2021. This dynamic
selection of reference objective period allowed methods to be compared for both their
ability to mimic recent conditions in cases where conditions were changing and mimic
observed conditions where conditions showed no significant trend.

A general approach of the comparison of differences between average, standard devi-
ation, and coefficient of variation, respectively, of the newly adjusted historical value and
the reference objective value was used to evaluate the performance of different competing
methods. The generalized equation is shown as follows:

D =
Mx,Adj − Mx,Re f Obj

Mx,Re f Obj
(1)
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where D is the performance metric; M is the metric in question (average, standard deviation,
or coefficient of variation) for a given variable x which is the specific watershed and
temporal scale (e.g., annual, seasonal, monthly); Mx,Adj and Mx,Re f Obj stand for the metric
values of the historical periods and reference objective period, respectively.

3.3. Novel Adjustment Method

This study develops a novel data adjustment approach named “Runoff Curve Year–
Type–Monthly (RC-YTM)”. The approach, represented in Figure 4, begins by applying
the mean distance scale method to adjust annual precipitation in the historical period,
ensuring that its standard deviation matches that of the reference period. Next, it uses an
annual runoff curve to adjust annual streamflow (rim inflow), based on the streamflow
difference derived from the reference runoff curve and the adjusted annual precipitation
from the previous step. Finally, the year–type–monthly distribution method is employed to
allocate the annual totals into monthly values. The mathematical equations and detailed
explanations for each of these steps are provided in Sections 3.3.1 and 3.3.2.

Hydrology 2025, 12, x FOR PEER REVIEW 10 of 24 
 

 

and the reference objective value was used to evaluate the performance of different com-
peting methods. The generalized equation is shown as follows: 𝐷 = 𝑀௫,஺ௗ௝ − 𝑀௫,ோ௘௙ை௕௝𝑀௫,ோ௘௙ை௕௝  (1)

where D is the performance metric; M is the metric in question (average, standard devia-
tion, or coefficient of variation) for a given variable 𝑥 which is the specific watershed and 
temporal scale (e.g., annual, seasonal, monthly); 𝑀௫,஺ௗ௝ and 𝑀௫,ோ௘௙ை௕௝ stand for the met-
ric values of the historical periods and reference objective period, respectively. 

3.3. Novel Adjustment Method 

This study develops a novel data adjustment approach named “Runoff Curve Year–
Type–Monthly (RC-YTM)”. The approach, represented in Figure 4, begins by applying 
the mean distance scale method to adjust annual precipitation in the historical period, 
ensuring that its standard deviation matches that of the reference period. Next, it uses an 
annual runoff curve to adjust annual streamflow (rim inflow), based on the streamflow 
difference derived from the reference runoff curve and the adjusted annual precipitation 
from the previous step. Finally, the year–type–monthly distribution method is employed 
to allocate the annual totals into monthly values. The mathematical equations and detailed 
explanations for each of these steps are provided in Sections 3.3.1 and 3.3.2. 

 

Figure 4. Schematic flowchart illustrating the RC-YTM approach. Key abbreviations include MDS 
(mean distance scale), ARC (annual runoff curve), and YTMD (year–type–monthly distribution). 
Rim inflow indicates the streamflow runoff at each study watershed. Inputs are represented by grey 
boxes, intermediate data products by white boxes, adjustment methods by blue circles, and outputs 
by yellow boxes. 

In addition, the current study also explores a number of alternative adjustment meth-
ods and compares their performance against the proposed approach. For simplicity, these 
alternative methods are briefly described in Appendix A. The RC-YTM method consists 
of two major adjustments on precipitation and FNF during the adjusting period (1922–
1991), respectively. For both variables, the annual amount (water year total) is adjusted 
first, followed by the monthly amount. The specific procedures are described in detail as 
follows. 

  

Figure 4. Schematic flowchart illustrating the RC-YTM approach. Key abbreviations include MDS
(mean distance scale), ARC (annual runoff curve), and YTMD (year–type–monthly distribution).
Rim inflow indicates the streamflow runoff at each study watershed. Inputs are represented by grey
boxes, intermediate data products by white boxes, adjustment methods by blue circles, and outputs
by yellow boxes.

In addition, the current study also explores a number of alternative adjustment meth-
ods and compares their performance against the proposed approach. For simplicity, these
alternative methods are briefly described in Appendix A. The RC-YTM method consists of
two major adjustments on precipitation and FNF during the adjusting period (1922–1991),
respectively. For both variables, the annual amount (water year total) is adjusted first,
followed by the monthly amount. The specific procedures are described in detail as follows.

3.3.1. Precipitation Adjustment

Precipitation adjustment is conducted in two steps. First, the annual total precipi-
tation of each water year (Pwy(y)) is adjusted using the ratio of reference period annual
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precipitation standard deviation (σ
Pwy
re f ) over adjusting period annual precipitation standard

deviation (σ
Pwy
hist ) as follows:

Padj
wy (y) = µ

Pwy
hist +

σ
Pwy
re f

σ
Pwy
hist

[
Pwy(y)− µ

Pwy
hist

]
(2)

where y represents the water year (ranging from 1922 to 1991); µ
Pwy
hist designates the mean

annual precipitation over the adjusting period; Padj
wy (y) stands for the adjusted annual

total precipitation for water year y;
σ

Pwy
re f

σ
Pwy
hist

represents the water year precipitation standard

deviation adjusting ratio.
Next, for a specific month (m) in a water year (y), the monthly precipitation is adjusted

as follows:

Padj
wy,m(y, m) =

Padj
wy (y)

Pwy(y)
·P(y, m) (3)

where P(y, m) is the monthly total precipitation for month m (ranging from 1 to 12, with 1
representing October of the previous calendar year and 12 representing September of the

current calendar year) in water year y;
Padj

wy (y)
Pwy(y)

represents the precipitation adjusting ratio in
water year y.

3.3.2. Runoff Adjustment

This study proposes a novel runoff curve and year–type–monthly (RC-YTM) method to
adjust runoff, namely full natural flow (FNF) in the current study. The method first employs
a runoff curve approach to adjust runoff on the annual scale. Based on adjusted annual
runoff, it further applies a year-to-month approach to adjust runoff on the monthly scale.

The runoff curve approach determines the precipitation–runoff relationship (namely
runoff curve) using annul precipitation and FNF in the reference period (1992–2021). The
runoff curve consists of piecewise log quadratic curves and a straight line at point (0.0).
The log quadratic function can be expressed as follows:

FNFwy

(
yre f

)
= a + bln

(
Pwy

(
yre f

))
+ c

[
ln
(

Pwy

(
yre f

))]2
(4)

where FNFwy

(
yre f

)
represents the annual runoff volume for water year yre f (ranging

from 1992 to 2021); a, b, and c are coefficients that can be derived using observed flow
and precipitation data during the reference period. Each annual precipitation in the 30-
year reference period is associated with a set of coefficients (a, b, c) which is estimated
using the 25 nearest precipitation/flow data points. This piecewise curve fitting approach
characterizes the dry and wet portion of the runoff curve better than a single log quadratic
function approach.

In the following step, the effect of precipitation adjustment on annual runoff of a
specific water year (y) during the adjusting period 1922–1921 can be calculated using the
runoff curve determined above as follows:

∆F(y) = a + bln
(

Padj
wy (y)

)
+ c

[
ln
(

Padj
wy (y)

)]2
−

{
a + bln

(
Pwy(y)

)
+ c

[
ln
(

Pwy(y)
)]2

}
= bln

Padj
wy (y)

Pwy(y)
+ cln

Padj
wy (y)

Pwy(y)

[
ln
(

Padj
wy (y)

)
+ ln

(
Pwy(y)

)] (5)

The adjusted annual total runoff can then be expressed as follows:

FNFadj
wy (y) = FNFwy(y) + ∆F(y) (6)
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where FNFwy(y) and FNFadj
wy (y) represent original and adjusted annual runoff volumes for

water year y (ranging from 1922 to 1991).
The year–type–monthly approach first classifies water years during the adjusting

period (1922–1991) into three types: wet, average, and dry (WAD) based on thresholds
determined from reference period precipitation. The thresholds are based on ranks. Specif-
ically, during the reference period of 30 years (1992–2021), precipitation of every year is
ranked from highest to lowest. The 10th highest precipitation value (Prwet) serves as the
threshold for wet years, meaning that any year with precipitation exceeding this value is
classified as a wet year. Similarly, the 20th highest (or the 10th lowest) value (Prdry) serves
as the threshold for dry years, meaning that any year with precipitation below this value is
categorized as a dry year. The classification can be expressed as follows:

WADwy(y) =


1
2
3

Prwet ≤ Pwy(y)
Prdry ≤ Pwy(y) < Prwet

Pwy(y) < Prdry

(7)

where WADwy(y) denotes the type of year for water year y (ranging from 1922 to 1991);
a value of 1, 2, and 3 represents a wet, average, and dry year, respectively; Pwy(y) is
the original unadjusted annual precipitation during water year y (ranging from 1922 to
1991); Prwet and Prdry are wet and dry threshold values, respectively, determined from the
reference period (1992–2021).

Next, the following equation is applied to obtain an interim monthly runoff time series
during the adjusting period:

FNFintadj
wy,m (y, m) = FNFadj

wy (y)
FNFwy,m(y, m)

FNFwy(y)
(8)

where FNFwy,m(y, m) and FNFintadj
wy,m (y, m) denote original and temporarily adjusted

monthly runoffs for month m in year y (ranging from 1922 to 1991); FNFwy(y) and

FNFadj
wy (y) represent original and adjusted annual runoff values for year y during the

adjusting period.
The next step is to determine the interim monthly flow distribution adjustment ratio

as follows:

β(i, m) =

1
NWAD

re f (i)∑
NWAD

re f (i)
j=1 FNFwy,m

(
yre f

i
j, m

)
1

NWAD
adj (i)∑

NWAD
adj (i)

j=1 FNFintadj
wy,m

(
yi

j, m
) − 1 (9)

where i denotes the water year type (i = 1, 2, or 3); NWAD
re f (i) represents the number of

wet, average, or dry years during the reference period from 1992 to 2021, which equals
to 10 for each year type; NWAD

adj (i) represents the number of wet, average, or dry years

during the adjusting period from 1922 to 1991; yre f
i
j and yi

j stand for the j-th year of wet

( i = 1), average (i = 2), or dry (i = 3) years during the reference period and adjusting
period, respectively.

The monthly runoff time series is further adjusted using the interim distribution
adjustment ratio determined above:

Φadj
wy,m(y, m) = FNFintadj

wy,m (y, m) + β
(
WADwy(y), m

)
·FNFintadj

wy,m (y, m) (10)
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The final monthly distribution adjustment ratio is then determined as follows:

ω
adj
wy,m(y, m) =

Φadj
wy,m(y, m)

∑12
m=1 Φadj

wy,m(y, m)
(11)

Finally, the adjusted monthly runoff is derived using the following equation:

FNFadj
wy,m(y, m) = ω

adj
wy,m(y, m) ·FNFadj

wy (y) (12)

4. Adjustment Results
The goal of adjusting the historical FNF was to produce a representative flow time

series that reflects reference conditions (1992–2021). The adjustments were made to FNF
on various temporal scales including monthly, seasonal, and annual. For all the plots, the
FNF values from three Sacramento Valley watersheds (Shasta, American, and Feather) are
aggregated into one FNF time series for simplicity. Similarly, the FNF values from two San
Joaquin Valley watersheds (San Joaquin and Tuolumne) are aggregated into a single FNF
time series.

Figure 5 illustrates the comparison between historical observed streamflow and RC-
YTM adjusted streamflow in terms of annual values across the entire time span. The
watersheds in Sacramento Valley and San Joaquin Valley are aggregated separately for
clarity. Notable distinctions are observable, with wet years exhibiting increased flow and
dry years experiencing reduced flow. Despite these variations, the adjusted flow closely
resembles historical values in terms of patterns and fluctuations. The overall disparity in
magnitude is generally minimal, as corroborated by the percentage difference in mean
values provided in Table 3.
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Figure 5. Results of FNF time series adjusted with RC-YTM method compared to both the historic
and reference period for both the Sacramento watersheds (top panel) and San Joaquin watersheds
(bottom panel).

Figure 6 depicts the empirical cumulative distribution function (eCDF) of annual
flows, emphasizing that the RC-YTM eCDF (comprising 96 values) closely aligns with
the reference period eCDF (30 values) when compared to the historical eCDF (96 values),
particularly for high flows. This alignment is expected, given that the data from the
reference period represent the most recent climate and served as the target during the
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adjustment process. It is important to note that the adjusted time series exhibits higher peak
flows and lower low flows compared to their counterparts in the historical and reference
periods. This suggests that water resource planning practices should prioritize extremes at
both ends of the spectrum, addressing both high flow and low flow scenarios.

Table 3. Percent change in full natural flow (FNF) before and after the adjustment.

Variables Mean (%) Standard Deviation (%) Coefficient of Variation (%)

Annual FNF 1.61 −2.9 −1.71

Monthly FNF −1.55 1.73 8.91

Monthly FNF Percentage −3.63 1.78 6.44

Seasonal FNF −1.16 −2.35 −0.41

Seasonal FNF Percentage −3.69 1.85 2.89
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Figure 6. Empirical cumulative distribution function of annual flows for the adjusted FNF time series,
and reference and historical time series for Sacramento watersheds (left panel) and San Joaquin
watersheds (right panel).

Figure 7 illustrates the close tracking of RC-YTM average monthly and monthly
percentages of annual flow values with the reference period values, showing significant
deviations from observed values. These deviations are prominent during the wet season
(October–March) and much of the snowmelt season (March–May). When comparing
changes between Sacramento watersheds and San Joaquin watersheds, it becomes evident
that the adjusted flow exhibits a higher-than-historical peak (in March) in the former and a
lower-than-historical peak (in June) in the latter. This suggests distinct hydroclimatic non-
stationarities between Sacramento watersheds and San Joaquin watersheds. Consequently,
even though the adjustment method (YC-YTM) remains the same, the flows are adjusted in
different ways for these two regions.

Significant historical hydrologic events for California water managers encompass
water years 1976–1977 (the two-year drought of record) and 1980–1983 (the wettest pluvial
period of record). Figures 8 and 9 depict the historical flows and adjusted flows for these
periods, respectively. In both instances, RC-YTM closely reproduces the monthly observed
streamflow values from the historical records, albeit at slightly more extreme levels. This
presentation offers insight into how these periods might unfold if repeated under today’s
climate conditions.
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In summary, the adjusted flows closely resemble historical values but exhibit slightly
more extreme conditions, with wet periods becoming wetter and dry periods becoming
drier throughout the adjusted period, including notable historical events such as the
1976–1977 drought and the 1980–1983 flood. Notably, the adjustment accounts for distinct
hydroclimatic changes between Sacramento watersheds and San Joaquin watersheds,
leading to higher peak flows in the former and lower peak flows in the latter. These
observations provide valuable insights for more informed water resource planning in
the state.

A specific example is presented below to demonstrate the impact of using raw versus
adjusted data to estimate State Water Project (SWP) deliveries south of the Delta, a critical
management factor closely examined in the planning of long-term SWP operations. These
deliveries are calculated using the water resource planning model, CalSim3. Both the raw
historical data and the adjusted data are used as inputs for the model. The full configuration
details of CalSim3 can be found in [69].

Table 4 presents estimated SWP deliveries south of the Delta during wet periods under
current conditions. These estimates range from 3.815 to 5.944 billion cubic meters per
year. Both the adjusted and unadjusted historical data yield similar results, with minor
differences. The adjusted scenario generally produces slightly higher estimates except for
the single year 2006, with the largest discrepancy (5.21%) observed in 1982–1983 and the
smallest (0.04%) in 1983.

Table 4. Estimated average wet-period SWP south of Delta deliveries (existing conditions) *.

Period ** Historical (106 m3/Year) Adjusted Historical
(106 m3/Year) Percent Difference (%)

Long-Term (1922–2021) Average 2906 2841 −2.25

Single Year (1983) 5942 5944 0.04

Single Year (2006) 5161 5150 −0.22

2 Years (1982–1983) 5256 5530 5.21

4 Years (1980–1983) 4438 4532 2.11

6 Years (1978–1983) 4120 4249 4.14

10 Years (1978–1987) 3815 3846 0.81

Single Year (2017) 4582 4595 0.27
* Adapted from [69]. ** Periods were manually selected to include the wettest, most notable, and most recent
years from the simulation.

Table 5 presents estimates of SWP allocations south of the Delta during dry periods
under current conditions, with values ranging from 6% to 23%. Unlike the wet-period
estimates shown in Table 4, there are significant differences between the results based on
historical data with and without adjustments. For individual drought years, the adjusted
data generally produce higher allocation estimates, particularly for the extremely dry year
1977, where the allocation rate from the adjusted hydrology is more than three times that of
the original data. However, for prolonged droughts, the adjusted hydrology scenario is
more conservative, resulting in lower allocation rates. These differences may result in vary-
ing decision-making outcomes, highlighting the importance of using more representative
(adjusted) data in planning processes.
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Table 5. Estimated average dry-period SWP south of Delta deliveries (existing conditions) *.

Period ** Historical
(106 m3/Year)

Adjusted Historical
(106 m3/Year) Percent Difference (%)

Long-Term (1922–2021) Average 2906 2841 −2.25

Single Year (1977) 205 232 13.25

Single Year (2014) 321 318 −0.77

2 Years (1976–1977) 1354 1141 −15.76

2 Years (2014–2015) 454 450 −0.82

6 Years (1987–1992) 1168 1067 −8.66

6 Years (1929–1934) 1071 745 −30.41
* Adapted from [69]. ** Periods were manually selected to include the driest, most notable, and most recent years
from the simulation.

Table 5 presents estimates of SWP deliveries south of the Delta during dry periods
under current conditions, with yearly averages ranging from 205 to 1345 million cubic
meters per year. Unlike the wet-period estimates in Table 4, there are significant differences
between results based on historical data with and without adjustments. The adjusted
data yield higher delivery estimates for the extremely dry year 1977 (13.25% higher).
However, for the 2014 drought and prolonged droughts, the adjusted scenario is more
conservative, resulting in lower delivery rates. The most notable differences occur during
the six-year drought from 1929 to 1934 (30.41% lower) and the two-year drought from 1976
to 1977 (15.76% lower). These discrepancies may impact decision-making during dry years,
when water management is more challenging, highlighting the importance of using more
representative (adjusted) data in long-term planning.

5. Discussions
5.1. Implications

This study has both important practical and scientific implications. From a practical
point of view, in water resource planning models like CalSim3 [3,4], a “fixed-level-of-
development” or “stationary climate” approach assumes that parameters such as water
demand, land use, sea level, and meteorology are stationary throughout a 100-year simu-
lation period. This allows for consistent simulation and enables the evaluation of system
performance under varying meteorologic and hydrological conditions. For climate change
analysis, it helps compare simulations where climate is the key difference and where histor-
ically observed droughts and floods occur at the same point in the simulation but perturbed
to reflect the changed climate. This type of analysis has proved particularly important and
useful in California, where natural variability of precipitation may be several times the
magnitude of the climate signal. Since the historical data over the last 100 years are used as
the baseline, the assumption of stationarity must be validated, and adjustments are needed
if it does not hold. This study proposed a novel approach to adjust historical hydroclimate
data, making it more representative of the current climate conditions and thus more suit-
able for operational water resource planning. Milly et al. [9] argued that hydroclimatic
stationarity is no longer valid due to human-induced climate changes, which are shifting
the averages and extremes of precipitation, evapotranspiration, and river discharge rates.
The current study identified specific trends in California’s hydroclimatic data that challenge
the stationarity assumption, including increasing variability in water availability and shifts
in seasonal runoff timing. These findings, consistent with those found in relevant previous
studies on California’s changing climate [19–21,37–44], highlight the need for adjusted
hydroclimatic data to reflect these evolving conditions.
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Milly et al. [9] further suggested that new approaches will need to be developed to re-
place stationarity. This study’s scientific contribution further lies in developing and testing
a novel data adjustment approach called “Runoff Curve Year–Type–Monthly” (RC-YTM).
This method aims to bridge the gap between historical data and current hydroclimatic
realities by adjusting historical streamflow data to align with more recent climate patterns.
The RC-YTM method’s rigor and complexity are evident in its detailed procedures, incor-
porating adjustments for both precipitation and runoff at different temporal scales (annual
and monthly).

By accurately reflecting current conditions, this study offers a valuable tool for en-
hancing the reliability and accuracy of operational water resource planning models. This,
in turn, can lead to better-informed decision-making in various aspects of water resource
management, from water demand management and infrastructure investment to drought
and flood risk assessment and adaptation strategies.

5.2. Limitations and Future Work

While this study introduces a promising approach to adjusting historical streamflow
data, it acknowledges certain limitations that pave the way for future research. One limi-
tation stems from the study’s focus on the magnitude and timing aspects of streamflow
non-stationarity, as opposed to also examining shifts in the frequency of streamflow events.
While this focus is justified for water supply management, a more comprehensive under-
standing of hydroclimatic changes requires examining all three aspects of non-stationarity.
Future work could expand the RC-YTM method or explore complementary techniques to
capture potential shifts in the frequency of extreme events, such as floods and droughts, for
a more holistic view of climate change impacts on water resources.

Furthermore, this study primarily focuses on five key watersheds in California, which
represent diverse hydrological conditions but may not capture the full spectrum of hy-
droclimatic variability across the state. Applying the RC-YTM method to a wider range
of watersheds with varying sizes, elevations, and rain–snow dominance would enhance
the generalizability of the findings and refine the method’s applicability across different
hydrological settings. Such an expanded analysis could also reveal regional differences in
the magnitude and nature of hydroclimatic changes, contributing to more targeted water
resource management strategies.

Moreover, this study acknowledges that the RC-YTM method, despite its novelty, relies
on statistical adjustment and assumptions, particularly in its treatment of precipitation vari-
ability without explicitly simulating the complex process between precipitation and runoff.
Incorporating more physically based hydrological models could improve accuracy, but this
comes with challenges such as calibration needs and model structural uncertainties. Future
research should carefully balance statistical simplicity with the physical representation of
hydrological processes when refining the RC-YTM method or developing new techniques.

In addition, this method treats each study watershed independently and does not
account for spatial correlations between them. Overlooking these correlations could result
in overly simplified representations of watershed behavior. In the future, the approach
could be enhanced to simultaneously adjust precipitation and streamflow for all study
watersheds, considering their spatial interconnections.

Finally, this method assumes that the hydroclimatic conditions of the contemporary
reference period (1992–2021) accurately reflect current and near-future conditions. However,
future hydroclimatic conditions may deviate from this baseline, meaning that the reference
period and the adjustment will need to be updated as new data become available.
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6. Conclusions
This study addresses a critical challenge in water resource planning: the limitations of

traditional models that rely on the assumption of stationarity in historical hydroclimatic
data. This assumption, implying consistent mean and variance over time, is increasingly
challenged by the impacts of climate change. To overcome this limitation, the study
develops and tests a novel data adjustment approach, the Runoff Curve Year–Type–Monthly
(RC-YTM) method. This method adjusts historical streamflow data from five key California
watersheds to reflect contemporary climate conditions represented by the period from 1992
to 2021.

This study’s contribution includes generating adjusted hydroclimatic data that better
reflect current conditions. This approach enhances the reliability and accuracy of opera-
tional water resource planning models like CalSim3, commonly used in California for water
management decisions. Using the adjusted data as input for these models can lead to more
informed decision-making in crucial areas such as water demand management, infrastruc-
ture investment, drought and flood risk assessment, and adaptation strategies. DWR plans
to continue updating historical hydroclimate data for future studies as additional years of
data become available.

By directly addressing the limitations of traditional models in a changing climate, this
study provides a valuable tool for water resource management, not just in California but
potentially in other regions facing similar hydroclimatic challenges. This study’s findings
emphasize the need to move beyond the assumption of stationarity and embrace adaptive
management strategies in the face of increasing hydroclimatic variabilities.

Author Contributions: Conceptualization, A.S. and Z.Q.R.C.; methodology, Z.Q.R.C.; software,
Z.Q.R.C.; validation, A.S., A.P. and M.H.; formal analysis, Z.Q.R.C. and A.P.; investigation, A.S., A.P.,
Z.Q.R.C. and M.H.; data curation, A.P.; writing—original draft preparation, A.S., A.P., Z.Q.R.C. and
M.H.; writing—review and editing, A.S., A.P., Z.Q.R.C. and M.H.; visualization, A.P.; supervision,
A.S.; project administration, A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data utilized in this study are accessible through the California
Data Exchange Center at https://cdec.water.ca.gov/ (accessed on 1 July 2022).

Acknowledgments: The authors wish to express their gratitude to Ruby Leung (Pacific Northwest
National Laboratory), Daniel Feldman (Lawrence Berkeley National Laboratory), and Jon Herman
(University of California, Davis) for their peer review and valuable feedback on an earlier draft of
this study. Their suggestions have significantly enhanced the quality of the work. The authors would
also like to thank the multi-agency Historical Data Workgroup who was tasked to develop alternative
time series to complement the historical time series for key California watersheds for modeling
proposes. Workgroup participants include Erik Reyes, Nicky Sandhu, Hongbin Yin, Tariq Kadir,
Aaron Miller, Ming-Yen Tu, Devinder Dhillon, Romain Maendly, and Michael Anderson from the
California Department of Water Resources, Drew Loney, Kevin Thielen, and Derya Sumer from the
U.S. Bureau of Reclamation, and Tapash Das from Jacobs. The authors want to thank their colleagues
Nazrul Islam, Raymond Hoang, Yiwei Cheng, Nicole Osorio, and Dan Easton (MBK Engineers Inc.),
Thomas Fitzhugh (Stantec Inc.), Andy Draper (Stantec Inc.), and Jeff Weave (HDR Inc.) for conducting
CalSim3 runs and quality-controlling the outcoming model results. The authors would also like to
thank Francis Chung, Jianzhong Wang, James Polsinelli, and Mohmmad Hasan for their contributions
to the RC-YTM method development. The authors also extend their heartfelt thanks to the three
anonymous reviewers. Their thoughtful and insightful feedback has greatly enhanced the quality of
this study. The views expressed in this paper are those of the authors, and not of their employer’s.

Conflicts of Interest: The authors declare no conflicts of interest.

https://cdec.water.ca.gov/


Hydrology 2025, 12, 22 20 of 23

Appendix A. Additional Adjustment Methods Tested in the
Current Study

Alongside the proposed Runoff Curve Year–Type–Monthly (RC-YTM) approach out-
lined above, this study investigated additional adjustment methods at both annual and
monthly time scales. A brief overview of these additional methods is provided below, with
further details available in [70]. The outcomes of these methods were compared to the
RC-YTM approach and found to be less effective. All results are available for review on the
following dashboard: https://andrewschwarzdwr.shinyapps.io/shinyapp/ (accessed on 1
July 2022).

Annual Method #1: Standardization/De-Standardization

The Standardization/De-standardization (S-D) method converts the unadjusted his-
torical data to a standardized time series, and then calculates the final adjusted (de-
standardized) time series. To standardize the historic time series (1922–2015), the historic
mean is subtracted from the dataset, after which the historic standard deviation is divided
from the time series. The adjusted time series is created from the standardized time series
by multiplying the selected reference period (1992–2021) standard deviation and adding
its mean. This was done initially as a top-down approach at annual scale but redone as a
bottom-up approach by applying this method to each month uniquely.

Annual Method #2: Empirical Quantile Mapping with Smoothing Spline

The Empirical Quantile Mapping with Smoothing Spline (QMSSann) method creates
an empirical cumulative distribution function for both the historical period and the selected
reference period (as described and determined in the metrics discussion above) and applies
a quantile mapping approach with spline-fitting interpolation.

Annual Method #3: Runoff Curve Mean Distance Scale (annual only)

The Runoff Curve Mean Distance Scale (RC-MDS) method involves two major adjust-
ments. First, the annual water year precipitation (Prwet) is adjusted using the mean distance
scale (MDS) method. Second, the adjusted annual water year full natural flow (FNF) is
obtained using the precipitation and runoff regression curves with the adjusted Prwet.

Other Annual Methods

Other methods performed at the annual scale include the fitting of theoretical cumu-
lative distribution functions to both the historical period and the contemporary 30-year
period for all five watersheds. The theoretical cumulative distribution functions tested
include Weibel, Log-Normal, and Log-Normal-Skew. After the theoretical cumulative dis-
tributions were fit, the difference was taken between them and added back to the original
empirical historical time series via quantile mapping.

(1) Use of a range of theoretical distribution functions, breaking the observed pe-
riod into three 30-year chunks, then quantile mapping each 30-year period to the fitted
theoretical distribution.

(2) Further methods tested at the annual scale included a fitting of theoretical distribu-
tions to 30-year segments of the historical time series (1921–1950, 1951–1980, and 1981–2010)
then quantile mapping the theoretically fitted distribution of the contemporary reference
period back onto those 30-year segments.

Monthly Method #1: QMSS combined with QMSS of monthly percent of FNF with
extended dries (QMSSann-QMper)

Annual Method #1, QMSSann, was combined with a similar approach of using the
quantile mapping with smoothing splines method to quantile map the monthly percentages
(QMper) of a given period, either the historical or selected reference. The adjusted flow

https://andrewschwarzdwr.shinyapps.io/shinyapp/
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percentages for each season–month–watershed combination generated in the previous steps
are then used to create adjusted seasonal flow values by multiplying the adjusted seasonal
percent values by the adjusted annual values generated from the QMSSann method. Then,
the adjusted seasonal FNF value is multiplied by the adjusted monthly percentage value to
create a monthly FNF flow value.

Monthly Method #2: Runoff Curve MDS combined with QMSS of monthly percent of
FNF with extended dries.

Annual Method #3, RCMDS, was combined with the QMper described in Monthly
Method #1. The monthly percentage values generated by the quantile mapping process
are then multiplied by the annual FNF values generated by the RCMDS annual method to
create the FNF flow monthly value.
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