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Abstract: The standardized hydrological index (SHI) is the standardized but not normal-
ized (normal probability variate) value of the streamflow used to characterize a hydrolog-
ical drought, akin to the standardized precipitation index (SPI, which is both standardized 
and normalized) in the realm of the meteorological drought. The time series of the SHI 
can be used as a platform for deriving the longest duration, LT, and the largest magnitude, 
MT (in standardized form), of a hydrological drought over a desired return period of T 
time units (year, month, or week). These parameters are predicted based on the SHI series 
derived from the annual, monthly, and weekly flow sequences of Canadian rivers. An 
important point to be reckoned with is that the monthly and weekly sequences are non-
stationary compared to the annual sequences, which fulfil the conditions of stochastic sta-
tionarity. The parameters, such as the mean, standard deviation (or coefficient of varia-
tion), lag 1 autocorrelation, and conditional probabilities from SHI sequences, when used 
in Markov chain-based relationships, are able to predict the longest duration, LT, and the 
largest magnitude, MT. The product moment and L-moment ratio analyses indicate that 
the monthly and weekly flows in the Canadian rivers fit the gamma probability distribu-
tion function (pdf) reasonably well, whereas annual flows can be regarded to follow the 
normal pdf. The threshold level chosen in the analysis is the long-term median of SHI se-
quences for the annual flows. For the monthly and weekly flows, the threshold level rep-
resents the median of the respective month or week and hence is time varying. The runs 
of deficit in the SHI sequences are treated as drought episodes and thus the theory of runs 
formed an essential tool for analysis. This paper indicates that the Markov chain-based 
methodology works well for predicting LT on annual, monthly, and weekly SHI se-
quences. Markov chains of zero order (MC0), first order (MC1), and second order (MC2) 
turned out to be satisfactory on annual, monthly, and weekly scales, respectively. The 
drought magnitude, MT, was predicted satisfactorily via the model MT = Id × Lc, where Id 
stands for drought intensity and Lc is a characteristic drought length related to LT through 
a scaling parameter, ɸ (= 0.5). The Id can be deemed to follow a truncated normal pdf, 
whose mean and variance when combined implicitly with Lc proved prudent for predict-
ing MT at all time scales in the aforesaid relationship. 
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1. Introduction 
Various definitions have been proposed for the analysis, prediction, and simulation 

of hydrological droughts. The first ever objective definition was given by Yevjevich (1967) 
[1] as “the deficiency in the water supply on Earth, or the deficiency in precipitation, run-
off or in accumulated water in various storage capacities”. Linsley et al. (1982) [2] consid-
ered a hydrological drought as a “period during which stream flows are inadequate to 
supply established uses under a given water management system”. By all accounts, it is 
understood that a hydrologic drought refers to a deficiency of water in stream flows, sur-
face, or subsurface water bodies as to be insufficient to meet water demands in various 
sectors of human society, e.g., agriculture, hydropower generation, water supply, indus-
try, recreation, navigation, fish habitats, etc., at a given time point and/or space. When 
dealing with hydrologic droughts based on stream flows, the term streamflow drought is 
also commonly used. Since hydrological droughts have been the subject of studies recog-
nizing the shortfall of water supplies (for power generation through dams, municipal wa-
ter uses, irrigation, recreation, etc.) from rivers, therefore, indices based on some statistics 
of river flow sequences are used to characterize them. Various approaches have been in-
troduced to model hydrological droughts, such as the extreme number theorem [3,4] and 
Markov chains [5–8], among others. An excellent review of such modelling approaches 
has been provided by Mishra and Singh (2011) [9]. 

1.1. Standardized Hydrological Index (SHI) Versus Standardized Precipitation Index (SPI) 

For identifying the severity of meteorological droughts, a precipitation sequence is 
standardized (denoted by ei = (xi − µ)/σ; xi is the precipitation sequence with mean µ and 
standard deviation σ of xi sequence) and then normalized (converted to standard normal 
variate, zi) which is named as the standardized precipitation index (SPI) by McKee et al. 
(1993) [10] and Guttman (1999) [11]. The negative values of zi denote drought conditions 
while the positive values denote non-drought conditions. For example, a monthly SPI se-
ries obtained from a month-by-month standardization of precipitation values is subse-
quently transformed into a normalized series. Such a series can be truncated at the median 
level and all those events (or epochs) below the threshold level represent the drought con-
ditions. Different categories of drought, such as mild, moderate, severe, and extreme, have 
been identified based on the values of SPI. 

In the context of hydrological droughts, the standardized series of river flows (ei) is 
named here as the standardized hydrological index (SHI) series (Sharma and Panu, 2010) 
[12–14] and is not normalized. As long as streamflow sequences obey the normal pdf, the 
resulting SHI series will also remain normal. However, if the streamflow series is non-
normal, then the SHI series will also be non-normal. It should be noted that in the drought 
literature, the standardized and normalized value of streamflow has also been named as 
the standardized drought index (SDI) [7] and standardized runoff index (SRI) [15]. In tan-
dem with SPI, Nalbantis and Tsakiris (2009) [7] have also classified hydrological droughts 
as mild, moderate, severe, and extreme based on SDI values. 

1.2. Parameters of Hydrological Drought 

The important parameters defining a hydrological drought for useful applications 
are as follows: (a) duration and (b) magnitude (earlier called severity). At times, the ratio 
of magnitude to duration, called intensity, is also used. It should be mentioned that in the 
earlier literature, from the 1960s until recently (say, the early part of the first decade of the 
21st century in 2000–2006), the term severity in hydrologic droughts was used to denote 
the cumulative deficit. The cumulative deficit has been commonly referred to as magni-
tude in the context of meteorological drought or when the drought variable is 
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precipitation [10,16,17]. The acceptance of the term magnitude over the term severity is 
evidenced by recent publications [12–14,18–20]. This transition seems to be motivated by 
the ambiguity in the meaning of the term “severity”. In the context of meteorological 
drought, severity is expressed in the form of indices. For example, currently, a popular 
index termed as the standardized precipitation index (SPI) suggested by [10,11] has been 
used to denote the severity of meteorological droughts. In the context of hydrological 
droughts, however, severity denotes a deficit in volumetric or depth units and therefore 
its usage conflicts with the index connotation associated with meteorological drought. The 
term magnitude alleviates this anomaly and is in sync with the volume (essentially mag-
nitude) connotation associated with the cumulative deficit. In view of the foregoing dis-
cussion, the term magnitude has been used to denote the cumulative deficit in this paper. 

The basic element for deriving the above parameters is the truncation level, which 
divides the time series of a drought variable into “deficit” and “surplus” sections. The 
truncation level is synonymous with the threshold or cutoff level and these terms are used 
interchangeably in the ensuing text. The parameters of drought, viz., duration, magni-
tude, and intensity (=magnitude/duration) are functions of the properties of a deficit sec-
tion. The drought duration (L) has units of time such as year, month, week, or day de-
pending on the time scale of a variable manifesting the drought. For instance, if one is 
dealing with monthly stream flows, then drought duration will be expressed in months. 
The term deficit (D) refers to the cumulative shortage below the chosen demand level 
(represented by threshold level) and thus it has the unit of volume, i.e., m3 or likewise. For 
ease of interpretation and the potential inter-comparison of drought scenarios in varied 
environments, the analysis for durations and deficits can be carried out in the standard-
ized domain. For a standardized flow sequence, the deficit sum (standardized deficit) is 
termed as magnitude, denoted by M (M = D/σ), where σ is the standard deviation of the 
flow sequence [1], which is a dimensionless entity. However, the value of duration (L) 
remains unchanged with its unit struck off, i.e., a week, a month, or a year depending on 
the time scale of the sequence being analyzed. The quantity D/L can be termed as an av-
erage deficit and in terms of dimensionless entities, it is termed as intensity (Id) = M/L. The 
longest run length for a sample size of T years is denoted as LT and the corresponding 
magnitude as MT (or deficit: DT = MT × σ). 

The prediction of hydrologic drought length (LT) and magnitude (MT) are crucial for 
the design and management of drought amelioration measures. The Markov chain (MC) 
methodology provides a powerful method for such prediction. This paper deals with the 
prediction of LT and MT on annual, monthly, and weekly scales, indulging Markov chains 
while applying them to Canadian rivers as a case study. It should be borne in mind that 
LT and MT in the ensuing text refer to the expected values in the process of prediction or 
estimation. 

2. Model Preliminaries 
2.1. A Note on the Choice of Truncation or Threshold Level 

The truncation or threshold level is the most crucial element in analyzing the hydro-
logical drought parameters as discussed above; therefore, the choice of a threshold level 
is of paramount importance. It is usually expressed in the form of the time-invariant or 
time-variant statistics of a drought variable. Several investigators have considered the 
threshold level as the long-term mean or median flow [4,14,21–24], while others as some 
percentile level in the flow duration curve ranging from Q50 (flows exceeding 50% of the 
time) to Q95 [25–29]. A flow duration curve could be constructed based on annual, 
monthly, weekly, or daily flow sequences. For a near-normal probability distribution 
function (pdf) of a drought variable, the mean serves as a desired threshold level, whereas 
for a skewed distribution, the median is construed as a better measure [12–14]. From the 
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point of view of the design of reservoirs, an important element is the draft ratio (a ratio of 
yield from the reservoir to the mean annual flow, MAF). The draft ratio may vary from 30 
to 90%, but McMahon and Adeloye (2005) [30] adopted a value of 75% when using 
monthly flows for the design of reservoirs. Looking at the recorded flows from the Cana-
dian rivers, it can be ascertained that the median generally falls around 75% of the mean. 
This observation, therefore, supports the contention that the median is a better threshold 
or truncation level for the analysis and prediction of hydrologic droughts. Pragmatically, 
for a regional drought frequency analysis, a value of threshold levels such as Q70 (flows 
equaling or exceeding 70% of the time) or Q80 would portray more tangible (severe) 
drought impacts over the region. When drought impacts are vividly tangible, for example, 
on a short-term contingency planning basis for the amelioration of droughts, one could 
even conduct drought investigations at the Q90 level to allow for the mobilization of re-
sources within the constraints of time and cost. In such situations, the daily hydrographs 
(which are non-stationary in a stochastic sense) are chopped at a uniform level, say Q90. 
A threshold level can be assigned a probability quantile, such as q = P(x ≤ x0), where q is 
the probability of a drought corresponding to the threshold level x0 and P(.) stands for the 
notation of the cumulative probability. The drought probability q is not only dependent 
on the threshold level but also on the pdf of the drought variable. Sharma (2000) [4] sug-
gested a simple analytical method for determining the drought probability quantile, with 
q corresponding to a threshold level for the normal, lognormal, and gamma pdfs of a 
drought variable. 

2.2. A Note on the Theory of Runs Used in the Probability-Based Modelling of Hydrological 
Drought 

The statistical theory of runs has been a major tool in analyzing hydrological 
droughts in the probabilistic approach since the early 1960s, with the pioneering work of 
Yevjevich (1967) [1] and advancement by Sen (1980) [3] and Dracup et al. (1980) [21], 
among others. In short, a time series of SHI sequences, in the theory of runs, is truncated 
at the desired threshold level, resulting in segments of uninterrupted wet (surplus) or 
deficit (drought) spells (or runs). The length of a deficit run is equivalent to the duration 
of a drought event, and a run sum (i.e., a sum of the deficit epochs) is equivalent to a 
drought magnitude. The sequential occurrences of deficit epochs could be random or may 
follow a dependence structure (~the simplest dependence structure being the Markovian). 
In simple terms in such cases, the number of runs (or the number of drought events) can 
be modelled using the Poisson probability law, the run length (or drought duration) can 
be modelled using the geometric probability law, and the drought intensity can be mod-
elled by using the truncated normal pdf. Thus, the theory of runs provides a suitable tool 
for analyzing the parameters of hydrological droughts. 

One major requirement for applying the theory of runs is that a time series of a 
drought variable must be statistically stationary. The requirement of stationarity is gener-
ally met for annual precipitation or annual streamflow sequences as drought variables. 
The sequences of monthly or weekly stream flows are non-stationary and must be trans-
formed into stationary time series by standardization month-by-month or week-by-week 
(known as stationarization), as the case may be for hydrological drought investigations. 
Once a suitable probability distribution describing a monthly or a weekly flow sequence 
has been identified, the underlying dependence structure of the flow sequence can be in-
vestigated. Succinctly, the SHI series (month-by-month or week-by-week standardized 
series of river flows) is a stationary time series, which can be used for the analysis and 
modelling of a hydrologic drought. 
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2.3. Estimation of Drought Probability (q) Based on a Threshold Level 

For a time series, xi truncated at a threshold x0, the standardized threshold level is 
expressed as e0 = (x0 − µ)/σ. Further, if x is normally distributed, so would be e. A normally 
distributed or normalized sequence ‘e’ can be written as a standard normal deviate (z) and 
for such a sequence, the probability q = P(x ≤ x0) = P(z ≤ z0) is evaluated as follows. 𝑞 = P (z ≤ z0) = ଵ√ଶగ ׬ 𝑒𝑥𝑝(−0.5௭బିஶ 𝑧ଶ)dz = F(z0) (1)

For example, the value of q at a threshold level equivalent to the mean flow for a 
normal pdf of a streamflow sequence is 0.5, which can be obtained by the integration of 
the above standard normal probability function from −∞ to 0 (z0 = 0). Likewise, the trun-
cation level z0 for the drought probability q = 0.3 can determined from the normal proba-
bility table, or the following polynomial function (Equation (2)), as discussed in [31], can 
be used iteratively. The advantage of Equation (2) is that it can be easily programmed on 
an Excel Macro platform. 𝐹(𝑧଴) = 𝐵 = 0.5 [1 + 0.196854|𝑧଴|+0.115194|𝑧଴|2 + 0.000344|𝑧଴|3 + 0.019527|𝑧଴|4]ିସ (2) 

where B is the dummy variable as a short notation for the value of the right-hand side 
expression, i.e., q = B for z0 < 0 and q = 1 − B for z0 ≥ 0. The notation |z0| represents the 
absolute value. The error evaluated by this formula is less than 0.00025. 

For the gamma distribution, a value of q is obtained by computing normalized stand-
ard deviate z0 corresponding to the standardized threshold level e0 using Wilson–Hilferty 
transformation [32] in combination with Equation (2) or the standard normal probability 
tables. 𝑧଴ = 3𝑐𝑣ିଵ([𝑐𝑣 𝑒଴ + 1]଴.ଷଷଷ − 1) + 0.333𝑐𝑣 (3)

For example, in the case of the gamma pdf, with cv = 0.5 and e0 = 0, q can be estimated 
firstly by computing z0 (Equation (3)), which, when plugged in Equation (2), will yield the 
value of q. The calculations will output z0 = 0.167 and q = 0.57. Likewise, at the threshold 
level equal to the median (q = 0.5) and by plugging in the value of z0 = 0, the value of e0 can 
be computed equal to −0.055 from Equation (3). Put another way, at q = 0.5, the threshold 
level would be 0 for the normal pdf, whereas for the gamma pdf, it would be −0.055. Fur-
ther, it should be noted that e0 in Equation (3) is equivalent to the truncation level of the 
SHI sequence following the gamma pdf and is denoted as SHI0. At other truncation levels 
with different values of q, z0 should first be computed from Equation (1) and then con-
verted to SHI0 using Equation (3). 

Another method of determining SHIo is by chopping the SHI series at different cutoff 
levels and then computing q by a counting method. The cutoff level, which renders q = 0.5, 
is the appropriate value of SHIo. This can easily be done by writing a program on a Mi-
crosoft Excel-based Macro and is quite accurate. Succinctly, this is a shortcut method in 
which data are not normalized, but the threshold or truncation level is normalized so as 
to correspond with the desired probability, q. The method also alleviates the need to cal-
culate the cv, as there is an element of uncertainty as to which estimate of cv should be 
used in Equation (3). There are three estimates of cv: (a) the ratio of overall σ to overall µ 
of the flow sequence (denoted as cvo), (b) the average of 12 monthly cvs (denoted as cvav1), 
and (c) the ratio of the average of 12 monthly σs to overall mean µ (denoted as cvav). They 
all differ from each other. The best estimate of cv, based on the shortcut method discussed 
above, was generally found near to cvo. 
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2.4. Evaluation of the Longest Drought Duration, LT, and Largest Magnitude, MT 

The probabilistic relationships for LT can be obtained by applying the Markov chain-
based relationship, discussed as follows. 

When the SHIi series is cut off at a threshold level SHI0, the values above the threshold 
level are positive or in the wet (w) state and those below are negative or in the drought (d) 
state. So, the SHIi series can be transformed into a sequence of discrete states in terms of 
w and d (example: wwwddddwwwwdd). One can define the following notations for proba-
bilities: P(d) (simple probability), i.e., the probability of any time period (week, month, or 
year) being a drought period at a given truncation level = q; P(d|d) (conditional probabil-
ity), i.e., the probability of any period being drought period given that past period was 
also a drought period (which is a first-order persistence) = qq; P(d|d,d) (conditional proba-
bility), i.e., the probability of any period being a drought period given that past and past-
to-past periods were also drought periods (second order persistence) = qqq. The same con-
notations apply to the wet state, i.e., p = P(w); pp = P(w|w); and ppp = P(w|w,w). Likewise, 
pqq = P(w|d,d); qp = P(d|w); and qqp = P(d|d,w). The simple and conditional probabilities sum 
to 1, as expressed below. 

p + q = 1; pp + qp =1;  pq + qq = 1; ppp + qpp = 1; pqq + qqq = 1; pqp + qqp = 1 (4)

The probability distribution of the lengths of drought and wet spells in sequential 
occurrences (such as wwwwdwwddwdddww---d) can be described by well-known geometric 
distribution [3,33]. 

For a second-order Markov chain (MC2), the following equations can be derived 
(Chin 1977 [5], Sharma and Panu 2010 [12]). 𝐿் = 2 − [log {𝑇(1 − 𝑞)𝑞௣𝑞௤௣}/log (𝑞௤௤)] (5)

Likewise, for a first-order Markov chain (MC1), Equation (5) can be reduced to: 𝐿் = 1 − [log {𝑇(1 − 𝑞)𝑞௣}/log (𝑞௤)] (6)

For a zero-order Markov chain (MC0), Equation (6) reduces to 𝐿் = − [log {𝑇(1 − 𝑞)}/log (𝑞)] (7)

The parameters qq, qp, qqp, and qqq can be estimated by a counting procedure. However, 
the parameters qq and qp can also be estimated from the information of cv, ρ (lag 1 autocor-
relation in SHI sequences) using the theoretical relationship shown in Equation (8), due to 
Crammer and Leadbetter (1967) [34]. However, no such equation exists for the estimation 
of second-order parameters, viz. qqp and qqq. 𝑞௤ = 𝑞 + ଵଶగ௤ ׬ [𝑒𝑥𝑝 {−0.5𝑒଴ଶ/(1 + 𝜗)}](1 − 𝜗ଶ )ି଴.ହఘ଴ d𝜗  (8)

where v is a dummy variable of integration. The integral in Equation (8) can be evaluated 
by a numerical procedure and values of qq for a given ρ and e0 (SHIo) can be computed. It 
should be noted that parameters qp (= 1 − pp) and pp can be estimated using Equation (8), 
in which q is replaced by p. The parameters q, qp, qqq, and qqp can also be estimated by 
counting the letters ‘w’ and ‘d’ obtained by cutting off the SHIi series at the desired thresh-
old level SHI0 (such that the q value is equal to 0.5) [6,35]. The number of ds (say n1), dds 
(say n2, two ds occurring consecutively), and ddds (say n3) are counted. For a sample size 
of n, one obtains q = n1/n, qq = n2/n1 and qqq = n3/n2. Since there are only two letters, namely 
w and d, the number of ws = n − n1. The number of pairs successively occurring as ww (w 
is preceded by w) are counted (say n4). Therefore, pp = n4/(n − n1) and hence, qp = (1 − pp). 
Similarly, the number of pairs occurring as dw (d precedes w, say n5) and appearing as ddw 
(d precedes d which precedes w) are counted (say n6), which can be used to estimate the 
value of qqp as n6/n5. Such calculations were effectively accomplished by writing a program 
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in Visual Basic on the Microsoft Excel frame. Following the above procedure, the second-
order parameters (qqq and qpq) can also be estimated from the non-standardized flow series 
by trimming at the desired truncation level. 

The drought magnitude, MT, can be estimated from the following relationships in-
volving the pdf of Id and a characteristic drought length, Lc. Beginning with the basic axiom 
of probability, i.e., 𝐸(𝑀் ) = ׬ 𝑀் 𝑃( 𝑀் = 𝑌), one can determine the expected value of 𝑀். Since Y (a value ranging from 0 to, say, a maximum of 200) is a continuous variable, 
P (MT = Y) can be evaluated as =P (MT ≤ Y) − P (MT ≤ Y-Δ), where Δ (delta) is a small incre-
ment as used in numerical integration. Employing the extreme number theorem [36], the 
above probabilities can be evaluated through the following relationship (Sen, 1980) [3]. 𝑃(𝑀் ≤ 𝑌) = 𝑒𝑥𝑝[−𝑇𝑞൫1 − 𝑞௤ ൯൫1 − 𝑃(𝑀 ≤ 𝑌)൯] (9)

P(M ≤ Y) can be determined by employing the normal probability function with mean 
(µM) and standard deviation (=σM) shown in Equations (10) and (11) as follows. 𝜇ெ = 𝐿௖ 𝜇ௗ (10)

𝜎ெଶ =  𝐿௖ 𝜎ௗଶ (1 + 𝜌1 − 𝜌 − 2𝜌(1 − 𝜌௅௖)𝐿𝑐(1 − 𝜌)ଶ ) (11)

where ρ is the lag 1 autocorrelation in a series of the drought variable (stream flows) and 
Lc is a characteristic drought length. The parameters µd and σd pertain to the pdf of drought 
intensity, Id, and are assumed to follow a truncated normal distribution. The expressions 
for µd and σd can be derived as follows ([3,4]). 

 𝜇ௗ = − 𝑒𝑥𝑝(−0.5𝑧଴ଶ)𝑞√2𝜋 − 𝑧଴  (12)

𝜎ௗଶ = 1 − ௭బ ௘௫௣൫ି଴.ହ௭బమ൯௤√ଶగ − ௘௫௣൫ି௭బమ൯௤మଶగ  (13)

In the foregoing relationships, z0 is the standard normal deviate corresponding to the 
cutoff level SHI0 and q is the corresponding probability. 

Likewise, an estimate of Lc can be obtained from the following relationship (Sharma 
and Panu, 2013) [13]. 𝐿௖ = ɸ𝐿௠ + (1 − ɸ)𝐿் (14)

where ɸ is a scaling parameter in the range from 0 to 1 and Lm is the mean drought length, 
which, for the first-order dependence, can be expressed as follows. 𝐿௠ = ଵଵି௤೜  (15)

In the above formulations, the value of Id turns out to be negative (since drought 
epochs are below the threshold level and hence negative in terms of sign); therefore, the 
absolute value should be used in the calculation of MT. Further, for the zero-order Mar-
kovian structure qq = q.

 
It should be noted that when the analysis is implemented in the 

standardized domain, LT, Id, and MT are all dimensionless (i.e., without units). A simplistic 
version of MT can be represented through Equation (10) in which Lc is replaced by LT (or ɸ = 0). This version only considers the mean of Id and variance is disregarded. In some 
situations, particularly on an annual scale, it may yield satisfactory results [14]. The defi-
ciency in volumetric units, DT, can be computed as DT (=σ × MT) in the respective unit of σ 
(m3/year, m3/month, or m3/week). 
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3. Markov Chain-Based Drought Relationships Applied to Canadian 
Rivers 
3.1. Flow Data Acquisition and Preliminary Analysis 

Data for the analysis constituted the natural (i.e., unregulated) and uninterrupted 
flow records of 27 rivers across Canada (Figure 1) and are listed in Table 1. The major 
considerations for the selection of stations and the period of data were the existence of 
natural flow regimes with continuous records unprovoked by human intervention and 
with minimal need for data infilling. Thus, the daily flow data for these 26 rivers were 
extracted from the Canadian hydrological database (Environment Canada, 2020) [37]. The 
selected rivers were representative of a wide range of drainage basins (37 km2 to 32,400 
km2) and a historical database period (year CE 1911 to 2020), which required virtually no 
data infilling. Daily flows were transformed to weekly flows such that each of the first 51 
weeks would be composed of 7 days, while the 52nd week would contain the remainder 
of the days. That is, the last week of the year would comprise 8 or 9 (during a leap year) 
days. Monthly and annual flows were already listed in the aforesaid Canadian hydrologic 
database. 

 

Figure 1. Spatial location of hydrometric stations across Canada used in the analysis (Source: Envi-
ronment Canada). 

Table 1. Statistical properties of the annual, monthly, and weekly flows of the rivers across Canada. 

The Numeric Identifier of the River in Figure 1 
with Name and Gauging Station Identity 

Data Size 
(Years)  

Area 
(km2)  μo,   cva,  cvm,  cvw,  ρa,  ρm,  ρw 

[1] Fraser at Shelley, BC08KB001 ** 70 (1951-20) 32,400 812.72, 0.13, 0.85, 0.90, −0.01, 0.69, 0.75  
[2] Athabasca at Athabasca, AB07BE001 69 (1952-20) 74,600 426.30, 0.24, 0.91, 0.35, 0.23, 0.62, 0.81 
[3] Bow at Banff, AB05BB001 110 (1911-20)  2210 39.24, 0.13, 1.05, 0.24, 0.06, 0.50, 0.72 
[4] South Saskatchewan at Medicine Hat, AB05AJ001 69 (1952-20) 56,369 167.08, 0.32, 1.03, 0.52, 0.06, 0.50, 0.78 
[5] Pipestone at Karl Lake, ON04DA001 54 (1967-20)  5960 58.69, 0.31, 0.94, 0.55, 0.08, 0.58, 0.89  
[6] Neebing at Thunder Bay, ON02AB008 66 (1954-19)   187 1.62, 0.37, 1.48, 0.81, 0.18, 0.43, 0.63 
[7] Pic near Marathon, ON02BB003 50 (1971-20)  4270 50.14, 0.23, 1.03, 0.56, 0.12, 0.41, 0.74 
[8] Pagwachaun at Highway#11, ON04JD005 53 (1968-20)   2020 23.01, 0.25, 1.18, 0.62, 0.06, 0.36, 0.74 
[9] Nagagami at Highway#11, ON04JC002 70 (1951-20)  2410 24.51, 0.22, 1.01, 0.47, 0.08, 0.49, 0.87 
[10] Batchawana at Batchawana, ON02BF001 50 (1971-20)  1190 22.33, 0.20, 1.05, 0.55, 0.04, 0.28, 0.62 
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[11] Goulis near Searchmont, ON02FB002 53 (1968-20)  1160 18.37, 0.21, 1.05, 0.58, 0.10, 0.33, 0.69 
[12] Whitson at Chelmsford, ON02CF007 60 (1961-20)   243 3.04, 0.24, 1.19, 0.54, 0.11, 0.39, 0.67 
[13] North French near Mouth, ON04MF001 54 (1967-20)  1190 95.72, 0.21, 1.06, 0.55, -0.06, 0.35, 0.72 
[14] Labase at North Bay, ON02DD013 56 (1975-20)  70.4 0.91, 0.21, 1.10, 0.61, -0.02, 0.19, 0.43 
[15] Chippewa at North Bay, ON02DD014 56 (1975-20)   37.3 0.62, 0.19, 0.84, 0.49, 0.01, 0.25, 0.43 
[16] Commanda at Commanda, ON02DD015 46 (1975-20)   106 1.76, 0.23,0.96, 0.53, -0.15, 0.30, 0.58 
[17] N. Magnetwan at Pickerel Lake, ON02EA010 52 (1969-20)   149 2.86, 0.23, 0.94, 0.53, 0.08, 0.51, 0.51 
[18] Shekak at Highway#11, ON04JC003 36 (1951-86)  3290 36.10, 0.18, 1.07, 0.93, -0.10, 0.45, 0.83 
[19] Becancour A Lyster, QC02PL001 46 (1923-68)  1410 30.60, 0.20, 1.08, 0.62, 0.03, 0.26, 0.62 
[20] Beaurivage A. Sainte Entiene, QC02PJ007 75 (1926-00)   709 14.20, 0.26, 1.19, 0.62, 0.19, 0.24, 0.49 
[21] Lepreau at Lepreau, NB01AQ001 101 (1919-19)   239 7.43, 0.22, 0.81, 0.59, 0.11, 0.23, 0.49 
[22] Carruther at Saint Anthony, PE01CA003 59 (1962-20)  46.8 0.97, 0.23, 1.04, 0.57, 0.07, 0.22, 0.48 
[23] Bevearbank at Kinsac, NS01DG003 88 (1922-19)    97 3.04, 0.19, 0.80, 0.59, -0.19,0.13, 0.43 
[24] N. Margaree at Margaree Valley, NS01FB001 90 (1929-20)  368 17.01, 0.14, 0.76, 0.47, 0.15, 0.18, 0.46 
[25] Upper Humber at Reidville, NF02YL001  68 (1953-20)  2210 80.21, 0.13, 0.87, 0.44, 0.18, 0.13, 0.48 
[26] Torrent River at Bristol Pool, NF02YC001 61 (1960-20)   624 24.86, 0.15, 0.88, 0.44, 0.21, 0.16, 0.57 

Asterisk (**) indicates the location of the station on the map. In column 1, the first two characters 
are provincial identifiers to recognize the province in which a particular river is located, viz. BC 
means British Columbia, etc. 

3.2. Identification of the pdf and Dependence Structure of Flow Sequences 

The analysis of drought parameters using an analytical approach generally begins 
with the identification of the pdf of the drought variable and its dependence structure. 
Therefore, the pdfs and dependence structures of the annual, monthly, and weekly flow 
sequences were identified as follows. 

3.2.1. The pdf and Dependence Structure of Annual Flow Sequences 

The statistical parameters µ, cv, and lag 1 autocorrelation, ρ (denoted as ρa) of annual 
flows were computed and are summarized in Table 1. The values of the coefficient of 
skewness (cs) were also computed and ranged from 0 to 0.78 with a mean value of 0.35 
from a sample size N = 67 (average of all gauging stations). Based on the standard statis-
tical test for cs [i.e., 95% confidence limits (0 ± 1.96 × √(6/N); [38] N = 67 for the normal pdf], 
the limits of cs were bounded within −0.59 and 0.59. It can be noted that the cs values of 
the annual flows in the majority of stations (Table 1) lay within the above bounds and thus 
qualified the requirement of a norma1 pdf. Further, to affirm the hypothesis of the normal 
pdf, L-skewness (L-cs) and L-kurtosis (L-ck) analyses (Hosking, 1990) [39] were performed 
on annual flow data. The graph between L-ck (ordinate, values from 0.08 to 0.19 with a 
mean of 0.12) and L-cs (abscissa, values from 0 to 0.15 with a mean of 0.07) resulted in a 
wild scatter around the mean value of L-ck of 0.12. It is shown [39] that L-ck for the normal 
pdf was independent of L-cs and had a constant value of 0.1225. The mean value (=0.12) of 
L-ck from the samples matched the theoretical value of 0.1225 very closely. Thus, these 
calculations of moments provide strong evidence that the normal pdf can be deemed sat-
isfactory to model the annual flow or SHI sequences in the rivers under consideration. 

For investigating the dependence structure in the annual SHI sequences, autocorre-
lations up to the first 10 lags were computed and these tended to be small (ρa in the range 
of −0.15 to 0.23, Table 1). These values lay within the 95% confidence limits for ρ [=−0.24 
to 0.24; (0 ± 1.96 × √(1/N) with N = 67] [38], suggesting that annual flows could be deemed 
independent in terms of their consecutive occurrences. Succinctly, for the analysis of hy-
drologic droughts, the annual stream flows (or SHI sequences) of the rivers under ques-
tion can be regarded as independent normal sequences. 
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3.2.2. The pdf and Dependence Structure of Monthly Flow Sequences 

For identifying the pdf of the monthly flows, the product moment and L-moment re-
lationships were used [39,40]. For each river, the values of the statistics µ, σ, or cv and ρ 
for monthly flows were computed (Table 1) and necessary plots were drawn in terms of 
product moments and L-moments. The scatter plot (cs against cv) depicts points in the 
product moment ratio diagram (Figure 2a), in which points are plotted around the theo-
retical line cs = 2 cv for the gamma pdf. Thus, the plot is a good indicator that the underly-
ing probability distribution of monthly flows follows the gamma pdf. To affirm the hy-
pothesis of the gamma distribution, the L-moments were computed for the gamma pdf 
and the plot of (L-ck) versus (L-cs) was drawn [40]. The L-moment plot showed a good 
correspondence between the observed and gamma-distributed points (Figure 2b), thus 
affirming the hypothesis of the gamma pdf as a descriptor of the probabilistic structure of 
the monthly flows of rivers under consideration. 

 

Figure 2. (a) Product moment ratio diagram and (b) L-moment ratio diagram for monthly flow se-
quences. 

Once the underlying pdf of monthly flows is ascertained, the next step is to identify 
the dependence structure in the SHI sequences. Therefore, autocorrelations in the SHI se-
quences from lags 1 to 10 were computed. These autocorrelations tended to decay expo-
nentially, with the lag 1 value (denoted as ρm) being significant (confidence limit 0 ± 1.96 
× √(1/n), n = sample size in months) [38]. In view of the exponential decay of SHI, the 
monthly SHI sequences in the Canadian rivers under question can be regarded as Mar-
kovian (autoregressive order-1, AR-1) with the gamma pdf. The AR-1 behaviour of SHI 
sequences can be deemed as a precursor to reflect in the first-order Markov chain (MC1) 
structure of drought length and magnitude. 

3.2.3. The pdf and Dependence Structure of Weekly Flow Sequences 

For the identification of a pdf and dependence structure of weekly flows, the proce-
dure used for monthly flows was adopted. For each river, the values of the weekly statis-
tics µ, cv (Table 1), and cs were computed and the necessary plots were drawn in terms of 
product moments and L-moments. The values of cs are not tabulated in Table 1 for the 
paucity of space but are portrayed in Figure 3a. 
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Figure 3. (a) Product moment ratio diagram and (b) L-moment ratio diagram for weekly flow se-
quences. 

Similar to the case of the monthly flows, the product moments for the weekly flows 
tend to plot around the theoretical line cs = 2 cv, applicable for the gamma pdf (Figure 3a). 
Likewise, the points for the L-moments are also plotted close to the theoretical values for 
the gamma pdf (Figure 3b). Based on the product moment and L-moment diagrams, it can 
be stated that the weekly flow sequences of the Canadian rivers obey the two-parameter 
gamma pdf. After ascertaining the pdf fitting of the weekly flow, the underlying depend-
ence structure of these flow sequences was investigated. For all rivers, the SHIi sequences 
were subjected to autocorrelation analysis to uncover the presence of Markovian or other 
higher order persistence. Very high values of autocorrelations (denoted by ρw in Table 1) 
tend to signify that SHIi sequences can be regarded to contain memory contents beyond 
AR-1. Under such a scenario, a hypothesis can be formed to model LT and the associated 
MT through MC2. 

4. Results and Discussion 
4.1. Comparison of Predicted and Observed Drought Lengths, LT 

Beginning with the notion that annual flow (or SHI) sequences are normal and inde-
pendent (ρ = 0), the value of z0 is 0.0 for the threshold level equal to the median flow and 
the corresponding value of q is computed to be 0.5 from Equation (1). Since the ρ value 
can be assumed to be virtually zero, therefore qq = q from Equation (8). This leads to the 
condition in which the structure of drought lengths falls in the regime of MC0. Equation 
(8) thus can be used to predict LT by plugging in q = 0.5; T = F N (N = sample size shown 
in Table 1). The notation F is the correction factor in the plotting position formula to com-
pute the return period, T, using N as the sample size. Adamowski (1981) [41] has sug-
gested F = (1 + 0.5/N)/0.75 for flood analysis of the Canadian rivers, that is, for the sample 
size of N = 100, the return period T = 1.34N; and for N = 1000, F = 1.33. It should be noted 
that in the Weibull formula, F = (N + 1)/N. It was noted that the predicted values of LT 
(denoted as LT-p) compared well with the observed values (denoted as LT-o), as can be seen 
in the lower portion of the graph in Figure 4a. The average length (duration) of the 
drought was observed (LT-o) to be 5 years for an average sampling period of N = 67, and 
the predicted value was found to be 6 years (T = 90 years using the Adamowski formula 
in Equation (8)). As a general rule, one can expect a 100-year drought to persist for 6 years, 
whereas a 50-year drought can be expected to last for 5 years (Equation (8)). The recent 
widespread hydrologic drought of 1998–2002 is a testimony to the above finding. 

A similar analysis, as used for annual SHI sequences, was extended to the monthly 
SHI sequences, in which at the median truncation level (q = 0.5), z0 was computed using 
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Equation (3). Since monthly SHI sequences tend to obey the AR-1 process [14], therefore, 
LT is modelled by MC1, represented by Equation (6). An important point to be noted in 
monthly drought analysis is that N is converted in months and z0 is based on the gamma 
pdf, whose value would be less than zero at the median threshold level. Also, the T in the 
calculation was taken as 1.33 N (because N was greater than 360, i.e., a minimum sample 
size of recorded flows), as discussed above. 

All the computations needed were completed through a Macro designed to operate 
in a Microsoft Excel spreadsheet. The parameters qq and qp in the relevant equations were 
estimated by the analytical Equation (8). The value of ρ (=ρm) was taken as the lag 1 auto-
correlation from the monthly SHI sequences. The cutoff level SHI0 was obtained by an 
iterative procedure described in Section 2.3. The average LT-o was observed as 12 months 
for a sampling period of N = 67 years (804 months) and LT-p was also found to be 12 
months. The points of LT-o versus LT-p are depicted in Figure 3a in the middle region where 
a reasonable correspondence is evident. 

 

Figure 4. Comparison of predicted and observed (a) drought durations, LT, and (b) magnitudes, MT. 

On a weekly scale, the flow sequences of the rivers under consideration tend to dis-
play a memory structure exceeding AR-1, as is apparent by the very high values of ρw 
(Table 1). Consequently, the MC2 structure was considered to model the drought lengths 
on a weekly scale. Therefore, Equation (5) representing MC2 was used to predict LT-p. For 
each river, the threshold level SHI0 corresponding to the probability q = 0.5 was computed 
following the procedure described in Section 2.3. Plugging ρw into Equation (8), qq and qp 
were computed. Since there is no formula to compute qqq and qqp, these were estimated by 
a counting procedure. Thus, the values of LT-p were predicted from Equation (5) by plug-
ging in the parameters qq, qp (analytically derived) and qqq, qqp (counting-based). It was ob-
served that the use of ρw (based on the SHI series) resulted in an under-prediction of LT-p. 
To ameliorate the under-prediction, ρw was replaced by ρo (based on the original non-
standardized series), and the parameters qq and qp were re-evaluated (Equation (8)). This 
new set of parameters along with qqq and qqp only marginally improved the estimates of 
LT-p, but under-prediction still persisted. To further improve upon the under-prediction 
of LT-p, the parameters qqq and qqp were adjusted. A point to be noted is that the second-
order parameter qqq was the most sensitive in influencing the estimate of LT-p, whereas the 
parameter qpq was less sensitive. Further, it was found that qqq was greater than qq by nearly 
2% to 10% with a mean value of 5%. In the absence of any other estimate of qqq, its value 
was used as 1.05 × qq and the parameter qpq was left untouched [14]. Using this revised set 
of parameters, LT-p values were predicted that showed a reasonable correspondence with 
LT-o. The average length of LT on a weekly basis was found to be 36 weeks, which was also 
predicted by the analytical equation based on first-order parameters in combination with 
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the second-order parameters computed using the counting method and suitably adjusted. 
Accurate estimates by the counting method require large sample sizes (say, N exceeding 
10,000) as reported in the literature [5,42]. Garappu et al. (2022) [42] synthesized 500 years 
of weekly data to arrive at the true values of historical drought parameters over the last 
millennium. 

The LT-p values estimated through Equations (5) and (6) are plotted against the coun-
terpart values of LT-o at all three time scales in Figure 4a. The adequacy of fit was judged 
using NSE (Nash–Sutcliffe efficiency) and MRE (mean relative error) [13,14]. The scatter 
of the points (predicted and observed values) of E(LT) on the 1:1 line in Figure 4a appears 
to be acceptable, as suggested by NSE ≈ 85% with a mean relative error (MRE) of −3.3%. 
This plot therefore alludes to the reasonable ability of the second-order Markov chain 
model to simulate and predict the T-week drought durations at the median threshold level 
in the SHIi sequences. 

4.2. Comparison of Predicted and Observed Drought Magnitudes, MT 

The estimation of the procedure for MT began with the application of the basic axiom 
of probability, i.e., 𝐸(𝑀்) = ׬ 𝑀் 𝑃( 𝑀் = 𝑌) as discussed in the latter part of Section 2.4. 
The evaluation of P(MT = Y) was a bit involved, as it required the estimates of LT-p, a pa-
rameter ɸ, and estimates of drought intensity (Id) in the form of its mean (Equation (12)) 
and variance (Equation (13)). At the annual scale, since ρ is assumed to be zero, LT-p values 
were computed using MC0 (i.e., qq = qp = q) and the parameter ɸ = 0.5 was used in the 
required equations (Equations (9)–(15)). All the calculations were performed by writing a 
Macro in the Microsoft Excel frame and necessary probability values in the normal prob-
ability function were evaluated by the numerical integration of the required equations. 
The prediction results are depicted in Figure 4b in the lower portion of the graph and are 
closely well spread around the 1:1 line of MT-p versus MT-o, suggesting a good fit. An 
average value of MT-p was found to be 4.95 against an MT-o of 4.55, an over-prediction of 
≈9%. This over-prediction was expected in view of the simplification of the model struc-
ture, particularly when ɸ = 0.5 was assumed uniformly for all rivers and SHI sequences 
were taken as independent normal. 

On a monthly scale, the same set of equations was used, and the LT structure was 
deemed to follow MC1. Therefore, the parameters qq and qp were computed using Equa-
tion (8) and the values of LT-p were estimated. The LT-p values were computed and in 
combination with ɸ = 0.5, then predictions of MT-p were made while considering the mean 
and variance of the drought intensity function (Id). The predicted values, i.e., MT-p, com-
pared well with the observed counterpart, LT-o, as can be seen in the middle portion (val-
ues from 5 to 25) of the plot in Figure 4b. An average value of MT-p was found to be 11.38 
against its counterpart value of MT-o equal to 11.52, which are very close to each other, 
suggesting that ɸ = 0.5 is a judicious choice for prediction purposes. 

On a weekly scale, the prediction of MT-p faces some challenges. The methodology 
for estimating MT-p is confined to the MC1 structure of drought lengths, whereas they 
were found to fall in the domain of MC2. In a strict sense, Equations (9)–(15) are applicable 
to MC1 conditions. Therefore, the prediction of MT-p was conducted assuming the weekly 
SHI sequences to obey MC1. That is, the parameters qq and qp were estimated using Equa-
tion (8), with the ρw from the non-standardized weekly flow sequences and LT (denoted 
LT1) values computed. These LT1 values were plugged into the relevant equations. The pre-
dictions turned out to be satisfactory for ρw < 0.75 as MT-p matched the observed counter-
part (MT-o) reasonably well. For ρw > 0.75, the matching was not satisfactory, as the MT-p 
values turned out to be far lower than the counterpart MT-o values. Under this situation, 
therefore, all equations were used as such, except that the values of LT1 (based on MC1) 
were replaced by LT2 (based on MC2). The computation of parameters for LT2 has been well 
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discussed in the aforesaid section. With the use of ɸ = 0.5, the predictions of MT-p were 
made, which compared satisfactorily with MT-o as depicted in the upper portion of Figure 
4b. The average value of MT-p was found to be 37.26, compared to its counterpart value of 
MT-o which was equal to 36.22, which are close to each other. The aforesaid simplified 
modelling strategy for predicting MT-p seemed to work satisfactorily for Canadian weekly 
SHI sequences that follow the gamma pdf. 

The MT-p values estimated through Equations (9)–(15) were plotted against the coun-
terpart values MT-o at all three time scales in Figure 4b. The adequacy of fit was adjusted 
using NSE and MRE, similar to the case of drought lengths, LT, discussed above. The scat-
ter of points (MT-p versus MT-o) on the 1:1 line in Figure 4b appeared satisfactory, as sug-
gested by the NSE ≈ 83% with the mean relative error (MRE) of −3.8%. This plot, therefore, 
alludes to a reasonable ability to predict MT-p by mixing the MC1 and MC2 models for 
computing LT-p, and that are to be used according to the ρw value associated with the flow 
conditions of a river. 

4.3. A Discussion on the Use of MC-Based Drought Models for Drought Amelioration 

A Markov chain-based methodology was advanced to predict LT and MT on annual, 
monthly, and weekly scales for Canadian rivers using the SHI sequences as the platform. 
On an annual scale, the methodology is trivial as the annual stream flows tend to be inde-
pendent and obey the normal pdf, and, therefore, LT and MT can be easily predicted using 
Equations (7)–(15) applied on the annual SHI sequences. The same set of equations with 
the gamma pdf of flows can be applied to estimate the above parameters on a monthly 
basis. In both situations, estimates of µ, cv, and ρ can provide reliable predictions of LT 
and MT at the median flow level (q = 0.5) and the return period, T (=1.33 N, N being the 
sample size to be used during the model fitting and parameter estimation through the 
enumeration method). The analysis on a weekly basis takes a tedious turn and thus a re-
course is taken to the MC2 model, in which there is a paucity of closed-form equations for 
estimating second-order conditional probabilities, viz. qqq and qqp. Therefore, historical 
data are used to estimate these parameters using a counting (or enumeration) method 
involving both the non-standardized flow and SHI sequences. Potentially, there are three 
values of MT for a T-year drought and consequently, three values of DT. A logical question 
arises as to which one of them should be used for planning the drought mitigation 
measures. To elucidate this point, one can consider the case of the Neebing River (station 
ON02AB008), Canada, with the following statistics: mean flow = 1.61 m3/s; and σ = 0.60 
m3/s (annual), 1.30 m3/s (month-by-month averaged out value), and 1.79 m3/s (week-by-
week averaged out value) with ρ = 0 (annual), 0.43 (monthly), and 0.63 (weekly). It should 
be borne in mind that σav (average of 12 monthly σs in the monthly analysis, and, accord-
ingly, 52 weekly σs) was found to be the best estimator of σ for use in the conversion 
equation D = σ × M on the monthly and weekly scales for drought analysis (Sharma and 
Panu, 2010) [12]. These statistics are based on the sample of 67 years (N = 67, meaning T = 
1.34 × N = 90 ≈ 100 years). Using the above statistics, it can be estimated that a 100-year 
drought is likely to continue for 6 years, 13 months, or 31 weeks, respectively, when ana-
lyzed on annual, monthly, and weekly SHI sequences. The corresponding MT values were 
predicted to be 4.8, 10.4, and 18.94. Based on these statistics, calculations can be conducted 
to assess the deficit volumes of water in the rivers that are necessary to meet the water 
demands for various applications. For example, the drought duration when expressed in 
weeks was found to be 312 (6-year drought = 6 × 52) based on the annual analysis; 56 
weeks (13-month drought = 13 × 4.33) based on the monthly analysis; and 31 weeks based 
on the weekly analysis itself. The advantage in analyzing droughts at a shorter time scale 
is vividly clear, as the T-year drought would last for 31 weeks only when the conditions 
are expected to be precarious during the protracted drought. The corresponding values of 



Hydrology 2025, 12, 23 15 of 18 
 

 

the deficit volumes DT (=σ × MT) can be estimated as the following: 0.60 × 4.8 × c1 ≈ 90.0 
million m3, 1.30 × 10.4 × c2 ≈ 40.0 million m3, or 1.79 × 18.94 × c3 = 20.5 m3 on annual, 
monthly, and weekly scales, respectively. Note that c1 (=31.5 × 106), c2 (=2.95 × 106), and c3 
(=0.605 × 106) are conversion constants to convert the annual, monthly, and weekly flow 
rates into volumes. 

Based on the above statistics, one can infer that a 100-year protracted drought can 
last for 31 weeks, which can occur in any one year or can span in parts from one year to 
the subsequent year. Most likely, the drier months would fall in the grip of this severe 
drought, which is apparent from the analysis on a monthly basis (10 months). The most 
conservative value for the design of a water storage system to make up for the shortfall 
could be taken as the maximum of the above three values, which is 90 million m3. In other 
words, analyses based on three time scales are complementary to each other in providing 
information for planning drought mitigation measures. Annual analysis, being trivial, is 
a rapid way to seek information on the proneness of a region to face the severity of 
drought episodes in terms of the protracted duration and accompanying water shortages. 
It can be perceived to be a useful tool for the regional mapping of droughts. The weekly 
analysis, being data-intensive and computationally rigorous, provides finer details on 
drought scenarios in terms of its persistence time and associated water shortages. There-
fore, the week-based analysis could probably be more useful for site-specific drought 
studies directed to the design of reservoirs, irrigation planning, drought forecasting, ra-
tioning of water, or short-term drought management strategies. On the other hand, the 
monthly analysis is a compromise but would be more complementary to the annual-based 
analysis, where finer details on the drought frequency, duration, and magnitude are 
sought for a particular region. 

It is to be noted that, in terms of reservoir sizing, the monthly flow sequences are 
regarded as more desirable [43,44]. Similar findings have been observed [45] in which 
analysis based on monthly flow sequences resulted in the optimal size of reservoirs. Since 
the draft at 75% of the mean annual flow is considered adequate (McMahon and Adeloye, 
2005) [30], therefore, the cutoff level at median flow is a judicious choice. It should also be 
noted that drought magnitude estimates as yielded by the present methodology are one 
method of assessing the reservoir storage among other methods, such as the Sequent peak 
algorithm, the Behavior analysis, the Gould gamma method, and the Gould probability 
matrix method [45], among others. 

In a strict sense, the aforesaid analysis applies to the SHI sequences following the 
gamma or normal pdf. For more non-normal pdfs of flows such as lognormal, the above 
analysis should be carried out in the logarithmic domain. The analysis presented in this 
paper is accurate enough on annual and monthly scales, as the drought sequences fall in 
the regime of MC0 or MC1. Under the scenarios of MC0 and MC1, the estimates of param-
eters can be obtained by theoretical equations, and the small sample size of gauged river 
flows also yields accurate estimates of parameters. On a weekly scale, the structure of 
drought lengths and magnitudes falls in the domain of MC2, which renders the analysis 
less accurate in view of the difficulty in estimating the second-order probabilities. 

It was noted that the mean, µd, of drought intensity, Id, ranged from 0.60 (week) to 
0.80 (annual) and a trivial model MT = µd LT could be used to predict drought magnitude 
as a quick prediction model. For example, on the annual scale, a 100-year drought for the 
Neebing River was expected to run for a duration of 6 years. The µd values for the river 
were found to be 0.80, 0.72, and 0.70 on the annual, monthly, and weekly scales. On the 
annual scale, the corresponding MT = 0.80 × 6= 4.80. The deficiency of the water in the river 
due to this extended drought can be computed as follows: DT = 0.60 × 31.5 × 106 × 4.80 = 
90.72 million m3, which is virtually the same as was computed by the rigorous calculations 
involving the variance of Id in combination with the scaling parameter ɸ = 0.5. At the 
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monthly scale, LT = 10 months, so the MT can be computed as 0.72 × 10 = 7.2. The corre-
sponding DT = 1.30 × 2.95 × 106 × 7.2= 27.61 million m3, which is less than that found (=40 
million m3) from the rigorous calculations involving variance-based equations but is not 
too far off. Likewise, the similar estimate on the weekly scale is as follows: MT = 21.7(=0.70 
× 31) and the corresponding DT = 0.605 × 106 × 21.7 = 13.1 million m3, which is less than the 
rigorously computed value = 20.5 million m3. These values using the simple model can be 
taken as a guide for arriving at the more refined estimates from the variance of Id-based 
estimates, which are usually larger. 

5. Conclusions 
The hydrological droughts based on the annual, monthly, and weekly flow sequences 

of the 26 rivers analyzed in this paper refer to the T-year durations and magnitudes using 
the sample size (N) ranging from 36 to 110 years. Based on three time scales, the flow 
sequences were standardized and trimmed at the median flow level. For the monthly and 
weekly droughts, analyses were conducted by the month-by-month or week-by-week 
standardization of all monthly or weekly flow sequences. The standardization procedure 
also rendered the non-stationary stochastic monthly or weekly flow sequences into sta-
tionary stochastic sequences, thus making the analysis tractable. A standardized flow se-
quence thus obtained is named a standardized hydrological index (SHI), in tandem with 
a standardized precipitation index (SPI), which is commonly used in the context of mete-
orological droughts. The product moment and L-moment analyses revealed that the 
monthly and weekly streamflow sequences obey the gamma pdf, whereas the annual flow 
sequences can be deemed to follow the normal pdf. 

The analysis in this paper demonstrated that LT on an annual and monthly basis can 
be predicted using the MC0 or MC1 models. For the modelling of weekly droughts, the 
MC2 model was found to be more adequate. The parameters in the MC1 model could be 
evaluated using the closed-form equation with the information of cv and lag 1 autocorre-
lation (ρ) in the SHI sequences. The MC2 model required information on the simple, first-
, and second-order conditional probabilities. The simple drought probability q and the 
first-order conditional probabilities qq and qp were obtained based on the closed-form 
equations using the information of cv and ρ of the weekly flow sequences (referred to as 
non-standardized or original flows). The second-order conditional probabilities, viz., qqq 
and qqp, were obtained from the non-standardized flow sequences and SHI sequences with 
some adjustments involving the first-order probabilities. 

The linkage relationship MT = Id × Lc (in which Id represents drought intensity and 
obeys a truncated normal pdf, and Lc a characteristic drought length connected to LT 
through a scaling parameter ɸ) proved satisfactory for predicting the drought magnitude. 
The value of ɸ = 0.5 was found to be uniformly applicable at all time scales. The perfor-
mance of the above linkage relationship was robust and reliable at the annual and 
monthly scales, whereas at the weekly scale, it needed adjustment in the values of the 
parameters. 
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