Assessment of Alternative Agricultural Land Use Options for Extending the Availability of the Ogallala Aquifer in the Northern High Plains of Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Model Inputs and Crop Growth Data
2.3. Lysimetric ET Data Collection
2.4. Default and Management Allowed Depletion Auto-Irrigation Functions in SWAT
2.5. Scenario Design and Assessment of Land Use Scenarios
3. Results and Discussion
3.1. Comparison of Simulated Irrigation, ET, and Crop Yield with Observed Data
3.2. Evaluation of Annual Net Groundwater Use, Soil Water Depletion, and Groundwater Recharge under Different Land Uses
3.3. Simulated Monthly ET, Irrigation, and Soil Water Content under Twelve Land Use Scenarios
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Agricultural Statistics Service (NASS). Available online: https://www.nass.usda.gov/ (accessed on 29 May 2018).
- High Plains Underground Water Conservation District (HPUWCD). Available online: http://static1.squarespace.com/static/53286fe5e4b0bbf6a4535d75/t/54db8326e4b09b0ec42ee61d/1423672102940/%28RuleExplanationRevised.pdf (accessed on 24 May 2018).
- Rajan, N.; Maas, S.; Cui, S. Extreme drought effects on evapotranspiration and energy balance of a pasture in the Southern Great High Plains. Ecohydrology 2015, 8, 1194–1204. [Google Scholar] [CrossRef]
- Schneider, A.D.; Musick, J.T.; Dusek, D.A. Efficient wheat irrigation with limited water. Trans. Am. Soc. Agric. Eng. 1969, 12, 23–26. [Google Scholar] [CrossRef]
- Stewart, B.A.; Musick, J.T.; Dusek, D.A. Yield and water use efficiency of grain sorghum in a limited irrigation-dryland farming system. Agron. J. 1983, 75, 629–634. [Google Scholar] [CrossRef]
- Boyer, J.S. Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean. Plant Physiol. 1970, 46, 236–239. [Google Scholar] [CrossRef]
- Eck, H.V.; Mathers, A.C.; Musick, J.T. Plant water stress at various growth stages and growth and yield of soybeans. Field Crops Res. 1987, 17, 1–16. [Google Scholar] [CrossRef]
- Salih, A.A.; Ali, I.A.; Lux, A.; Luxova, M.; Cohen, Y.; Sugimoto, Y.; Inanaga, S. Rooting, water uptake, and xylem structure adaptation to drought of two sorghum cultivars. Crop Sci. 1999, 39, 168–173. [Google Scholar] [CrossRef]
- Stone, L.R.; Goodrum, D.E.; Jafaar, M.N.; Khan, A.H. Rooting front and water depletion depths in grain sorghum and sunflower. Agron. J. 2001, 93, 1105–1110. [Google Scholar] [CrossRef]
- Moroke, T.S. Root Distribution, Water Extraction Patterns, and Crop Water Use Efficiency of Selected Dryland Crops under Differing Tillage Systems. Ph.D. Thesis, Texas A&M Univercity, College Station, TX, USA, 2002. [Google Scholar]
- Baumhardt, R.L.; Salinas-Garcia, J. Dryland agriculture in Mexico and the US southern Great Plains. Dryland Agric. 2006, 23, 341–364. [Google Scholar]
- Li, Q.; Qi, J.; Xing, Z.; Li, S.; Jiang, Y.; Danielescu, S.; Zhu, H.; Wei, X.; Meng, F. An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater. Agric. Ecosyst. Environ. 2014, 196, 114–124. [Google Scholar] [CrossRef]
- Callison, D. Management Allowed Depletion Irrigation Scheduling. Available online: http://awqa.org/wp-content/toolkits/IrrigationScheduling/ManagementAllowedDepletion-IrrigationScheduling.pdf (accessed on 3 May 2018).
- Evett, S.R.; Schwartz, R.C.; Mazahrih, N.T.; Jitan, M.A.; Shaqir, I.M. Soil water sensors for irrigation scheduling: Can they deliver a management allowed depletion? Acta Hortic. 2011, 888, 231–237. [Google Scholar] [CrossRef]
- Gheysari, M.; Mirlatifi, S.M.; Homaee, M.; Asadi, M.E.; Hoogenboom, G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 2009, 96, 946–954. [Google Scholar] [CrossRef]
- Lamm, F.R.; Rogers, D.H.; Clark, G.A. Irrigation scheduling for corn: Macromanagement. In Proceedings of the ASABE Evapotranspiration and Irrigation Scheduling Conference, San Antonio, TX, USA, 3–6 November 1996; pp. 741–748. [Google Scholar]
- Merriam, J.L. A management control concept for determining the economical depth and frequency of irrigation. Trans. ASAE 1966, 9, 492–498. [Google Scholar] [CrossRef]
- Suarez-Rey, E.; Choi, C.Y.; Waller, P.M.; Kopec, D.M. Comparison of subsurface drip irrigation and sprinkler irrigation for Bermuda grass turf in Arizona. Trans. ASAE 2000, 43, 631–640. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large-area hydrologic modeling and assessment: Part I. Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J.G. SWAT ungauged: Hydrological budget and crop yield predictions in the upper Mississippi river basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Chen, Y.; Marek, G.W.; Marek, T.H.; Brauer, D.K.; Srinivasan, R. Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data. Environ. Model. Softw. 2018, 99, 25–38. [Google Scholar] [CrossRef]
- McInerney, D.; Thyer, M.; Kavetski, D.; Githui, F.; Thayalakumaran, T.; Liu, M.; Kuczera, G. The importance of spatio-temporal variability in irrigation inputs for hydrological modelling of irrigated catchments. Water Resour. Res. 2018. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumí, R.J.L. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two re-analysis datasets. Sci. Total Environ. 2019, 649, 846–865. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.B.; Wu, P.T.; Sun, S.K.; Li, X.L.; Wang, Y.B.; Gao, X.R. Impact of land use change on hydrologic processes in a large plain irrigation district. Water Resour. Manag. 2018, 32, 3203–3217. [Google Scholar] [CrossRef]
- VanLoocke, A.; Bernacchi, C.J.; Twine, T.E. The impacts of Miscanthus×giganteus production on the Midwest US hydrologic cycle. Glob. Chang. Biol. Bioenergy 2010, 2, 180–191. [Google Scholar] [CrossRef]
- Chen, Y.; Marek, G.W.; Marek, T.H.; Brauer, D.K.; Srinivasan, R. Assessing the efficacy of the SWAT auto-irrigation function to simulate irrigation, evapotranspiration, and crop response to management strategies of the Texas High Plains. Water 2017, 9, 509. [Google Scholar] [CrossRef]
- Unger, P.W.; Pringle, F.B. Pullman Soils: Distribution Importance, Variability, and Management; Bulletin B-1372; Texas Agricultural Experiment Station: College Station, TX, USA, 1981.
- American Society of Civil Engineers (ASCE). The ASCE Standardized Reference Evapotranspiration Equation; ASCE Environmental and Water Resources Institute: Reston, VA, USA, 2005.
- Web Soil Survey. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, 2011. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 25 September 2018).
- Marek, G.W.; Gowda, P.H.; Evett, S.R.; Baumhardt, R.L.; Brauer, D.K.; Howell, T.A.; Marek, T.H.; Srinivasan, R. Estimating evapotranspiration for dryland cropping systems in the semiarid Texas High Plains using SWAT. J. Am. Water Resour. Assoc. 2016, 52, 298–314. [Google Scholar] [CrossRef]
- Marek, T.H.; Schneider, A.D.; Howell, T.A.; Ebeling, L.L. Design and construction of large weighing monolithic lysimeters. Trans. ASAE 1988, 31, 477–484. [Google Scholar] [CrossRef]
- Howell, T.A.; Schneider, A.D.; Dusek, D.A.; Marek, T.H.; Steiner, J.L. Calibration and scale performance of Bushland weighing lysimeters. Trans. ASAE 1995, 38, 1019–1024. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Howell, T.A.; Baumhardt, R.L.; Copeland, K.S. Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET? Adv. Water Resour. 2012, 50, 79–90. [Google Scholar] [CrossRef]
- Marek, G.W.; Evett, S.R.; Gowda, P.H.; Howell, T.A.; Copeland, K.S.; Baumhardt, R.L. Post-processing techniques for reducing errors in weighing lysimeter evapotranspiration (ET) datasets. Trans. ASAE 2014, 57, 499–515. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, Z.; Musick, J.T.; Stewart, B.A.; Dusek, A.D. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Phys. 2006, 163, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.; Rajan, N.; Xue, Q.; Nair, S.; Ibrahim, A.; Hays, D. Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agric. Water Manag. 2016, 165, 50–60. [Google Scholar] [CrossRef]
- Chen, Y.; Ale, S.; Rajan, N.; Morgan, C.L.S.; Park, J.Y. Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA. Glob. Chang. Biol. Bioenergy 2016, 8, 981–999. [Google Scholar] [CrossRef]
- Moroke, T.S.; Schwartz, R.C.; Brown, K.W.; Juo, A.S.R. Water use efficiency of dryland cowpea, sorghum and sunflower under reduced tillage. Soil Tillage Res. 2011, 112, 76–84. [Google Scholar] [CrossRef]
- Chen, Y.; Ale, S.; Rajan, N. Implications of biofuel-induced changes in land use and crop management on sustainability of agriculture in the Texas High Plains. Biomass Bioenergy 2018, 111, 13–21. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration-National Climatic Data Center (NOAA-NCDC). Weather Data. Available online: http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=daily&layers=111&node=gis (accessed on 30 May 2018).
- Musick, J.T.; New, L.L.; Dusek, D.A. Soil water depletion—Yield relationships of irrigated sorghum, wheat, and soybeans. Trans. ASABE 1976, 19, 489–493. [Google Scholar] [CrossRef]
- 2011 Regional Water Plans | Texas Water Development Board. Region A 2011 RWP Appendices. Available online: http://www.twdb.texas.gov/waterplanning/rwp/plans/2011/A/Region_A_2011_RWP_Appendices.pdf?d=258905.39999999964 (accessed on 6 July 2018).
- Marek, G.W.; Baumhardt, R.L.; Brauer, D.K.; Gowda, P.H.; Mauget, S.A.; Moorhead, J.E. Evaluation of the Oceanic Niño Index as a decision support tool for winter wheat cropping systems in the Texas High Plains using SWAT. Comput. Electron. Agr. 2018, 151, 331–337. [Google Scholar] [CrossRef]
- Holman, J.D.; Arnet, K.; Dille, J.; Maxwell, S.; Obour, A.; Roberts, T.; Roozeboom, K.; Schlegel, A. Can cover or forage crops replace fallow in the semiarid Central Great Plains? Crop Sci. 2018, 58, 932–944. [Google Scholar] [CrossRef]
- Sophocleous, M. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeol. J. 2005, 13, 351–365. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Scanlon, B.R.; Mpelasoka, F.S.; Reedy, R.C.; Gates, J.B.; Zhang, L. Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resour. Res. 2013, 49, 3936–3951. [Google Scholar] [CrossRef] [Green Version]
- Cronin, J.G. A Summary of the Occurrence and Development of Ground Water in the Southern High Plains of Texas; Texas Board of Water Engineers: Washington, DC, USA, 1961; 104p. [Google Scholar]
- Havens, J.S. Recharge Studies on the High Plains in Northern Lea County, New Mexico; U.S. Geological Survey: Washington, DC, USA, 1966; 52p.
- Brown, R.F.; Signor, D.S. Artificial Recharge Experiments and Operations on the Southern High Plains of Texas and New Mexico; U.S. Geological Survey: Washington, DC, USA, 1973; 54p.
- Bell, A.E.; Morrison, S. Analytical Study of the Ogallala Aquifer in Carson County, Texas, Projections of Saturated Thickness, Volume of Water in Storage, Pumpage Rates, Pumping Lifts, and Well Yields; Texas Department of Water Resources: Austin, TX, USA, 1979; 64p. [Google Scholar]
- Klemt, W.B. Evaluating the Ground-Water Resources of the High Plains of Texas, Neutronprobe Measurements of Deep Soil Moisture as an Indicator of Aquifer Recharge Rates; Texas Department of Water Resources: Austin, TX, USA, 1981; 31p. [Google Scholar]
- Texas Department of Water Resources. U.S. Bureau of Reclamation. Llano Estacado Playa Lake Water Resources Study; U.S. Department of the Interior: Amarillo, TX, USA, 1982.
- Wood, W.W.; Osterkamp, W.R. Recharge to the Ogallala aquifer from playa lake basins on the Llano Estacado (an outrageous proposal?). In Proceedings of the Ogallala Aquifer Symposium II; Whetstone, G.A., Ed.; Texas Tech University, Water Resources Center: Lubbock, TX, USA, 1984; pp. 337–349. [Google Scholar]
- Wood, W.W.; Petraitis, M.J. Origin and distribution of carbon dioxide in the unsaturated zone of the Southern High Plains of Texas. Water Resour. Res. 1984, 20, 1193–1208. [Google Scholar] [CrossRef]
- Knowles, T.R.; Nordstrom, P.; Klemt, W.B. Evaluating the Ground-Water Resources of the High Plains of Texas; Records of Wells and Maps Showing Locations, Base of Aquifer, Water Levels, and Saturated Thickness; Texas Department of Water Resources: Austin, TX, USA, 1984; 475p. [Google Scholar]
- Gutentag, E.D.; Heimes, F.J.; Krothe, N.C.; Luchkey, R.R.; Weeks, J.B. Geohydrology of the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming; U.S. Geological Survey: Alexandria, VA, USA, 1984; 63p.
- Nativ, R. Recharge into Southern High Plains aquifer-possible mechanisms, unresolved questions. Environ. Geol. Water Sci. 1992, 19, 21–32. [Google Scholar] [CrossRef]
- Mullican III, W.F.; Fryar, A.E.; Johns, N.D. Vertical Transport of Contaminants through Perched Aquifers to the Ogallala Aquifer, Pantex Plant Area, Southern High Plains, Texas, in Dutton; American Institute of Hydrology: Austin, TX, USA, 1994; pp. 547–562. [Google Scholar]
- Dugan, J.T.; McGrath, T.; Zelt, R.B. Water Level Changes in the High Plains Aquifer-Predevelopment to 1992; U.S. Geological Survey: Denver, CO, USA, 1994; 56p.
- Wood, W.W.; Sanford, W.E. Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 1995, 33, 458–468. [Google Scholar] [CrossRef]
- Rosenberg, N.J.; Epstein, D.J.; Wang, D.; Vail, L.; Srinivasan, R.; Arnold, J.G. Possible impacts of global warming on the hydrology of the Ogallala Aquifer region. Clim. Chang. 1999, 42, 677–692. [Google Scholar] [CrossRef]
Soil Properties | Layer 1 | Layer 2 | Layer 3 | Layer 4 |
---|---|---|---|---|
Layer depth (mm) | 0–180 | 180–860 | 860–1800 | 1800–2300 |
Bulk density (g cm−3) | 1.43 | 1.38 | 1.38 | 1.45 |
Clay content (% soil mass) | 33.9 | 42.1 | 39.4 | 39.1 |
Silt content (% soil mass) | 53.8 | 48.0 | 47.6 | 47.1 |
Sand content (% soil mass) | 12.3 | 9.9 | 13.0 | 13.8 |
Available water capacity (mm H2O per mm soil) | 0.20 | 0.18 | 0.19 | 0.14 |
Saturated hydraulic conductivity (mm h−1) | 9.72 | 2.16 | 2.16 | 9.72 |
Year | Full Irrigation Using Sprinkler System | Dryland Conditions |
---|---|---|
1996 | Alfalfa | Entire-year fallow with bare soil |
1997 | Alfalfa | Grain sorghum |
1998 | Alfalfa | Grain sorghum |
1999 | Alfalfa | Grain sorghum |
2000 | Cotton | Cotton |
2001 | Cotton | Cotton |
2002 | Cotton | Entire-year fallow with bare soil |
2003 | Soybean | Grain sorghum |
2004 | Soybean | Cotton |
2005 | Grain sorghum | Entire-year fallow with bare soil |
2006 | Forage corn | Grain sorghum |
2007 | Forage sorghum | Grain sorghum |
2008 | Cotton | Cotton |
2009 | Sunflower | Entire-year fallow with bare soil |
2010 | Cotton | Soybean |
2011 | Sunflower | Sunflower |
2012 | No crop | Drip installation |
2013 | Grain corn | Drip-irrigated grain corn |
2014 | Grain sorghum | Drip-irrigated grain sorghum |
2015 | Grain sorghum | Drip-irrigated grain sorghum |
2016 | Grain corn | Drip-irrigated grain corn |
Scenarios | Crop | Planting Date | Fertilizer (kg ha−1) * | Harvest Date | Information Source |
---|---|---|---|---|---|
1 | Irrigared grain corn | 14 May | 644.5 | 19 Oct. | 2013 and 2016 data |
2 | Irrigated winter wheat | 5 Oct. | 412 | 28 June | [35,36] |
3 | Irrigared cotton | 21 May | 326.5 | 22 Nov. | 2000, 2001, 2002, 2008, and 2010 data |
4 | Irrigared soybean | 16 May | 0 | 17 Oct. | 2003 and 2004 data |
5 | Irrigared sunflower | 4 June | 510 | 19 Oct. | 2009 and 2011 data |
6 | Irrigared grain sorghum | 30 May | 612 | 15 Oct. | 2005, 2014, and 2015 data |
7 | Dryland winter wheat | 15 Oct. | 150 | 1 July | [35,37] |
8 | Dryland cotton | 21 May | 207.7 | 8 Dec. | 2000, 2001, 2004, and 2008 data |
9 | Dryland soybean | 16 May | 0 | 17 Oct. | 2010 data |
10 | Dryland sunflower | 4 June | 91 | 20 Sept. | [38] |
11 | Dryland grain sorghum | 13 June | 170 | 17 Oct. | 2003, 2006, and 2007 data |
12 | Fallow with bare soil | - - | - - | - - | 2002, 2005, and 2009 data |
Crop | Simulated Irrigation Range | Simulated Irrigation Average | Actual Irrigation Range | Actual Irrigation Average | Observed Data Source |
---|---|---|---|---|---|
Grain corn | 254–635 | 450 | 470–618 | 544 | 2013 and 2016 irrigated data |
Winter wheat | 0–762 | 409 | 400.0 | 400 | [35] |
Cotton | 279–559 | 406 | 282–486 | 389 | 2001, 2002, 2008, and 2010 irrigated data |
Soybean | 229–483 | 361 | 313–495 | 404 | 2003 and 2004 irrigated data |
Sunflower | 178–483 | 353 | 375–485 | 430 | 2009 and 2011 irrigated data |
Grain sorghum | 178–457 | 305 | 198–238 | 224 | 2005, 2014, and 2015 irrigated data |
Land Use | Simulated ET Range | Simulated ET Average | Observed ET Range | Observed ET Average | Observed Data Source |
---|---|---|---|---|---|
Grain corn | 796–1055 | 938 | 847–957 | 902 | 2013 and 2016 irrigated data |
Winter wheat | 599–1158 | 918 | 833.0 | 833 | [35] |
Cotton | 739–1030 | 901 | 798–1018 | 905 | 2001, 2002, 2008, and 2010 irrigated data |
Soybean | 740–969 | 856 | 884–949 | 917 | 2003 and 2004 irrigated data |
Sunflower | 716–942 | 845 | 766–932 | 849 | 2009 and 2011 irrigated data |
Grain sorghum | 623–893 | 798 | 790–823 | 807 | 2005, 2014, and 2015 irrigated data |
Fallow with bare soil | 375–578 | 457 | 319–457 | 400 | 2002, 2005, and 2009 dryland data |
Crop | Simulated Yield Range | Simulated Yield Average | Observed Yield Range | Observed Yield Average | Observed Data Source |
---|---|---|---|---|---|
Irrigated grain corn | 10.9–13.7 | 12.41 | 10.4–14.1 | 12.25 | 2013 and 2016 irrigated data |
Irrigated winter wheat | 6.10–8.13 | 6.82 | 7.11 | 7.11 | [35] |
Irrigated cotton | 0.28–1.22 | 0.67 | 0.33–1.10 | 0.67 | 2001, 2002, 2008, and 2010 irrigated data |
Irrigated soybean | 2.25–3.43 | 2.90 | 2.66–3.16 | 2.91 | 2003 and 2004 irrigated data |
Irrigated sunflower | 2.29–4.71 | 3.67 | 3.31–3.33 | 3.32 | 2009 and 2011 irrigated data |
Irrigated grain sorghum | 6.62–8.93 | 8.09 | 6.54–9.40 | 8.01 | 2005, 2014, and 2015 irrigated data |
Dryland winter wheat | 0.52–4.40 | 2.20 | 2.43 | 2.43 | [36] |
Dryland cotton | 0.16–0.64 | 0.32 | 0.25–0.46 | 0.33 | 2001, 2004, and 2008 dryland data |
Dryland soybean | 0.03–1.98 | 0.64 | 0.56 | 0.56 | [41] |
Dryland sunflower | 0.20–1.59 | 0.86 | 0.51–1.01 | 0.76 | [38] |
Dryland grain sorghum | 0.85–5.58 | 2.95 | 2.31–3.49 | 3.06 | 1997, 1998, and 1999 dryland data |
Irrigated Crops (mm) | Irrigation | Percolation | Net Groundwater Use | Difference in Net Groundwater Use Compared to Grain Corn |
---|---|---|---|---|
Grain corn | 450 | 18 | 432 | 0.0 |
Winter wheat | 409 | 1 | 408 | −24 (−5.5%) |
Cotton | 406 | 11 | 396 | −36 (−8.3%) |
Soybean | 361 | 10 | 350 | −82 (−18.9%) |
Sunflower | 353 | 13 | 340 | −92 (−21.3%) |
Grain sorghum | 305 | 12 | 293 | −139 (−32.2%) |
Dryland Crops (mm) | Percolation | Soil Moisture Depletion | Soil Moisture Depletion Compared to Fallow | Water Lost from System Compared to Fallow |
---|---|---|---|---|
Winter wheat | 0 | 55 | 37 | 68 |
Cotton | 0 | 47 | 29 | 60 |
Soybean | 0 | 54 | 36 | 67 |
Sunflower | 0 | 57 | 39 | 70 |
Grain sorghum | 0 | 51 | 34 | 64 |
Fallow with bare soil | 31 | 18 | 0.0 | −13 |
Literature | Groundwater Recharge/Percolation (mm year−1) |
---|---|
Cronin [47] | 13.0 |
Havens [48] | 20.6 |
Brown and Signor [49] | 1.3 |
Bell and Morrison [50] | 13.0 |
Klemt [51] | 4.8 |
U.S. Bureau of Reclamation [52] | 24.0 |
Wood and Osterkamp [53] | 2.5 |
Wood and Petraitis [54] | 2.5 |
Knowles et al. [55] | 3.9 |
Gutentag et al. [56] | 2.1 |
Nativ [57] | 30.0 |
Mullican et al. [58] | 6.0 |
Dugan et al. [59] | 25.5 |
Wood and Sanford [60] | 11.0 |
Rosenberg et al. [61] | 6.0 |
Sophocleous [45] | 7.0 |
Crosbie et al. [46] | 9.5 |
Chen et al. [37] | 10.5 |
Total average | 10.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Marek, G.W.; Marek, T.H.; Moorhead, J.E.; Heflin, K.R.; Brauer, D.K.; Gowda, P.H.; Srinivasan, R. Assessment of Alternative Agricultural Land Use Options for Extending the Availability of the Ogallala Aquifer in the Northern High Plains of Texas. Hydrology 2018, 5, 53. https://doi.org/10.3390/hydrology5040053
Chen Y, Marek GW, Marek TH, Moorhead JE, Heflin KR, Brauer DK, Gowda PH, Srinivasan R. Assessment of Alternative Agricultural Land Use Options for Extending the Availability of the Ogallala Aquifer in the Northern High Plains of Texas. Hydrology. 2018; 5(4):53. https://doi.org/10.3390/hydrology5040053
Chicago/Turabian StyleChen, Yong, Gary W. Marek, Thomas H. Marek, Jerry E. Moorhead, Kevin R. Heflin, David K. Brauer, Prasanna H. Gowda, and Raghavan Srinivasan. 2018. "Assessment of Alternative Agricultural Land Use Options for Extending the Availability of the Ogallala Aquifer in the Northern High Plains of Texas" Hydrology 5, no. 4: 53. https://doi.org/10.3390/hydrology5040053
APA StyleChen, Y., Marek, G. W., Marek, T. H., Moorhead, J. E., Heflin, K. R., Brauer, D. K., Gowda, P. H., & Srinivasan, R. (2018). Assessment of Alternative Agricultural Land Use Options for Extending the Availability of the Ogallala Aquifer in the Northern High Plains of Texas. Hydrology, 5(4), 53. https://doi.org/10.3390/hydrology5040053