Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition
2.3. Limitation of Method
2.4. Data Postprocessing
2.4.1. Point Density Filtering and Digital Elevation Model (DEM)
2.4.2. Statistical Methods
2.4.3. Bank Retreat
2.4.4. Slope Angle
3. Results
Riverbank Changes
4. Discussion
5. Conclusions
- In the laboratory-observed phenomenon, the formation and existence of an outer secondary cell dampened the shear stress close to the riverbanks, and a possible consequence was observed and documented in a natural meandering river at bends with high curvature and relatively steep riverbanks. The dampening of the erosive behavior was documented by subsequent terrestrial laser scans of three patches along the riverbank.
- This phenomenon could explain the stable riverbanks in short-peak events.
- The location of the erosion process was dependent on the water level. Therefore, different erosional behaviors along one riverbank were observed simultaneously.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parker, G. Stability of the Channel of the Minnesota River Near State Bridge No. 93, Minnesota; University of Minnesota: Minneapolis, MN, USA, 1982. [Google Scholar]
- Parker, G.; Diplas, P.; Akiyama, J. Meander bends of high amplitude. J. Hydraul. Eng. 1983, 109, 1323–1337. [Google Scholar] [CrossRef]
- Parker, G.; Shimizu, Y.; Wilkerson, G.V.; Eke, E.C.; Abad, J.D.; Lauer, J.W.; Paola, C.; Dietrich, W.E.; Voller, V.R. A new framework for modeling the migration of meandering rivers. Earth Surf. Proc. Land 2011, 36, 70–86. [Google Scholar] [CrossRef]
- Schnauder, I.; Sukhodolov, A.N. Flow in a tightly curving meander bend: Effects of seasonal changes in aquatic macrophyte cover. Earth Surf. Proc. Land 2012, 37, 1142–1157. [Google Scholar] [CrossRef]
- Abad, J.D.; Garcia, M.H. Bed Morphology in Kinoshita Meandering Channels: Experiments and Numerical Simulations. In Proceedings of the 5th IAHR-Symposium on River, Coastal and Estuarine Morphodynamics, Enschede, The Netherlands, 17–21 September 2007; pp. 869–875. [Google Scholar]
- Blanckaert, K. Secondary flow in sharp open-channel bends. J. Fluid Mech. 2004, 498, 353–380. [Google Scholar] [CrossRef] [Green Version]
- Daly, E.R.; Miller, R.B.; Fox, G.A. Modeling streambank erosion and failure along protected and unprotected composite streambanks. Adv. Water Resour. 2015, 81, 114–127. [Google Scholar] [CrossRef]
- Langendoen, E.J.; Simon, A.; Alonso, C.V. Modeling channel instabilities and mitigation strategies in eastern Nebraska. Build. Partnersh. 2000. [Google Scholar] [CrossRef]
- Farhadi, A.; Sindelar, C.; Tritthart, M.; Glas, M.; Blanckaert, K.; Habersack, H. An investigation on the outer bank cell of secondary flow in channel bends. J. Hydro-Environ. Res. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Klavon, K.; Fox, G.; Guertault, L.; Langendoen, E.; Enlow, H.; Miller, R.; Khanal, A. Evaluating a process-based model for use in streambank stabilization: Insights on the Bank Stability and Toe Erosion Model (BSTEM). Earth Surf. Proc. Land 2017, 42, 191–213. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, S.; He, L.; Chen, D.; Blanckaert, K.; Ottevanger, W.; Zhang, Y. Modeling Flow Pattern and Evolution of Meandering Channels with a Nonlinear Model. Water 2016, 8, 418. [Google Scholar] [CrossRef]
- Bosa, S.; Petti, M.; Pascolo, S. Numerical Modelling of Cohesive Bank Migration. Water 2018, 10, 961. [Google Scholar] [CrossRef]
- Thomas, S. Review of methods to measure short time scale sediment accumulation. Mar. Geol. 2004, 207, 95–114. [Google Scholar] [CrossRef]
- Lawler, D.M. Application of a novel automatic erosion and deposition monitoring system at a channel bank site on the tidal River Trent, U.K. Estuar. Coast. Shelf Sci. 2001, 53, 237–247. [Google Scholar] [CrossRef]
- Couper, P.; Stott, T.; Maddock, I. Insights into river bank erosion processes derived from analysis of negative erosion-pin recordings: Observations from three recent UK studies. Earth Surf. Proc. Land 2002, 27, 59–79. [Google Scholar] [CrossRef]
- Erlingsson, U. A sensor for measuring erosion and deposition. J. Sediment. Petrol. 1991, 61, 620–623. [Google Scholar] [CrossRef]
- Haigh, M.J. The use of erosion pins in the study of slope evolution. Br. Geomorphol. Res. Group Tech. Bull. 1977, 18, 31–49. [Google Scholar]
- Lawler, D.M. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system. Geomorphology 2008, 93, 17–39. [Google Scholar] [CrossRef]
- Thorne, C.R. Field measurements of rates of bank erosion and bank material strength. In Proceedings of the IAHS Florence, Florence, Italy, 22–26 June 1981; pp. 503–512. [Google Scholar]
- Milan, D.J.; Heritage, G.L.; Large, A.R.G.; Entwistle, N.S. Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties. Earth Surf. Proc. Land 2010, 35, 918–931. [Google Scholar] [CrossRef]
- Day, S.S.; Gran, K.B.; Belmont, P.; Wawrzyniec, T. Measuring bluff erosion part 1: Terrestrial laser scanning methods for change detection. Earth Surf. Proc. Land 2013, 38, 1055–1067. [Google Scholar] [CrossRef]
- Day, S.S.; Gran, K.B.; Belmont, P.; Wawrzyniec, T. Measuring bluff erosion part 2: Pairing aerial photographs and terrestrial laser scanning to create a watershed scale sediment budget. Earth Surf. Proc. Land 2013, 38, 1068–1082. [Google Scholar] [CrossRef]
- O’Neal, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Proc. Land 2011, 36, 695–701. [Google Scholar] [CrossRef]
- Resop, J.P.; Hession, W.C. Terrestrial laser scanning for monitoring streambank retreat: Comparison with traditional surveying techniques. J. Hydraul. Eng. 2010, 136, 794–798. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Proc. Land 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Nasermoaddeli, M.H.; Pasche, E. Application of terrestrial 3D laser scanner in quantification of the riverbank erosion and deposition. In Proceedings of the International Conference on fluvial Hydraulics, Cesme-Ismir, Turkey, 3–5 September 2008; p. 10. [Google Scholar]
- Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, 48, 11. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Demers, D.; Locat, J.; Locat, A.; Locat, P.; Oppikofer, T.; Robitaille, D.; Turmel, D. Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can. Geotech. J. 2009, 46, 1379–1390. [Google Scholar] [CrossRef]
- Thorne, C.R.; Hey, R.D. Direct measurements of secondary currents at a river inflexion point. Nature 1979, 280, 226–228. [Google Scholar] [CrossRef]
- Thorne, C.R.; Zevenbergen, L.W.; Pitlick, J.C.; Rais, S.; Bradley, J.B.; Julien, P.Y. Direct measurements of secondary currents in a meandering sand-bed river. Nature 1985, 315, 746–747. [Google Scholar] [CrossRef]
- Blanckaert, K. Mean flow and turbulence in open-channel bend. J. Hydraul. Eng. 2001, 127, 835–847. [Google Scholar] [CrossRef]
- Blanckaert, K.; Graf, W.H. Momentum transport in sharp open-channel bends. J. Hydraul. Eng. 2004, 130, 186–198. [Google Scholar] [CrossRef]
- Blanckaert, K. Hydrodynamic processes in sharp meander bends and their morphological implications. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Ottewanger, W.; Blanckaert, K.; Uijttewaal, W.S.J. A parameter study on bank shear stresses in curved open channel flow by means of large-eddy simulation. RCEM Proc. 2011, 1917–1927. [Google Scholar]
- Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K. Large-eddy simulation of a mildly curved open-channel flow. J. Fluid Mech. 2009, 630, 413–442. [Google Scholar] [CrossRef]
- Foerst, M.; Rüther, N. Post Processing Methods of Moving Boat ADCP Measurements: Time Averaging vs. Distance Averaging. In 14. Treffen junger WissenschaftlerInnen an Wasserbauinstituten. Beiträge zum JuWi-Treffen am 25. und 26. Juni 2012 an der Technischen Universität München; TU Munich: Munich, Germany, 2012; p. 216. [Google Scholar]
- Foerst, M.; Rüther, N. Mean and Turbulent Flow Structures in two Consectutive Meander Bends. In Proceedings of the IAHR Europe 2012, Munich, Germany, 27–29 June 2012. [Google Scholar]
- Langendoen, E.J.; Simon, A. Stream Channel Evolution of Little Salt Creek and North Branch West Papillion Creek, Eastern Nebraska; National Sedimentation Laboratory: Oxford, MS, USA, 2000.
- Istanbulluoglu, E.; Bras, R.L.; Flores-Cervantes, H.; Tucker, G.E. Implications of bank failures and fluvial erosion for gully development: Field observations and modeling. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Langendoen, E.J. CONCEPTS-Conservational Channel Evolution and Pollutant Transport System. In Guidline NSL Technical Report; Laboratory, U.-A.N.S.: Oxford, MS, USA, 2000; p. 180. [Google Scholar]
- Langendoen, E.J. Modeling the Evolution of Incised Streams. II: Streambank Erosion. J. Hydraul. Eng. 2008, 134, 905. [Google Scholar] [CrossRef]
- Patsinghasanee, S.; Kimura, I.; Shimizu, Y.; Nabi, M. Experiments and modelling of cantilever failures for cohesive riverbanks. J. Hydraul. Res. 2018, 56, 76–95. [Google Scholar] [CrossRef]
- NVE. NEVINA. Available online: nevina.nve.no (accessed on 1 July 2012).
- Kleinhans, M.G. Sorting out river channel patterns. Prog. Phys. Geogr. 2010, 34, 287–326. [Google Scholar] [CrossRef]
- Abad, J.D.; Rhoads, B.L.; Guneralp, I.; Garcia, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [Google Scholar] [CrossRef]
- Kasvi, E.; Alho, P.; Lotsari, E.; Wang, Y.; Kukko, A.; Hyyppä, H.; Hyyppä, J. Two-dimensional and three-dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: Sensitivity and functionality. Hydrol. Process 2015, 29, 1604–1629. [Google Scholar] [CrossRef]
- Nanson, R.A. Flow fields in tightly curving meander bends of low width-depth ratio. Earth Surf. Proc. Land 2010, 35, 119–135. [Google Scholar] [CrossRef]
Scan | Date of Scan | Water Level m a.s.l. | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | σ | Scan | Flood Events | Comment | ||
01 | May 2011 | 1.67 | 2.38 | 2.02 | 0.28 | 1.84 | Initial state | |
02 | July 2011 | 1.64 | 8 | After eight moderate high-water events | ||||
03 | June 2012 | 1.35 | 2.16 | 1.95 | 0.16 | 1.58 | Initial state | |
04 | October 2012 | 1.26 | 6 | After six moderate high-water events | ||||
05 | 19 June 2013 | 1.72 1.72 | 2.25 2.5 | 1.99 1.90 | 0.13 0.15 | 2.01 | Initial state | |
06 | 28 June 2013 | 1.81 | 1 | After one moderate high-water event over five days | ||||
07 | 6 July 2013 | 1.71 | 1 | After one extreme high-water event |
Scan | Date of Scan | Filter Parameter | Points Before Filtering | Points After Filtering | Points After Manual Cleaning | Water Level m a.s.l. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
R | N | Min | Max | Scan | |||||||
Patch 01 | 01 | May 2011 | 2011 | 0.055 | 15 | 79,735 | 60,252 | 59,151 | 1.67 | 2.38 | 1.84 |
02 | July 2011 | 0.025 | 5 | 52,678 | 36,305 | 35,618 | 1.64 | ||||
03 | June 2012 | 2012 | 0.040 | 5 | 124,040 | 113,854 | 113,415 | 1.35 | 2.16 | 1.58 | |
04 | October 2012 | 0.055 | 10 | 180,588 | 168,735 | 1,164,403 | 1.26 | ||||
05 | 19 June 2013 | 2013 | 0.040 | 5 | 286,670 | 270,056 | 269,707 | 2.01 | |||
06 | 28 June 2013 | 0.025 | 5 | 379,610 | 351,198 | 339,921 | 1.72 | 2.25 | 1.81 | ||
07 | 6 July 13 | 0.040 | 5 | 566,067 | 549,132 | 523,337 | 1.72 | 2.5 | 1.71 | ||
Patch 02 | 01 | May 2011 | 2011 | 0.040 | 15 | 94,658 | 91,164 | 91,145 | 1.67 | 2.38 | 1.76 |
02 | July 2011 | 0.040 | 5 | 26,579 | 23,992 | 23,949 | 1.72 | ||||
03 | June 2012 | 2012 | 0.025 | 5 | 588,731 | 496,815 | 494,000 | 1.35 | 2.16 | 1.65 | |
04 | October 2012 | 0.025 | 10 | 121,261 | 108,654 | 107,977 | 1.40 | ||||
05 | 19 June 2013 | 2013 | 0.040 | 10 | 886,871 | 824,974 | 818,160 | 1.60 | |||
06 | 28 June 2013 | 0.040 | 10 | 147,365 | 130,180 | 129,223 | 1.72 | 2.25 | 1.77 | ||
07 | 6 July 2013 | 0.025 | 10 | 445,743 | 430,526 | 425,447 | 1.72 | 2.5 | 1.76 | ||
Patch 03 | 01 | May 2011 | 2011 | 0.040 | 5 | 41,569 | 26,706 | 26,665 | 1.67 | 2.38 | 2.03 |
02 | July 2011 | 0.040 | 10 | 27,570 | 20,741 | 20,741 | 1.73 | ||||
03 | June 2012 | 2012 | 0.025 | 5 | 621,165 | 609,966 | 607,381 | 1.35 | 2.16 | 1.67 | |
04 | October 2012 | 0.025 | 10 | 164,582 | 124,335 | 124,335 | 1.25 | ||||
05 | 19 June 2013 | 2013 | 0.040 | 10 | 907,733 | 887,744 | 887,409 | 1.60 | |||
06 | 28 June 2013 | 0.040 | 15 | 109,946 | 99,567 | 98,975 | 1.72 | 2.25 | 1.80 | ||
07 | 6 July 2013 | 0.040 | 20 | 297,441 | 242,797 | 239,662 | 1.72 | 2.5 | 1.71 |
Scan | Date of Scan | Average Slope Angle | Volume Change | Significance of Change | |||
---|---|---|---|---|---|---|---|
Net | m3/m2 = Meter Retreat | MVSG | |||||
Patch 01 | 01 | May 2011 | 31.3° | *** | |||
02 | July 2011 | 32.7° | 4.24 | 0.17 | |||
03 | June 2012 | 32.5° | 8.70 | 0.34 | p = 0.098 | ||
04 | October 2012 | 34.2° | 5.26 | 0.19 | |||
05 | 19 June 2013 | 39.9° | 8.86 | 0.42 | *** | ||
06 | 28 June 2013 | 38.5° | 3.99 | 0.11 | p = 0.446 | ||
07 | 6 July 2013 | 39.3° | 2.97 | 0.09 | |||
Patch 02 | 01 | May 2011 | 52.0° | *** | |||
02 | July 2011 | 40.0° | 1.14 | 0.31 | |||
03 | June 2012 | 43.9° | 1.60 | 0.28 | *** | ||
04 | October 2012 | 38.2° | 1.33 | 0.21 | |||
05 | 19 June 2013 | 51.5° | 1.49 | 0.18 | *** | ||
06 | 28 June 2013 | 47.9° | 0.11 | 0.01 | *** | ||
07 | 6 July 2013 | 49.2° | 0.55 | 0.05 | |||
Patch 03 | 01 | May 2011 | 56.4° | *** | |||
02 | July 2011 | 44.6° | 1.53 | 0.28 | |||
03 | June 2012 | 47.4° | 3.27 | 0.40 | *** | ||
04 | October 2012 | 42.8° | 0.82 | 0.11 | |||
05 | 19 June 2013 | 50.4° | −1.07 | −0.17 | *** | ||
06 | 28 June 2013 | 47.3° | 0.48 | 0.08 | *** | ||
07 | 6 July 2013 | 48.2° | 0.81 | 0.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foerst, M.; Rüther, N. Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway. Hydrology 2018, 5, 68. https://doi.org/10.3390/hydrology5040068
Foerst M, Rüther N. Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway. Hydrology. 2018; 5(4):68. https://doi.org/10.3390/hydrology5040068
Chicago/Turabian StyleFoerst, Markus, and Nils Rüther. 2018. "Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway" Hydrology 5, no. 4: 68. https://doi.org/10.3390/hydrology5040068
APA StyleFoerst, M., & Rüther, N. (2018). Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway. Hydrology, 5(4), 68. https://doi.org/10.3390/hydrology5040068