Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Setup
2.1.1. Databases
2.1.2. Land cover
2.1.3. Soils
2.1.4. Topography
2.1.5. Management
2.1.6. Weather
2.1.7. Reservoirs
2.2. Model Calibration and Validation
2.2.1. Details on Automated Flow Calibration Procedure
- HARG_PETCO, a coefficient used to adjust potential evapotranspiration (PET) estimated by the Hargreaves method [56,57] and calibrate the runoff/water yield in each 8-digit watershed. In the Hargreaves method, PET is a function of temperature and terrestrial radiation. This coefficient is related to radiation and can be varied to account for the differences in PET in different parts of the river basin depending on weather conditions [57].
- Soil water depletion coefficient (CN_COEF), a coefficient used in the curve number method to adjust the antecedent moisture conditions on surface runoff generation.
- Curve Number (CN), which is used to adjust surface runoff and relates to soil, land use, and hydrologic condition at the HRU level.
- Groundwater re-evaporation coefficient (GWREVAP) controls the upward movement of water from the shallow aquifer to the root zone due to water deficiencies in proportion to potential evapotranspiration. This parameter can be varied depending on the land use/crop. The re-evaporation process is significant in areas where deep-rooted plants are growing and affects the groundwater and the water balance.
- GWQMN—Minimum threshold depth of water in the shallow aquifer to be maintained for groundwater flow to occur to the main channel.
- Soil available water-holding capacity (AWC), which varies by soil at HRU level. It is the capacity factor of soil signifying the extent of water storage in a given depth of soil (fraction)
- Soil evaporation compensation factor (ESCO), which controls the depth distribution of water in soil layers to meet soil evaporative demand. This parameter varies by soil at the HRU level.
- Plant evaporation compensation factor (EPCO), which allows water from lower soil layers to meet the potential water uptake in upper soil layers and varies by soil at the HRU level.
2.2.2. Annual Flow Validation at Stream Gages
3. Results
4. Discussion
4.1. Discussion on Average Annual Water Yield/Total Runoff of 8-Digit Watersheds in MARB
4.2. Discussion on Average Annual Streamflow at Selected Gauging Stations in MARB
4.3. Summary of Challenges in Hydrologic Model Calibration for Large-Scale Studies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- James, L.D.; Burges, S.J. Selection, calibration, and testing of hydrologic models. In Hydrologic Modeling of Small Watersheds; Haan, C.T., Johnson, H.P., Brakensiek, D.L., Eds.; ASAE Monograph: St. Joseph, MI, USA, 1982; pp. 437–472. [Google Scholar]
- Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Daggupati, P.; Pai, N.; Ale, S.; Douglas-Mankin, K.R.; Zeckoski, R.W.; Jeong, J.; Parajuli, P.B.; Saraswat, D.; Youssef, M.A. A recommended calibration and validation strategy for hydrologic and water quality models. Trans. ASABE 2015, 58, 1705–1719. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol. Processes 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans. ASABE. 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Williams, J.R.; Izaurralde, R.C.; Steglich, E.M. Agricultural Policy/Environmental Extender Model: Theoretical Documentation; Version 0604. BREC Report 2008-17; Texas A&M University, Texas AgriLIFE Research, Blackland Research and Extension Center: Temple, TX, USA, 2008. [Google Scholar]
- Abbaspour, K. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs-A User Manual. Eawag: Dübendorf, Switzerland. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 9 February 2019).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrol. Processes 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Sun, G.; Strauss, P.; Guo, J.; Tang, Y.; Yao, A. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrol. Earth System Sci. 2012, 16, 4621–4632. [Google Scholar] [CrossRef]
- Cho, J.; Bosch, D.; Vellidis, G.; Lowrance, R.; Strickland, T. Multi-site evaluation of hydrology component of SWAT in the coastal plain of southwest Georgia. Hydrol. Processes 2013, 27, 1691–1700. [Google Scholar] [CrossRef]
- CARD. SWAT Literature Database for Peer-Reviewed Journal Articles; Center for Agricultural and Rural Development, Iowa State University: Ames, IA, USA, 2019. Available online: https://www.card.iastate.edu/swat_articles/ (accessed on 9 February 2019).
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Tuppad, P.; Douglas-Mankin, K.R.; Lee, T.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Trans. ASABE 2011, 54, 1677–1684. [Google Scholar] [CrossRef]
- Bressiani, D.d.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—An overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Jha, M.K.; Gassman, P.W.; Secchi, S.; Arnold, J.G. Upper Mississippi River Basin modeling system part 2: Baseline simulation results. In Coastal Hydrology and Processes; Singh, V.P., Xu, Y.J., Eds.; Water Resources Publications: Highland Ranch, CO, USA, 2006; ISBN 1-887201-46-7. [Google Scholar]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Mehta, V.M.; Rosenberg, N.J.; Mendoza, K. Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields in the Missouri River Basin. J. Am. Water Resour. Assoc. 2011, 47, 126–135. [Google Scholar] [CrossRef]
- Daggupati, P.; Deb, D.; Srinivasan, R.; Yeganantham, D.; Mehta, V.M.; Rosenberg, N.J. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River basin. J. Am. Water Resour. Assoc. 2016, 52, 648–666. [Google Scholar] [CrossRef]
- Rossi, C.G.; Srinivasan, R.; Jirayoot, K.; Le Duc, T.; Souvannabouth, P.; Binh, N.D.; Gassman, P.W. Hydrologic evaluation of the lower Mekong River basin with the Soil and Water Assessment Tool model. Int. Agric. Engin. J. 2009, 18, 1–13. [Google Scholar]
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Processes 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Adv. Geosci. 2006, 9, 137–143. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Sarinivasan, R.; Yang, H. Estimation of freshwater availability in the West African Sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–42. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J.B. Modelling blue and green water availability in Africa. Water Resour. Res. 2008, 44, 18. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of model development at Temple, Texas. Hydrol. Sci. 2008, 53, 948–960. [Google Scholar] [CrossRef]
- Gassman, P.W.; Arnold, J.G.; Srinivasan, R.; Reyes, M. The worldwide use of the SWAT model: Technological drivers, networking impacts, and simulation trends. In Proceedings of the 21st Century Watershed Technology: Improving Water Quality and Environment, Concepcion, Chile, 29 March–3 April 2008; ASABE Publication: St. Joseph, MI, USA, 2010. [Google Scholar]
- USGS. Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD). Techniques and Methods 11-A3, Chapter 3 of Section A, Federal Standards Book 11, Collection and Delineation of Spatial Data, 4th ed.; U.S. Department of the Interior: Washington, DC, USA; U.S. Geological Survey: Reston, VA, USA; U.S. Department of Agriculture: Washington, DC, USA; Natural Resources Conservation Service: Washington, DC, USA, 2013; p. 63. Available online: http://pubs.usgs.gov/tm/11/a3/ (accessed on 9 February 2019).
- Wang, X.; Kannan, N.; Santhi, C.; Potter, S.R.; Williams, J.R.; Arnold, J.G. Integrating APEX output for cultivated cropland with SWAT simulation for regional modeling. Trans. ASABE 2011, 54, 1281–1298. [Google Scholar] [CrossRef]
- USDA–NRCS. Assessment of The Effects of Conservation Practices on Cultivated Cropland in the Upper Mississippi River Basin; USDA Natural Resources Conservation Service: Washington, DC, USA, 2012. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1042093.pdf (accessed on 15 February 2019).
- USDA–NRCS. Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Ohio–Tennessee River Basin; USDA Natural Resources Conservation Service: Washington, DC, USA, 2011a. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/ceap/pub/?cid=stelprdb1046185 (accessed on 15 February 2019).
- USDA–NRCS. Assessment of the Effects of Conservation Practices on Conservation Effects Assessment Project (CEAP) Cultivated Cropland in the Great Lakes Region; USDA Natural Resources Conservation Service: Washington, DC, USA, 2011b. Available online: https://www.nrcs.usda.gov/Internet/FSE.../stelprdb1045481.pdf (accessed on 15 February 2019).
- USDA–NRCS. Assessment of the Effects of Conservation Practices on Conservation Effects Assessment Project (CEAP) Cultivated Cropland in the Chesapeake Bay Region; USDA Natural Resources Conservation Service: Washington, DC, USA, 2011c. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcsdev11_023934.pdf (accessed on 15 February 2019).
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Hauck, L. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Kannan, N.; Santhi, C.; Arnold, J.G. Development of an automated procedure for estimation of the spatial variation of runoff in large river basins. J. Hydrol. 2008, 359, 1–15. [Google Scholar] [CrossRef]
- Srinivasan, R.; Arnold, J.G.; Jones, C.A. Hydrologic modeling of the United States with the Soil and Water Assessment Tool. Int. Water Resour. Dev. 1998, 14, 315–325. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment Tool Theoretical Documentation: Version 2000; GSWRL Report 02-01, BRC Report 02-05, TR-191; Texas Water Resources Institute: College Station, TX, USA, 2002. [Google Scholar]
- Blackland Research and Extension Center. Available online: http://www.brc.tamus.edu/swat/index.html (accessed on 31 January 2019).
- Santhi, C.; Kannan, N.; Di Luzio, M.; Potter, S.R.; Arnold, J.G.; Atwood, J.D.; Kellog, R.L. An approach for estimating water quality benefits of conservation practices at the national level. In Proceedings of the American Society of Agricultural and Biological Engineers (ASABE), Annual International Meeting, Tampa, FL, USA, 17–20 July 2005; p. 052043. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, J.N. Completion of the 1990’s National Land Cover Dataset for the conterminous United States. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- USDA-NRCS. State Soil Geographic (STATSGO) Database; USDA Natural Resources Conservation Service: Washington, DC, USA, 1994. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053629 (accessed on 9 February 2019).
- Eischeid, J.K.; Pasteris, P.A.; Diaz, H.F.; Plantico, M.S.; Lott, N.J. Creating a serially complete, national daily time series of temperature and precipitation for the Western United States. J. Appl. Meteorol. 2000, 39, 1580–1591. [Google Scholar] [CrossRef]
- Daly, C.R.; Neilson, P.; Phillips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- Daly, C.; Gibson, W.P.; Taylor, G.H.; Johnson, G.L.; Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Climate Res. 2002, 22, 99–113. [Google Scholar] [CrossRef]
- Di Luzio, M.; Johnson, G.L.; Daly, C.; Eischeid, J.; Arnold, J.G. Constructing Retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 2008, 47, 475–497. [Google Scholar] [CrossRef]
- Nicks, A.D. Stochastic generation of the occurrence, pattern and location of maximum amount of rainfall. Misc. Publ. 1974, 1275, 154–171. [Google Scholar]
- Sharpley, A.N.; Williams, J.R. EPIC Erosion/Productivity Impact Calculator: 1. Model Documentation. USDA Tech. Bull. 1990, 1759, 235. [Google Scholar]
- CorpsMap, National Inventory of Dams. Available online: http://nid.usace.army.mil (accessed on 31 January 2019).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; TR-406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Gebert, W.A.; Graczyk, D.J.; Krug, W.R. Annual Average Runoff in the United States, 1987, 1951–1980: US Geological Survey Hydrologic Investigations Atlas HA-710, 1 sheet, scale 1:7,500,000. Available online: https://doi.org/10.3133/ha710 (accessed on 28 December 2018).
- Arnold, J.G.; Allen, P.M.; Muttiah, R.S.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hargreaves, G.; Allen, R. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Santhi, C.; Kannan, N.; Arnold, J.G.; Luzio, M.D. Spatial calibration and temporal validation of flow for regional scale hydrologic modeling. J. Am. Water Resour. Assoc. 2008, 44, 829–846. [Google Scholar] [CrossRef]
- Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; et al. Hydrological processes and model representation: Impact of soft data on calibration. Trans. ASABE 2015, 58, 1637–1660. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models Part 1-Disscussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Musser, K.; Kudelka, S.; Moore, R. Minnesota River Basin Trends. Mankato State University: Mankato, MN, USA, 2009; p. 64. Available online: https://mrbdc.mnsu.edu/sites/mrbdc.mnsu.edu/files/public/mnbasin/trends/pdfs/trends_full.pdf (accessed on 9 February 2019).
- Controlling the Mississippi River for National Commerce. Available online: http://www.americaswetlandresources.com/background_facts/detailedstory/LouisianaRiverControl.html (accessed on 31 January 2019).
- United States Geological Survey, Boundary Descriptions and Names of Regions, Subregions, Accounting Units and Cataloging Units. Available online: http://water.usgs.gov/GIS/huc_name.html (accessed on 31 January 2019).
- Mehan, S.; Kannan, N.; Neupane, R.P.; McDaniel, R.; Kumar, S. Climate change impacts on the hydrological processes of a small agricultural watershed. Climate 2016, 4, 56. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Volk, M.; Williams, J.R.; Bosch, D.D. Assessment of different representations of spatial variability on SWAT model performance. Trans. ASABE 2010, 53, 1433–1443. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool. J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. J. Hydrol. 1999, 214, 179–196. [Google Scholar] [CrossRef]
- Sophecleous, M.; Perkins, S.P. Methodology and application of combined watershed and groundwater models in Kansas. Hydrology 2000, 236, 185–201. [Google Scholar] [CrossRef]
- FitzHugh, T.W.; Mackay, D.S. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. J. Hydrol. 2000, 236, 35–53. [Google Scholar] [CrossRef]
- USDA-FSA. Conservation Reserve Program Overview. CRP: Planting for the Future; U.S. Department of Agriculture, Farm Service Agency: Washington, DC, USA, 2004. Available online: https://www.fsa.usda.gov/programs-and-services/conservation-programs/ (accessed on 9 February 2019).
- Williams, J.R.; Berndt, H.D. Sediment yield prediction based on watershed hydrology. Trans. ASAE 1977, 20, 1100–1104. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on soil physics, 1. The flow of air and water through soils. J. Agric. Sci. 1911, 4, 11–24. [Google Scholar]
- King, K.W.; Arnold, J.G.; Bingner, R.L. Comparison of Green-Ampt and curve number methods on Goodwin creek watershed using SWAT. Trans. ASAE 1999, 42, 919–926. [Google Scholar] [CrossRef]
- Kannan, N.; White, S.M.; Worrall, F.; Whelan, M.J. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modeling in SWAT-2000. J. Hydrol. 2007, 332, 456–466. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Zhang, M. A comparison of the curve number and green-ampt models in an agricultural watershed. Trans. ASABE 2013, 56, 61–69. [Google Scholar] [CrossRef]
- Qi, C.; Grunwald, S. GIS-based hydrologic modeling in the Sandusky watershed using SWAT. Trans. ASAE 2005, 48, 169–180. [Google Scholar] [CrossRef]
- White, M.J.; Bieger, K.; Gambone, M.; Haney, L.; Arnold, J.G.; Gao, J. Development of a hydrologic connectivity dataset for SWAT assessments in the U.S. Water 2017, 9, 892. [Google Scholar] [CrossRef]
Parameter | Mean (mm) | Standard Deviation (mm) | ||
Predicted | Observed | Predicted | Observed | |
Surface runoff | 130.9 | 133.2 | 132.1 | 124.2 |
Base flow | 85.8 | 95.9 | 82.0 | 97.1 |
Water yield | 216.7 | 229.1 | 204.2 | 209.1 |
R2 | Nash and Sutcliffe Efficiency | |||
Surface runoff | 0.94 | 0.94 | ||
Base flow | 0.76 | 0.75 | ||
Water yield | 0.93 | 0.93 |
Gauge Details | Calibration Period (1961–1990) | Validation Period (1991–2006) | ||||
---|---|---|---|---|---|---|
River | Location | Area (km2) | R2 | NSE | R2 | NSE |
Allegheny | Natrona, PA | 29,551.8 | 0.97 | 0.87 | 0.96 | 0.94 |
Ohio | Sewickley, PA | 50,504.8 | 0.92 | 0.47 | 0.97 | 0.79 |
Kanawha | Charleston, WV | 27,060.2 | 0.91 | 0.69 | 0.89 | 0.41 |
Ohio | Greenup, KY | 160,579.3 | 0.93 | 0.78 | 0.93 | 0.86 |
Ohio | Metropolis, IL | 525,767.6 | 0.96 | 0.90 | 0.95 | 0.88 |
Tennessee | Whitesburg, AL | 66,329.6 | 0.97 | 0.76 | 0.94 | 0.93 |
Tennessee | Savannah, TN | 85,832.0 | 0.97 | 0.97 | 0.99 | 0.99 |
Minnesota | Jordan, MN | 41,957.8 | 0.84 0.83 0.92 0.94 0.94 | 0.81 0.83 0.87 0.59 0.91 | 0.88 0.76 0.96 0.98 0.93 | 0.49 0.64 0.76 0.81 0.78 |
Mississippi | Clinton, IA | 221,704.0 | ||||
Iowa | Wapello, IA | 32,374.9 | ||||
Illinois | Valley City, IL | 69,264.1 | ||||
Mississippi | Grafton, IL | 444,183.0 | ||||
Mississippi | Thebes, IL | 1,847,179.4 | ||||
White | Devalls Bluff, AR | 60,605.7 | 0.36 | 0.28 | 0.76 | 0.73 |
Ouachita | Camden, AR | 13,882.3 | 0.96 | 0.95 | 0.96 | 0.90 |
Mississippi | Vicksburg, MS | 2,964,241.3 | 0.94 | 0.99 | 0.88 | 0.99 |
Mississippi | St Francisville, LA | 2,914,513.5 | 0.88 | 0.86 | 0.91 | 0.71 |
Atchafalaya | Melville, LA | 241,646.0 | 0.93 | −2.04 | 0.75 | −3.00 |
Yellowstone | Sidney, MT | 177,134.5 | 0.65 | −0.07 | 0.71 | 0.53 |
Missouri | Culbertson, MT | 237,131.5 | 0.99 | 0.77 | 0.97 | 0.92 |
Missouri | Bismark, ND | 482,773.8 | 0.79 | 0.79 | 0.99 | 0.97 |
Missouri | Yankston, SD | 723,901.6 | 0.97 | 0.78 | 1.00 | 0.99 |
Missouri | Omaha, NE | 836,048.1 | 0.75 | 0.29 | 0.98 | 0.96 |
Platte | Louisville, NE | 221,107.3 | 0.74 | −6.05 | 0.63 | −3.75 |
Osage | St Thomas, MO | 37,554.8 | 0.95 | 0.95 | 0.95 | 0.94 |
Missouri | Hermann, MO | 1,353,268.7 | 0.92 | 0.32 | 0.95 | 0.80 |
White | Calico Rock, AR | 25,848.1 | 0.78 | 0.58 | 0.82 | 0.74 |
Arkansas | Arkansas City, KS | 113,216.1 | 0.38 | −1.23 | 0.77 | 0.38 |
Canadian | Calvin, OK | 72,395.3 | 0.82 | 0.75 | 0.75 | 0.71 |
Arkansas | Murray Dam, AR | 409,575.5 | 0.95 | 0.92 | 0.93 | 0.89 |
Red | Gainsville, TX | 79,725.0 | 0.80 | 0.69 | 0.85 | 0.82 |
Red | Alexandria, LA | 174,824.2 | 0.88 | 0.87 | 0.88 | 0.61 |
River Basin | Location | Model Estimation Problem | Annual Precipitation (mm) | Target Water Yield (mm) | ||
---|---|---|---|---|---|---|
Surface Runoff | Base Flow | Water Yield | ||||
Missouri headwaters | Montana-Wyoming | Over | Under | Under | 500 | 194 |
Missouri-Marias | Montana | Under | Under | Under | 430 | 171 |
Milk | Montana | Under | Under | Under | 312 | 36 |
Upper Yellowstone | Montana-Wyoming | Under | Under | Under | 541 | 241 |
Big Horn | Wyoming | Under | Under | Under | 384 | 161 |
Kansas | Nebraska-Missouri | Over | Over | Over | 789 | 115 |
Middle Arkansas | Colorado, Kansas | Under | Under | Under | 637 | 56 |
Upper Cimarron | CO, KS, NM, OK | Under | Under | Under | 445 | 6 |
Arkansas-Keystone | Kansas, Oklahoma | Under | Under | Under | 754 | 90 |
Gauge Details | Annual Mean Flow (mm) | ||||
---|---|---|---|---|---|
Calibration Period (1961–1990) | Validation Period (1991–2006) | ||||
River | Location | Predicted | Observed | Predicted | Observed |
Allegheny | Natrona, PA | 555.0 | 589.1 | 562.8 | 583.6 |
Ohio | Sewickley, PA | 528.9 | 598.9 | 549.6 | 611.9 |
Kanawha | Charleston, WV | 478.6 | 436.4 | 486.4 | 423.5 |
Ohio | Greenup, KY | 467.7 | 504.5 | 568.1 | 598.1 |
Ohio | Metropolis, IL | 466.9 | 490.6 | 486.2 | 511.6 |
Tennessee | Whitesburg, AL | 583.1 | 591.7 | 576.4 | 552.8 |
Tennessee | Savannah, TN | 582.9 | 585.6 | 610.1 | 600.2 |
Minnesota | Jordan, MN | 108.8 | 98.9 | 122.3 | 161.2 |
Mississippi | Clinton, IA | 175.7 | 196.8 | 191.2 | 237.6 |
Iowa | Wapello, IA | 253.3 | 233.3 | 269.6 | 287.9 |
Illinois | Valley City, IL | 270.8 | 302.8 | 263.9 | 314.0 |
Mississippi | Grafton, IL | 221.0 | 227.6 | 229.6 | 253.3 |
Mississippi | Thebes, IL | 111.8 | 103.1 | 114.5 | 111.6 |
White | Devalls Bluff, AR | 333.4 | 338.4 | 366.1 | 371.1 |
Ouachita | Camden, AR | 512.1 | 502.8 | 492.3 | 467.6 |
Mississippi | Vicksburg, MS | 194.7 | 185.6 | 201.0 | 190.9 |
Mississippi | St Francisville, LA | 142.6 | 148.1 | 147.1 | 161.7 |
Atchafalaya | Melville, LA | 1107.7 | 850.1 | 1101.1 | 856.2 |
Yellowstone | Sidney, MT | 69.2 | 90.4 | 64.4 | 75.7 |
Missouri | Culbertson, MT | 46.3 | 41.6 | 34.8 | 32.9 |
Missouri | Bismark, ND | 45.7 | 45.2 | 39.0 | 37.8 |
Missouri | Yankston, SD | 32.9 | 34.8 | 23.6 | 24.5 |
Missouri | Omaha, NE | 41.0 | 35.7 | 39.3 | 37.5 |
Platte | Louisville, NE | 56.4 | 28.0 | 54.1 | 31.2 |
Osage | St Thomas, MO | 265.9 | 263.3 | 363.9 | 373.5 |
Missouri | Hermann, MO | 68.8 | 56.0 | 68.8 | 59.6 |
White | Calico Rock, AR | 280.1 | 342.9 | 301.3 | 340.6 |
Arkansas | Arkansas City, KS | 22.1 | 15.4 | 23.8 | 16.3 |
Canadian | Calvin, OK | 15.0 | 18.2 | 19.9 | 23.4 |
Arkansas | Murray Dam, AR | 97.6 | 102.7 | 97.9 | 102.4 |
Red | Gainsville, TX | 26.5 | 33.4 | 40.1 | 39.0 |
Red | Alexandria, LA | 184.6 | 178.7 | 180.5 | 186.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, N.; Santhi, C.; White, M.J.; Mehan, S.; Arnold, J.G.; Gassman, P.W. Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin. Hydrology 2019, 6, 17. https://doi.org/10.3390/hydrology6010017
Kannan N, Santhi C, White MJ, Mehan S, Arnold JG, Gassman PW. Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin. Hydrology. 2019; 6(1):17. https://doi.org/10.3390/hydrology6010017
Chicago/Turabian StyleKannan, Narayanan, Chinnasamy Santhi, Michael J. White, Sushant Mehan, Jeffrey G. Arnold, and Philip W. Gassman. 2019. "Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin" Hydrology 6, no. 1: 17. https://doi.org/10.3390/hydrology6010017
APA StyleKannan, N., Santhi, C., White, M. J., Mehan, S., Arnold, J. G., & Gassman, P. W. (2019). Some Challenges in Hydrologic Model Calibration for Large-Scale Studies: A Case Study of SWAT Model Application to Mississippi-Atchafalaya River Basin. Hydrology, 6(1), 17. https://doi.org/10.3390/hydrology6010017