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Abstract: Total dissolved solids (TDS) and electrical conductivity (EC) are important parameters in
determining water quality for drinking and agricultural water, since they are directly associated to
the concentration of salt in water and, hence, high values of these parameters cause low water quality
indices. In addition, they play a significant role in hydrous life, effective water resources management
and health studies. Thus, it is of critical importance to identify the optimum modeling method that
would be capable to capture the behavior of these parameters. The aim of this study was to assess
the ability of using three different models of artificial intelligence techniques: Adaptive neural based
fuzzy inference system (ANFIS), artificial neural networks (ANNs) and Multiple Regression Model
(MLR) to predict and estimate TDS and EC in Abu-Ziriq marsh south of Iraq. As so, eighty four
monthly TDS and EC values collected from 2009 to 2018 were used in the evaluation. The collected
data was randomly split into 75% for training and 25% for testing. The most effective input parameters
to model TDS and EC were determined based on cross-correlation test. The three performance criteria:
correlation coefficient (CC), root mean square error (RMSE) and Nash–Sutcliffe efficiency coefficient
(NSE) were used to evaluate the performance of the developed models. It was found that nitrate
(NO3), calcium (Ca+2), magnesium (Mg+2), total hardness (T.H), sulfate (SO4) and chloride (Cl−1)
are the most influential inputs on TDS. While calcium (Ca+2), magnesium (Mg+2), total hardness
(T.H), sulfate (SO4) and chloride (Cl−1) are the most effective on EC. The comparison of the results
showed that the three models can satisfactorily estimate the total dissolved solids and electrical
conductivity, but ANFIS model outperformed the ANN and MLR models in the three performance
criteria: RMSE, CC and NSE during the calibration and validation periods in modeling the two water
quality parameters. ANFIS is recommended to be used as a predictive model for TDS and EC in the
Iraqi marshes.

Keywords: total dissolved solids; electrical conductivity; data-driven models; Abu-Ziriq marsh;
water quality parameters

1. Introduction

Preserving water quality has become an urgent issue since it affects human health and hydrous
ecosystems. With the continuous increase in population, there is an increasing need for water resources.
Contamination of water sources resulting from some natural processes, including air inputs or climatic
conditions, and through human pollutants such as non-treatment of sewage discharge and industrial
activities, which might add further stress to water quality [1]. The considered important indicators of
water quality are the electrical conductivity (EC) and the total dissolved solids (TDS). High values of
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these parameters cause low water quality because they are directly related to the concentration of salt
in water. However, the direct estimations of EC and TDS are costly and take a long time [2]. Therefore,
convenient, cost-effective, fast and reliable methods are needed for their estimations and prediction [3].
Though there are other feasible water quality parameters which could be of interest to be evaluated
such as DO, BOD, or PH, but however, these parameters are essentially influenced by EC and TDS [4].

Recently, the use of data-driven models, such as adaptive neural-based fuzzy inference system
(ANFIS), artificial neural networks (ANNs) and gene expression programming (GEP) have become
viable alternative in most studies [5–9]. Artificial intelligence (AI) has been used in many water-related
studies for example, water quality modeling and water management applications [3,10–19]. However,
there are many other models reported in the literature such as The Soil and Water Assessment Tool
(SWAT), Water Quality Analysis Simulation Program (WASP), A Modeling Framework for Simulating
River and Stream Water Quality (QUALs) and MIKE 11 [2,20]. The advantages of adopting the AI
techniques over others arise from their ability to self-learning from the data and hence minimizing
error [1].

Tutmez et al. developed the ANFIS model to estimate electrical conductivity in ground water.
It was shown that the ANFIS model outperforms the traditional methods in modeling EC based on
TDS in the water [21]. Singh et al. used two ANNs models for computing the dissolved oxygen (DO)
and biochemical oxygen demand (BOD) levels of the Gomti river in India. In their study, 11 parameters
were used as input variables and two variables as output at the Gomti River. The result showed that the
ANN model can be used successfully in estimating water quality parameters [22]. Kisi and Murat used
the ANFIS and radial basis neural network (RBN) models to predict DO values by using different input
parameters, including discharge, pH, and temperature and EC at Fountain Creek Stream-Gauging
Station, which covers 9 years of daily data. The results showed the RBNN model was better than
ANFIS model in the prediction of DO values [18]. Wen et al. developed ANN model to estimate the
DO values of Heihe River in northwestern China. The input parameters of the neural network were
EC, PH, total hardness, chloride (Cl−1), total hardness, calcium (Ca+2), total alkalinity, nitrate nitrogen
(NO3-N), and ammoniacal nitrogen (NH4-N) with one output DO. The result indicated that the ANN
model can be used successfully to estimate DO concentrations [23]. Montaseri et al. used three AI
approaches, namely ANN, two different ANFIS including ANFIS with grid partition (ANFIS-GP) and
ANFIS with subtractive clustering (ANFIS-SC), GEP, wavelet-ANN, wavelet-ANFIS and wavelet-GEP
in predicting TDS at Nazlu Chay (northwest of Iran), Tajan (north of Iran), Zayandeh Rud (central
of Iran) and Helleh (south of Iran) basins over a period of 20 years. EC, Na and Cl parameters were
selected as input variables to forecast amount of TDS. A comparison of the results in this study
showed that the performance of the wavelet-GEP was superior to the other AI models applied in
TDS prediction for all basins [24]. Orouji et al. utilized the ANFIS and genetic programming (GP) as
two data-driven models to predict and simulate water quality parameters (i.e., EC and TDS) of the
Astane station in Sefidrood River, Iran. Both models of the data-driven succeeded in determining the
water quality parameters [25]. Ay and Kişi used ANN, radial basis neural network, and two different
ANFIS to estimation DO concentration. Moreover, the estimations of these models are compared
with the multiple linear regressions. In this context, monthly mean quantities of the temperature,
pH, EC, discharge and DO are used in modeling at Broad River near Carlisle, USA. The accuracy of
the models is compared with one other by using determination coefficient, mean absolute error, root
mean square error and mean absolute relative error statistics. Results indicate that radial basis neural
network method performs better than the other methods in modeling monthly mean dissolved oxygen
concentration [26]. Ghavidel used four AI approaches, namely two ANFIS including ANFIS-GP
and ANFIS with subtractive clustering (ANFIS-SC), ANN and GEP for the estimation of TDS in the
Zarinehroud basin in northwest of Iran. The result indicated that the GEP can be used successfully
over than other data-driven models [10]. Edwin et al. explored the ability of ANN to predict dissolved
oxygen in Lake Victoria basin, Kenya. Four input variables of temperature, turbidity, pH and EC
were used. The data consisted of 113 monthly values for the input variables and output variable from
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2009–2013 which were split into training and testing datasets. The results obtained during training and
testing revealed that the ANN could be used as a monitoring tool in the prediction of dissolved oxygen.
Obviously, there is no specific method attained a universal acceptance in terms of its applicability,
therefore, further evaluation is needed based on data specific area [17].

The main objective of this study is to identify the optimum model, which could be used to model
the water quality parameters in Abu-Ziriq marsh south of Iraq. Thence, three different algorithms
(i.e., ANFIS, ANN and MLR) methods were investigated to model both water quality parameters such
as TDS and EC. It is known that the direct and indirect measuring of EC and TDS values is expensive
in Iraq. Therefore, the development of a model with a minimal number of chemical parameters but
with acceptable accuracy to estimate EC and TDS values reduces the cost of water quality monitoring.

The study area was selected based on its importance in terms of the amount of inflow water;
representing a good example of the ecological system; and its role in the Iraqi marshes revives.
The cross correlation (Pearson correlation) was employed to select the best-input parameters with
a significant level of 0.01. The models were assessed based on three evaluation criteria, which are
correlation coefficient, root mean square error, and Nash and Sutcliff coefficient efficiency.

2. Materials and Methods

2.1. Adaptive Neuro-Fuzzy Inference System

ANFIS is an advanced feed forward network containing several layers, and analyzes each
incoming signal node with a specific function [27]. Square node and circle node codes are used
to illustrate different qualities of adaptive learning. To obtain the required input and output attributes,
adaptive learning parameters are developed on the basis of gradual learning rules. The ANFIS
membership functions are based on the rules and membership functions of the data [27]. Essentially,
the fuzzy inference system explained here contains two inputs (x1 and x2) and only one output (y).
It is assumed that the rule base contains two fuzzy IF-THEN rules of a first-order Sugeno fuzzy [28].

Rule 1: If x1 is A1 and x2 is B1, then y1 = f 1 = p1x1 + q1x2 + r1 (1)

Rule 2: If x1 is A1 and x2 is B1, then y2 = f 2 = p2x1 + q2x2 + r2 (2)

where Ai and Bi are the fuzzy sets and pi, qi, and ri that it is the design parameters to be identified
during calibrations and validation processes.

The architecture of ANFIS is shown in Figure 1, in which circles nodes and squares describe
adaptive nodes. The following paragraph provides a brief introduction to the ANFIS model.
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Input nodes (layer 1): Each node i of this layer is a square node with a node function. In fuzzy
system, for input values x1 and x2, the inferred output y is estimated by using Equation (3) [29]:

O1,i = µAi (x1), i = 1, 2

O1,i = µBi−2(x1), i = 3, 4
(3)

where x1 and x2 are the inputs to node i, Ai and Bi are the linguistic labels, and µAi and µBBi−2 are the
membership function for the Ai and Bi linguistic labels, respectively.

Rule nodes (layer 2): Every node in this layer is a circle node labeled as M (Figure 1). The outputs
of this layer, which are called firing strengths (O2,i), are the products of the corresponding degrees
obtained from layer 1 (input layer).

O2,i = wi = µAi (x1)∗ µBi (x1), i = 1, 2 (4)

Average nodes (layer 3): Every node in this layer is a circle node labeled as N (Figure 1). The third
layer contains fixed nodes that calculate the ratio of the firing strengths of the rules:

O3,i = ẃi =
Wi

W1 + W2
, i = 1, 2 (5)

Consequent nodes (layer 4): The nodes in this layer are adaptive, and the output of each node is
simply the product of the normalized firing strength and a first order polynomial. Thus, the output
and the function are defined by the following equation:

O4,i = ẃiyi = ẃi(pix + qiy + ri), i = 1, 2 (6)

The parameters, pi, qi, and ri in this layer are the coefficients of this linear combination and can be
referred to as the consequent parameters.

Output nodes (layer 5): The single node computes the overall output by summing up all of the
incoming signals.

O5,i =
2

∑
i=1

wiyi =
∑2

i=1 wiy
w1 + w2

(7)

The details and mathematical background for these algorithms can be found in [27].

2.2. Artificial Neural Network

An artificial neuron is the primary building step for all ANN. It has the same design and
characteristics in natural neurons in biological neural networks [1]. Figure 2 shows the architecture of
the artificial neuron with inputs variable, weights, transfer functions, activation functions, threshold
and output.

The artificial neuron is fed by numbers of inputs. Depending on the value of the weight, the effect
of the transfer function and output, the effect of the all inputs on the neuron will be different. from the
calculation of the transfer function and output. Generally, greater weight values result in higher power
and affect the associated inputs. Since all the inputs are multiplied by their corresponding weight,
the weights will influence the neurons output. The transfer function as a summation of the weighted
inputs is used to produce the net input to the neuron [30], as provided in Equation (8).

netj =
n

∑
i=1

wijxi + b (8)

where j is the actual neuron number, xi is an input value, i from 1 to n, wij is a weight value and b is
equal to the negative threshold value of a neuron and called the bias of the neuron.
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In addition to
xj = ϕ

(
uj − θj

)
(9)

where xj output signal, θj is the bias term of the j neuron [30,31]. The logistic sigmoid function, Bilgili
and Yasar 2007 is used for this purpose [32], expressed as given in Equation (10).

ϕx =
1

1 + e−x (10)

In this study, a feed forward-back propagation with MLP neural network was used. The network
was trained using Levenberg–Marquardt. The structure of ANN model with two layers used in this
study is shown in Figure 3. This training algorithm helps in distributing the error in order to arrive at
a best fit or minimum error [22], and it is the most commonly used class of ANNs [15]. The transfer
function between layer one and layer two was log sigmoid. The types of the transfer function in
neural networks are log-sigmoid, tan-sigmoid, and pure-linear function. The main reason why we
use log-sigmoid function is because it exists between (0 to 1). Therefore, it is especially used for
models where we have to predict the probability as an output. Since probability of anything exists only
between the range of 0 and 1. The optimal number of neurons in the hidden layer was selected based
on the trial and error method by changing the number of neurons in the hidden layer from 1 to 5.

Hydrology 2019, 6, x FOR PEER REVIEW 5 of 19 

The artificial neuron is fed by numbers of inputs. Depending on the value of the weight, the 
effect of the transfer function and output, the effect of the all inputs on the neuron will be different. 
from the calculation of the transfer function and output. Generally, greater weight values result in 
higher power and affect the associated inputs. Since all the inputs are multiplied by their 
corresponding weight, the weights will influence the neurons output. The transfer function as a 
summation of the weighted inputs is used to produce the net input to the neuron [30], as provided in 
Equation (8). 

𝑛𝑒𝑡𝑗 =  𝑤𝑥 + 𝑏
ୀଵ  (8) 

where j is the actual neuron number, 𝑥 is an input value, 𝑖 from 1 to 𝑛, 𝑤 is a weight value and 𝑏 is 
equal to the negative threshold value of a neuron and called the bias of the neuron. 

In addition to 𝑥 = 𝜑൫𝑢 − 𝜃൯ (9) 

where 𝑥 output signal , 𝜃 is the bias term of the 𝑗 neuron [30,31]. The logistic sigmoid function, Bilgili 
and Yasar 2007  is used for this purpose [32], expressed as given in Equation (10). 𝜑௫ = 11 + 𝑒ି௫ (10) 

In this study, a feed forward-back propagation with MLP neural network was used. The network 
was trained using Levenberg–Marquardt. The structure of ANN model with two layers used in this 
study is shown in Figure 3. This training algorithm helps in distributing the error in order to arrive 
at a best fit or minimum error [22], and it is the most commonly used class of ANNs [15]. The transfer 
function between layer one and layer two was log sigmoid. The types of the transfer function in 
neural networks are log-sigmoid, tan-sigmoid, and pure-linear function. The main reason why we 
use log-sigmoid function is because it exists between (0 to 1). Therefore, it is especially used for 
models where we have to predict the probability as an output. Since probability of anything exists 
only between the range of 0 and 1. The optimal number of neurons in the hidden layer was selected 
based on the trial and error method by changing the number of neurons in the hidden layer from 1 
to 5. 

 
Figure 3. The architecture of the artificial neural network (ANN) model used for the predicted of total 
dissolved solids (TDS) in the Abu-Ziriq marsh, south of Iraq. 

2.3. Multiple Linear Regression 

In the multiple linear regression (MLR) method, a dependent variable is assumed to be a linear 
function of one variable. A simple linear regression model and the relationship between observed 
and estimated value of dependent variable can be specified as [33]: 

Figure 3. The architecture of the artificial neural network (ANN) model used for the predicted of total
dissolved solids (TDS) in the Abu-Ziriq marsh, south of Iraq.

2.3. Multiple Linear Regression

In the multiple linear regression (MLR) method, a dependent variable is assumed to be a linear
function of one variable. A simple linear regression model and the relationship between observed and
estimated value of dependent variable can be specified as [33]:
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Y = a + bX (11)

Yi = a + bX + εi (12)

where Y is the measured value, Yi is the calculated value, a is the constant, b is slope, εi is the error
associated with estimate of Yi, and the value of X = xi is the given value of the independent variable.
The constants a and b are estimated by ordinary least squares. If εi = 0, the calculated value (Y) is
equal to measured value (Yi).

MLR is very similar to simple linear regression but the difference in MLR is that the dependent
variable is a function for more than one independent variable. MLR model can be specified as given in
Equation (13):

Yi = a + b1X1 + b2X2 . . . + bnXn+ εi (13)

where Yi, a and εi have described above, b1, b2 . . . , bn are the partial regression (slope) parameter for
X1, X2 . . . , Xn. The main purpose of using MLR is to find the linear relationship between dependent
and independent variables and to obtain a linear model using regression coefficients as well as to
calculate the dependent variable. For the best-calculated value of the dependent variable, εi can be
specified as given in Equation (14):

n

∑
i=1

(εi)
2 =

n

∑
i=1

(Yi − a + biX1 + b2X2 + . . . + bnXn)
2 (14)

3. Study Area and Data

3.1. Abu-Ziriq Marsh Description

In this study, Abu Ziriq marsh was selected as a case study. To the best of the author’s knowledge,
no previous studies addressed the water quality modeling in this area. Abu-Ziriq marsh, which covers
120 km2, it is about 3% of all marshes area, lies at the tail end of Al Gharraf River southerly of Al
Islah district at a location of latitude 31◦09′54.9” N, longitude 46◦36′33” E. The main source of water
supply to the marsh is through Shatt Abo-Lihia and the channel of this river runs through the marsh
until it dissipates at the tail end into the central marshes. The two main towns around the marsh are
Al-Islah in the North and Al-Fuhod in the south of Thi Qar governorate (Figure 4). Scattered villages
of fishermen are located all along the embankments that surround the marsh. Highlighting the vitality
role of Abu-Ziriq marsh in sustaining the daily life of the local residents. The success of the models
used in this study gives the possibility to be used in the rest of the marshes which means reducing the
cost and time of water quality monitoring.

3.2. Water Sampling Procedure

The dataset utilized in this paper was collected and observed consistently, every month,
at Abu-Ziriq marsh by the Ministry of the Environment, Department of Protection and Improvement
Environment in the south of Iraq. The final dataset of water quality consisted of 84 monthly records
collected between years 2009 to 2018 (Table 1). Each record consists of eight parameters, namely: NO3,
Ca+2, Mg+2, T.H, SO4, Cl−1, EC and TDS. These variables are used to develop the ANFIS, ANN and
MLR models. Table 2 lists the statistical parameters of water quality in the marsh. The parameters
for EC and TDS were chosen based on strong Pearson correlation at significance level of 0.01. While
the weak cross-correlation parameters are neglected (Table 3). The advantages of adopting these
special variables are greatly improving network performance. In this paper, the total Abu-Ziriq water
quality dataset (84 samples) were randomly divided into two groups: calibration and validation.
The calibration and validation datasets comprised of 63 (75%) and 21 (25%) samples, respectively.



Hydrology 2019, 6, 24 7 of 17

Hydrology 2019, 6, x FOR PEER REVIEW 7 of 19 

 
Figure 4. General location of Abu-Ziriq marsh. 

3.2. Water Sampling Procedure 

The dataset utilized in this paper was collected and observed consistently, every month, at Abu-
Ziriq marsh by the Ministry of the Environment, Department of Protection and Improvement 
Environment in the south of Iraq. The final dataset of water quality consisted of 84 monthly records 
collected between years 2009 to 2018 (Table 1). Each record consists of eight parameters, namely: NOଷ, Caାଶ, Mgାଶ, T. H, SOସ, Clିଵ, EC and TDS. These variables are used to develop the ANFIS, ANN and 
MLR models. Table 2 lists the statistical parameters of water quality in the marsh. The parameters for EC and TDS were chosen based on strong Pearson correlation at significance level of 0.01. While the 
weak cross-correlation parameters are neglected (Table 3). The advantages of adopting these special 
variables are greatly improving network performance. In this paper, the total Abu-Ziriq water quality 
dataset (84 samples) were randomly divided into two groups: calibration and validation. The 
calibration and validation datasets comprised of 63 (75%) and 21 (25%) samples, respectively. 

Table 1. Monthly records of water quality parameters per year. 

Year 2009 2010 2013 2014 2015 2016 2017 2018 
Sample of data 11 9 12 12 12 8 12 8 

Table 2. Summary of statistical parameters of input and output variables (n = 84). 

Variable Unit Range Min Max Mean SD CV% 
NOଷ ppm 3.50 0.30 3.80 1.45 0.52 0.27 
Caାଶ ppm 736 64 800 160.84 94.52 8935 
Mgାଶ ppm 310 20 330 97.58 65.49 4290.04 
T.H ppm 1840 320 2160 783.20 394.79 155,866.64 SOସ ppm 1201 99 1300 430.25 278.25 77,427.58 
Cl−1 ppm 1472 150 1622 481.28 312.45 97,626.15 
EC µS/cm 6620 1200 7820 3072.13 1676.71 2,811,366 

TDS ppm 4006 614 4620 1781.19 960.22 922,029.31 
SD standard deviation, CV coefficient of variation, Ca—calcium, Cl—chlorine, EC—electrical 
conductivity, NO3—Nitrate, Mg—magnesium, SO4—sulfate, TDS—total dissolved solids. 

Figure 4. General location of Abu-Ziriq marsh.

Table 1. Monthly records of water quality parameters per year.

Year 2009 2010 2013 2014 2015 2016 2017 2018

Sample of data 11 9 12 12 12 8 12 8

Table 2. Summary of statistical parameters of input and output variables (n = 84).

Variable Unit Range Min Max Mean SD CV%

NO3 ppm 3.50 0.30 3.80 1.45 0.52 0.27
Ca+2 ppm 736 64 800 160.84 94.52 8935
Mg+2 ppm 310 20 330 97.58 65.49 4290.04
T.H ppm 1840 320 2160 783.20 394.79 155,866.64
SO4 ppm 1201 99 1300 430.25 278.25 77,427.58
Cl−1 ppm 1472 150 1622 481.28 312.45 97,626.15
EC µS/cm 6620 1200 7820 3072.13 1676.71 2,811,366

TDS ppm 4006 614 4620 1781.19 960.22 922,029.31

SD standard deviation, CV coefficient of variation, Ca—calcium, Cl—chlorine, EC—electrical conductivity,
NO3—Nitrate, Mg—magnesium, SO4—sulfate, TDS—total dissolved solids.

4. Performance Measures

Several criteria have been used in the literature for the assessment of model performance such as
Mean Absolute Error, Normalized Root Mean Square Error, Threshold Statistics, Root Mean Squared
Error, Correlation Coefficient and Nash–Sutcliffe Coefficient of Efficiency [24,34,35]. In this study, the
following three criteria were employed as they are widely used in evaluating water quality models [35].

1. The Root Mean Squared Error (RMSE): RMSE is an error index type parameter commonly used
in hydrological modeling:

RMSE =

√
∑n

i=1(Mi − Pi)
2

N
(15)

where Mi is measured value, N is number of data set and Pi is predicted value. For RMSE, a value
of zero is the optimum.

2. Correlation Coefficient (CC): CC is a standard regression type parameter and defined as a measure
of the strength of the linear relationship between the measured and predicted or estimated datasets:
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CC =
∑N

i=1

((
Mi − µ)(Pi − Ṕ

))
√

∑N
i=1((Mi − µ)2

(
Pi − Ṕ

)2
)

(16)

where N is the number of input samples; Mi and Pi are the measured and network output value
from the elements, respectively. µ and Ṕ and are their average, respectively.

3. The Nash–Sutcliffe Coefficient of Efficiency (NSE): NSE is a dimensionless type parameter widely
used as a metric of model efficiency [36]:

NSE =
∑N

i=1(Mi − µ)2 −∑N
i=1(Pi −Mi)

2

∑N
i=1(Mi − µ)2 (17)

NSE ranges from −1 to +1, with better models giving NSE values as close to 1 as possible.

5. Results and Discussion

5.1. Model Structure

Given its importance in terms of the Abu-Ziriq marsh water quality, electrical conductivity (EC)
and total dissolved solids (TDS) were chosen as the water quality parameters of interest. The chemical
parameters, namely: NO3, Ca+2, Mg+2, T.H, SO4, Cl−1, EC and TDS were assessed (Table 2), for
Abu-Ziriq marsh water samples collected on the monthly basis by the Ministry of the Environment,
Department of Protection and Improvement Environment in the south of Iraq over the period of January
2009 to August 2018 at the Abu-Ziriq station. An important thing to do in developing a prediction
model is to choose the correct input parameters. The parameters for EC and TDS were chosen based on
strong Pearson correlation at significance level of 0.01. While the weak cross-correlation parameters are
neglected (Table 3). Cross-correlation is used for measuring the similarity of two series as a function
of the displacement of one relative to the other [37]. Table 3 tabulates the correlation matrix between
the water quality parameters. Based on Pearson correlation coefficient with p < 0.01, the parameters
used as inputs in modeling EC were the concentrations of Ca+2, Mg+2, T.H, SO4, and Cl−1. While the
parameters used as inputs in modeling TDS were the concentrations of NO3, Ca+2, Mg+2, T.H, SO4

and Cl−1 (Table 3). Apparently, there was no remarkable difference between the model structure of
EC and TDS. The only difference was the component of NO3. This might be attributed to the weak
Pearson cross-correlation (0.193) at significance level >0.05, therefore, it is neglected.

Table 3. Correlation matrix among water quality parameters.

Parameters NO3 Ca+2 Mg+2 T.H SO4 Cl−1 EC TDS

NO3 1
Ca+2 0.225 1
Mg+2 0.139 0.487 1
T.H 0.149 0.582 0.943 1
SO4 0.103 0.559 0.878 0.894 1
Cl−1 0.293 0.685 0.828 0.894 0.855 1
EC 0.193 0.640 0.887 0.922 0.930 0.955 1

TDS 0.220 0.636 0.875 0.920 0.917 0.966 0.988 1

Ca—calcium, Cl—chlorine, EC—electrical conductivity, NO3—Nitrate, Mg—magnesium, SO4—sulfate, TDS—total
dissolved solids. All the values were significant at alpha < 0.01.

5.2. Models Performance

In this study, nitrate (NO3), calcium (Ca+2), magnesium (Mg+2), total hardness (T.H), sulfate (SO4),
chloride (Cl−1), electrical conductivity (EC) and total dissolved solids (TDS) in Abu-Ziriq, south of
Iraq, were used to develop artificial intelligence techniques. The TDS and EC models were created by
utilizing ANFIS, ANNs and MLR.
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In ANFIS modeling, there are two types; Sugeno and Mamdani, where the first one can be further
subdivided into two types: hybrid and back propagation. Membership function types for input and
output parameters were considered as Sugeno fuzzy Gaussian (gaussmf), backpropagation algorithm
and linear MFs, respectively. This method creates a FIS for which membership-function parameters
are adjusted using either aback propagation algorithm alone or a combination of aback propagation
algorithm and a least-squares method [38]. The number of membership functions for each input of
ANFIS for TDS and EC were set to (2,2,2,1,2,3) and (2,3,1,3,2), respectively. The performance of the
ANFIS model for the calibration and validation datasets are given in Table 4. Figure 5 shows the
observed versus predicted TDS from ANFIS model during the calibration and validation periods.
As it can be seen in the figure, there was a satisfactory matching between both data sets. Moreover,
values of RMSE, CC, and NSE were 169, 30, 0.98 and 0.96, respectively for the calibration and 193.59,
0.98 and 0.97, respectively for the validation of datasets (Table 4). While, Figure 6 shows the observed
versus predicted EC from ANFIS model during the calibration and validation periods. As it can be
noticed from the figure, there was a satisfactory matching between both data sets. This was clarified
through values of RMSE, CC, and NSE, which were 273.45, 0.98 and 0.97, respectively for calibration
data set and 246.49, 0.99 and 0.98, respectively for validation. In their study, Kisi and Ay reported
superior performance of ANFIS in comparison to MLR in modeling monthly mean dissolved oxygen
concentration in Broad River, USA [26].Hydrology 2019, 6, x FOR PEER REVIEW 10 of 19 
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Figure 5. Comparative plots of observed and predicted TDS values using ANFIS model for
(a) calibration data set and (b) validation.
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Figure 6. Comparative plots of observed and predicted electrical conductivity (EC) values using ANFIS
model for (a) calibration data set and (b) validation.

Table 4. Comparison of ANFIS, ANN and multiple linear regression (MLR) models performance.

Estimated Model
Calibration Validation

RMSE CC NSE RMSE CC NSE

TDS
MLR 184.58 (ppm) 0.97 0.95 196.89 (ppm) 0.99 0.96
ANN 204.84 (ppm) 0.96 0.94 302.14 (ppm) 0.96 0.91

ANFIS 169.30 (ppm) 0.98 0.96 193.59 (ppm) 0.98 0.97

EC
MLR 297.13 (µS/cm) 0.98 0.96 537.53 (µS/cm) 0.98 0.90
ANN 284.45 (µS/cm) 0.98 0.96 496.71 (µS/cm) 0.97 0.92

ANFIS 273.45 (µS/cm) 0.98 0.97 246.49 (µS/cm) 0.99 0.98

In ANN modeling, feed forward-backpropagation algorithm, Levenberg–Marquardt training
algorithm (TrainLM), were constructed to estimate TDS and EC values. The transfer function between
layer one and layer two was (LOGSIG). The optimal number of neurons in the hidden layer was
selected using the trial and error method, by experimenting with changing the number of neurons
in the hidden layer from 1 to 5. The optimal number of neurons in the hidden layers providing the
optimal structure was determined as 3 for TDS and 2 for EC. Therefore, ANN (6, 3, 1) was selected
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as the optimum ANN model for TDS and ANN (5, 2, 1) for EC. The performance of the ANN model
for the calibration and validation of datasets are given in Table 4. Figure 7 shows the observed versus
predicted TDS from ANN model during the calibration and validation periods. As it can be shown
from the figure, there was an adequate consistency between both data sets. In addition, values of
RMSE, CC, and NSE were 204.84, 0.96, and 0.94, respectively for calibration data set and 302.44, 0.96
and 0.91, respectively for validation. On the other side, Figure 8 shows the observed versus predicted
EC from ANN model during the calibration and validation periods. As it can be seen from the figure,
both data sets were in a good consistency. Moreover, values of RMSE, CC, and NSE were 284.45, 0.98
and 0.96, respectively for calibration and 496.71, 0.92 and 0.97, respectively for the validation data set.
Barzegar et al. applied ANFIS and ANN model to estimate water electrical conductivity at Aji-Chay
River, northwest of Iran. ANN model could not achieve a high efficiency to estimate water electrical
conductivity [34].Hydrology 2019, 6, x FOR PEER REVIEW 12 of 19 
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Figure 7. Comparative plots of observed and predicted TDS values using ANN model for (a) calibration
data set and (b) validation.
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Figure 8. Comparative plots of observed and predicted EC values using ANN model for (a) calibration
data set and (b) validation.

The performance of the MLR model and equation for the calibration and validation are given in
Table 4; Table 5. Figure 9 shows the comparative plots of the results obtained From MLR model for
TDS during the calibration and validation periods. RMSE, CC, and NSE values set were 184.58, 0.97
and 0.95 for the calibration dataset, respectively. While these values for the validation dataset were
196.89 ppm, 0.99 and 0.96, respectively.

Table 5. MLR model Eq.

EC = 466.309 − 0.607 Ca + 4.973 Mg− 0.3628 T.H + 1.523 So4 + 4.0.398 Cl.

TDS = 3.25.866− 35.531 No3 − 0.377 Ca + 2.239 Mg− 0.003 T.H + 0.643 So4 + 2.299 Cl

In addition, MLR model was used to estimate EC, the performance model for the calibration and
validation were plotted as shown in Figure 10. It can be noticed that both data sets were consistent.
In other words, MLR model’s performance was satisfactory in modeling EC. However, RMSE, CC, and
NSE values set were 297.13 µS/cm, 0.98 and 0.96, respectively for the calibration, while these values
for the validation were 537.53 µS/cm, 0.98 and 0.90, respectively. Nemati et al. [15] used ANFIS, ANN
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and MLR models to estimate water quality parameter in the Tai Po River, Hong Kong. They found that
MLR model did not have the high accuracy to estimate DO. Chen and Liu applied ANN, ANFIS and
MLR models to estimate DO concentration in the Feitsui Reservoir of Northern Taiwan. The result
show that MLR model was not be able to estimate DO [11].

From aforementioned, it can be concluded that the ANFIS model outperformed the ANN and MLR
models on the three performance criteria: RMSE, CC and NSE during the calibration and validation
periods Table 4. Figure 11 shows the time series of the developed models for validation dataset. It can
be seen from Figure 11 that the all models give similar estimates for the TDS and EC values. This might
be attributed to its sophisticated structure and the capability of eliminating the noisy data [39], ANFIS
model (Sugeno) makes use of “IF–THEN” rules to produce an output for each rule [40], This allows to
learn from the data [41]. The neuro-fuzzy systems have an advantage of both ANFIS and ANNs, that is
benefiting from the training ability of the ANN and the fuzzy IF–THEN rule generation and parameter
optimization [42]. Our findings are in parallel with previous studies [10,24,26,43,44], where they
proved the superior performance of ANFIS in modeling hydrological and water quality parameters.Hydrology 2019, 6, x FOR PEER REVIEW 14 of 19 
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Figure 9. Comparative plots of observed and predicted TDS values using MLR model for (a) calibration
data set and (b) validation.



Hydrology 2019, 6, 24 14 of 17

Hydrology 2019, 6, x FOR PEER REVIEW 15 of 19 

 
 

(a) 

  
(b) 

Figure 10. Comparative plots of observed and predicted EC values using MLR model for (a) 
calibration data set and (b) validation. 

From aforementioned, it can be concluded that the ANFIS model outperformed the ANN and 
MLR models on the three performance criteria: RMSE, CC and NSE during the calibration and 
validation periods Table 4. Figure 11 shows the time series of the developed models for validation 
dataset. It can be seen from Fig. 11 that the all models give similar estimates for the TDS and EC 
values. This might be attributed to its sophisticated structure and the capability of eliminating the noisy 
data [39], ANFIS model (Sugeno) makes use of ‘‘IF–THEN” rules to produce an output for each rule 
[40], This allows to learn from the data [41]. The neuro-fuzzy systems have an advantage of both 
ANFIS and ANNs, that is benefiting from the training ability of the ANN and the fuzzy IF–THEN rule 
generation and parameter optimization [42]. Our findings are in parallel with previous studies 
[10,24,26,43,44], where they proved the superior performance of ANFIS in modeling hydrological and 
water quality parameters. 
  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80

EC
 (μ

S/
cm

 )

Data number

Observed MLR

RMSE=297.13
NSE=0.96 
CC=0.98

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5000 10000

Pr
ed

ic
te

d 
EC

 (μ
S/

cm
 ) 

Observed EC (μS/cm ) 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25

EC
 (μ

S/
cm

 )

Data number

Observed MLR RMSE=537.53
NSE=0.90 
CC=0.98

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000

Pr
ed

ic
te

d 
EC

 (μ
S/

cm
 ) 

Observed EC (μS/cm ) 

Figure 10. Comparative plots of observed and predicted EC values using MLR model for (a) calibration
data set and (b) validation.
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5.3. Sensitivity Analysis

Sensitivity analysis was used to investigate the effects of the input variables on the model
outputs [45]. To this end, a percentage change in EC and TDS were determined by considering 10%,
20%, 30%, 40%, and 50% increase/decrease changes in their respective input parameters using the
optimal model. Results of sensitivity analysis were tabulated as shown in Table 6. ANFIS. Results
of EC from ANFIS showed an increase by 7.01%, 16.55%, 26.18%, 35.65% and 45.27%, from the 10%,
20%, 30%, 40%, 50% increase change, respectively. While sensitivity were −11.5%, −20.65%, −29.65%,
−37.93% and −45.65%, respectively from the decrease change.

Table 6. Sensitivity analysis of input parameters on EC and TDS in Abu-Ziriq Marsh using
ANFIS model.

Input parameters −10% −20% −30% −40% −50% +10% +20% +30% +40% +50%
EC 7.01 16.55 26.18 35.65 45.27 −11.5 −20.65 −29.55 −37.93 −45.64

TDS 3.28 13.91 25.53 37.1 48.8 −17.83 −27.53 −33.83 −41.93 −47.65

On the other hand, the effect of a decrease in input by 10%, 20%, 30%, 40%, and 50% causes an
increase in TDS by 3.28%, 13.91%, 25.53%, 37.1% and 48.8%. While the decrease change in the input
parameters showed decreased by −17.83%, −27.53%, −33.83%, −41.93% and −47.65% when ANFIS
input was increased by 10%, 20%, 30%, 40% and 50%, respectively.

An increase/decrease in the inputs parameters causes similar increase/decrease in the EC and
TDS. This could be interpreted by the physical association among the data. Concentrations of ions
exist in water samples is coherent with the amount of discharges received to the marsh. In other words,
the lower the discharge, the higher ions concentrations.

Therefore, in order to maintain a good water quality index in the marsh, certain water discharges
should be sustained. This would be addressed in future study.

6. Conclusions

This study evaluated three different types of artificial intelligence ANFIS, ANN, and MLR neural
networks to calculate and predict TDS and EC at Abu-Ziriq marsh in the south of Iraq. Three
assessment criteria were used for the evaluation such as CC, RMSE, and NSE. It was found that the
ANFIS outperformed the other evaluated methods. In other words, ANFIS model led to the best
fit with the observed data. This could be attributed to the ANFIS structure. The ANFIS integrates
the advantage of the simplifying function of fuzzy reasoning and the self-learning ability of neural
networks and thus gives a strong capability of eliminating noise [46]. ANFIS is recommended to
be used as a predictive model for water quality parameters (TDS and EC) in the Iraqi marshes.
The utilization of applied methods in this study can be considered in other marshes and rivers in order
to investigate the generalization of the methods. Furthermore, the tools applied in current paper could
provide a basis for managers, engineers and policymakers for impressive design, management and
decision making over different marshes or rivers and basins of Iraq.
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