Spatio-Temporal Rainfall Variability and Flood Prognosis Analysis Using Satellite Data over North Bihar during the August 2017 Flood Event
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. MODIS Flood Data
3.2. Landsat-8 (OLI) Sensor Data
3.3. Sentinel-1 Satellite Data
3.4. TMPA-Based 3B42RT Precipitation Product
3.5. Station-Wise Indian Meteorological Department (IMD) Rainfall Data
3.6. Hydrograph Data of Central Water Commission (CWC)
3.7. Digital Elevation Model Data (ASTERGDEM V2)
3.8. Survey of India (SOI) Toposheet
3.9. Methods
4. Results
4.1. Rainfall Variability over the Kosi and Gandak Basin during August–September, 2017
4.2. Composite Flood Maps of MODIS-NRT during August, 2017
4.3. Comparison of Flood Extent of MODIS NRT Flood Data with Sentinel-1 SAR and Landsat-8 OLI Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Freer, J.; Beven, K.J.; Neal, J.; Schumann, G.; Hall, J.; Bates, P. Flood Risk and Uncertainty. Risk and Uncertainty Assessment for Natural Hazards; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Wu, H.; Adler, R.F.; Hong, Y.; Tian, Y.; Policelli, F. Evaluation of Global Flood Detection Using Satellite-Based Rainfall and a Hydrologic Model. J. Hydrometeorol. 2012, 13, 1268–1284. [Google Scholar] [CrossRef]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. Isprs J. Photogram Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Afshari, S.; Tavakoly, A.A.; Rajib, M.A.; Zheng, X.; Follum, M.L.; Omranian, E.; Fekete, B.M. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. J. Hydrol. 2018, 556, 539–556. [Google Scholar] [CrossRef]
- Speckhann, G.A.; Borges Chaffe, P.L.; Fabris Goerl, R.; de Abreu, J.J.; Altamirano Flores, J.A. Flood hazard mapping in Southern Brazil: A combination of flow frequency analysis and the HAND model. Hydrol. Sci. J. 2018, 63, 87–100. [Google Scholar]
- McGrath, H.; Bourgon, J.-F.; Proulx-Bourque, J.-S.; Nastev, M.; Abo El Ezz, A. A comparison of simplified conceptual models for rapid web-based flood inundation mapping. Nat. Hazards 2018, 93, 905–920. [Google Scholar] [CrossRef]
- Grimaldi, S.; Li, Y.; Pauwels, V.R.N.; Walker, J.P. Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surv. Geophys. 2016, 37, 977–1034. [Google Scholar] [CrossRef]
- Mure-Ravaud, M.; Binet, G.; Bracq, M.; Perarnaud, J.-J.; Fradin, A.; Litrico, X. A web based tool for operational real-time flood forecasting using data assimilation to update hydraulic states. Environ. Model. Softw. 2016, 84, 35–49. [Google Scholar]
- Gan, T.Y.; Zunic, F.; Kuo, C.-C.; Strobl, T. Flood mapping of Danube River at Romania using single and multi-date ERS2-SAR images. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 69–81. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007. [Google Scholar] [CrossRef]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [Google Scholar] [CrossRef]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Mason, D.C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H.L. Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [Google Scholar] [CrossRef]
- Iervolino, P.; Guida, R.; Iodice, A.; Riccio, D. Flooding water depth estimation with high-resolution SAR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2295–2307. [Google Scholar] [CrossRef]
- Chandran, R.V.; Ramakrishnan, D.; Chowdary, V.M.; Jeyaram, A.; Jha, A.M. Flood mapping and analysis using air-borne synthetic aperture radar: A case study of July 2004 flood in Baghmati river basin, Bihar. Curr. Sci. 2006, 90, 249–256. [Google Scholar]
- Pandey, A.C.; Singh, S.K.; Nathawat, M.S. Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Nat. Hazards 2010, 55, 273–289. [Google Scholar] [CrossRef]
- Singh, S.K.; Pandey, A.C.; Nathawat, M.S. Rainfall variability and spatio temporal dynamics of flood inundation during the 2008 Kosi flood in Bihar State, India. Asian J. Earth Sci. 2011, 4, 9–19. [Google Scholar] [CrossRef]
- Kafle, K.R.; Khanal, S.N.; Dahal, R.K. Consequences of Koshi flood 2008 in terms of sedimentation characteristics and agricultural practices. Geoenviron. Disasters 2017, 4, 4. [Google Scholar] [CrossRef]
- Sinha, R.; Bapalu, G.V.; Singh, L.K.; Rath, B. Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). J. Indian Soc. Remote Sens. 2008, 36, 335–349. [Google Scholar] [CrossRef]
- Macchione, F.; Costabile, P.; Costanzo, C.; De Santis, R. Moving to 3-D flood hazard maps for enhancing risk communication. Environ. Model. Softw. 2019, 111, 510–522. [Google Scholar] [CrossRef]
- Wahab, A.M.; Muhamad Ludin, A.N. Flood vulnerability assessment using artificial neural networks in Muar Region, Johor Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012056. [Google Scholar] [CrossRef]
- Kussul, N.; Shelestov, A.; Skakun, S. Grid system for flood extent extraction from satellite images. Earth Sci. Inform. 2008, 1, 105–117. [Google Scholar] [CrossRef]
- Moradkhani, H.; Sorooshian, S. General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis. In Hydrological Modelling and the Water Cycle; Springer: Berlin, Germany, 2009. [Google Scholar]
- Revilla-Romero, B.; Wanders, N.; Burek, P.; Salamon, P.; de Roo, A. Integrating remotely sensed surface water extent into continental scale hydrology. J. Hydrol. 2016, 543, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Su, F.; Gao, H.; Huffman, G.J.; Lettenmaier, D.P. Potential Utility of the Real-Time TMPA-RT Precipitation Estimates in Streamflow Prediction. J. Hydrometeorol. 2011, 12, 444–455. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Parida, B.R.; Behera, S.N.; Bakimchandra, O.; Pandey, A.C.; Singh, N. Evaluation of satellite-derived rainfall estimates for an extreme rainfall event over Uttarakhand, Western Himalayas. Hydrology 2017, 4, 22. [Google Scholar] [CrossRef]
- Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.; Tan, Y. Near-Real-Time Flood Forecasting Based on Satellite Precipitation Products. Remote Sens. 2019, 11, 252. [Google Scholar] [CrossRef]
- Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Sharma, R.R. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin: Rainfall estimates for streamflow modelling. J. Flood Risk Manag. 2008, 1, 89–99. [Google Scholar] [CrossRef]
- Pan, M.; Li, H.; Wood, E. Assessing the skill of satellite-based precipitation estimates in hydrologic applications: satellite precipitation skill. Water Resour. Res. 2010. [Google Scholar] [CrossRef]
- Samaiyar, A.K. Flood Management Improvement Support Center (FMISC). Flood Report 2013. Water Resources Department. Goverment of Bihar; FMISC, Patna: Patna, India, 2013; pp. 1–65. [Google Scholar]
- Sinha, R. The great avulsion of Kosi on 18 August 2008. Curr. Sci. 2009, 97, 429–433. [Google Scholar]
- Reddy, D.V.; Kumar, D.; Saha, D.; Mandal, M.K. The 18 August 2008 Kosi river breach: An evaluation. Curr. Sci. 2008, 95, 1668–1669. [Google Scholar]
- National Disaster Management Authority (NDMA), Annual Report 2016-17; Government of India: New Delhi, India, 2017.
- Sinha, G.P. The State Disaster Management Plan, Disaster Management Department, Govt of Bihar; Disaster Management Department: Patna, India, 2013; pp. 50–89.
- Nigro, J.; Slayback, D.; Policelli, F.; Brakenridge, G.R. NASA/DFO MODIS Near Real-Time (NRT) Global Flood Mapping Product Evaluation of Flood and Permanent Water Detection; NASA GSFC MODIS Flood Mapping Products, NASA: Washington, DC, USA, 2014.
- Parida, B.R.; Behera, S.N.; Oinam, B.; Patel, N.R.; Sahoo, R.N. Investigating the effects of episodic Super-cyclone 1999 and Phailin 2013 on hydro-meteorological parameters and agriculture: An application of remote sensing. Remote Sens. Appl. Soc. Environ. 2018, 10, 128–137. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Gao, B.; Jiao, Y.; Hong, Y.; Xu, T. Multiscale Hydrologic Applications of the Latest Satellite Precipitation Products in the Yangtze River Basin using a Distributed Hydrologic Model. J. Hydrometeorol. 2015, 16, 407–426. [Google Scholar] [CrossRef]
- Burrough, P.; McDonnell, R. Spatial Information Systems and Geostatistics. P Burrough R Mcdonnell Princ. Geogr. Inf. Syst. 1998, 333, 1–333. [Google Scholar]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM national conference, Las Vegas, NV, USA, 27–29 August 1968; pp. 517–524. [Google Scholar]
- Chen, F.-W.; Liu, C.-W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Getirana, A.C.; Bonnet, M.-P.; Rotunno Filho, O.C.; Mansur, W.J. Improving hydrological information acquisition from DEM processing in floodplains. Hydrol. Process. Int. J. 2009, 23, 502–514. [Google Scholar] [CrossRef]
- Jenson, S.K. Applications of hydrologic information automatically extracted from digital elevation models. Hydrol. Process. 1991, 5, 31–44. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2019, 569, 387–408. [Google Scholar] [CrossRef]
- Chuntian, C.; Chau, K.W. Three-person multi-objective conflict decision in reservoir flood control. Eur. J. Oper. Res. 2002, 142, 625–631. [Google Scholar] [CrossRef]
- Chau, K. Use of Meta-Heuristic Techniques in Rainfall-Runoff Modelling. Water 2017, 9, 186. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W. Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394–409. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 2010. [Google Scholar] [CrossRef]
- Mishra, A.; Srinivasan, J. Did a cloud burst occur in Kedarnath during 16 and 17 June 2013? Curr. Sci. 2013, 105, 1351–1352. [Google Scholar]
- Bharti, V.; Singh, C.; Ettema, J.; Turkington, T.A.R. Spatiotemporal characteristics of extreme rainfall events over the Northwest Himalaya using satellite data. Int. J. Climatol. 2016, 36, 3949–3962. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef]
- Fayne, J.V.; Bolten, J.D.; Doyle, C.S.; Fuhrmann, S.; Rice, M.T.; Houser, P.R.; Lakshmi, V. Flood mapping in the lower Mekong River Basin using daily MODIS observations. Int. J. Remote Sens. 2017, 38, 1737–1757. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Tang, J.; Yu, E.; Zhang, C.; Rahman, M.; Shrestha, R.; Kang, L. Improvement and Validation of NASA/MODIS NRT Global Flood Mapping. Remote Sens. 2019, 11, 205. [Google Scholar] [CrossRef]
- Pandey, R.K.; Crétaux, J.-F.; Bergé-Nguyen, M.; Tiwari, V.M.; Drolon, V.; Papa, F.; Calmant, S. Water level estimation by remote sensing for the 2008 flooding of the Kosi River. Int. J. Remote Sens. 2014, 35, 424–440. [Google Scholar] [CrossRef]
- Sahu, S.; Saha, D.; Dayal, S. Sone megafan: A non-Himalayan megafan of craton origin on the southern margin of the middle Ganga Basin, India. Geomorphology 2015, 250, 349–369. [Google Scholar] [CrossRef]
- Dixit, A. Kosi embankment breach in Nepal: Need for a paradigm shift in responding to floods. Econ. Political Wkly. 2009, 44, 70–78. [Google Scholar]
- Bhatt, C.M.; Rao, G.S.; Manjushree, P.; Bhanumurthy, V. Space based disaster management of 2008 Kosi floods, North Bihar, India. J. Indian Soc. Remote Sens. 2010, 38, 99–108. [Google Scholar] [CrossRef]
- Amarnath, G.; Rajah, A. An evaluation of flood inundation mapping from MODIS and ALOS satellites for Pakistan. Geomat. Nat. Hazards Risk 2016, 7, 1526–1537. [Google Scholar] [CrossRef]
- Comprehensive Flood Management in India by Central Water Commission (CWC); Information system Organization, CWC: New Delhi, India, 2018; pp. 1–120.
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J. Geophys. Res. Atmos. 2012. [Google Scholar] [CrossRef]
- Li, L.; Hong, Y.; Wang, J.; Adler, R.F.; Policelli, F.S.; Habib, S.; Irwn, D.; Korme, T.; Okello, L. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat. Hazards 2009, 50, 109–123. [Google Scholar] [CrossRef]
- Goel, N.K.; Kurothe, R.S.; Mathur, B.S.; Vogel, R.M. A derived flood frequency distribution for correlated rainfall intensity and duration. J. Hydrol. 2000, 228, 56–67. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Sreejith, O.P.; Menon, P.A. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 2011, 120, 359. [Google Scholar] [CrossRef]
Name of Dataset | Temporal Resolution | Spatial Resolution | Acquisition Date | Source |
---|---|---|---|---|
Landsat- 8 (OLI) | 16 days | 30 m | 12, 21, 26, 28 Apr, 2017 | USGS |
MODIS Flood data | 24 h | 250 m | August–September, 2017 | NRT Flood product |
Sentinel-1A | 12 days | 10 m | 23rd August, 2017 | ASF |
TMPA (3B42RT) | 3 h | 0.25° × 0.25° | August–September, 2017 | GIOVANNI |
ASTER GDEMV2.0 | 16 days | 1 arc second (30 m) | 17th October 2011 | USGS |
Rainfall (station-wise) | 12 h | - | August and September, 2017 | IMD |
Hydrographs | 3 h | - | Daily (station-wise) | CWC |
Stations | IMD Rainfall (mm) | TMPA Rainfall (mm) |
---|---|---|
Sitamarhi | 283 | 220 |
Muzzafarpur | 135 | 130 |
Darbhanga | 322 | 256 |
Supaul | 401 | 223 |
Bhagalpur | 118 | 223 |
Madhepura | 155 | 185 |
Purnea | 333 | 178 |
Samastipur | 244 | 164 |
Flooding Period | Inundated Area (Sq. Km.) | Inundated area with respect to North Bihar (%) |
---|---|---|
13–14th August | 949.03 | 2.07 |
15–16th August | 352.81 | 0.77 |
17–18th August | 153.08 | 0.33 |
19–20th August | 1737.69 | 3.79 |
21–22nd August | 194.31 | 0.42 |
23–24th August | 2961.64 | 6.45 |
25–26th August | 2968.8 | 6.47 |
27–28th August | 768.4 | 1.67 |
29–30th August | 2544.85 | 5.54 |
30–31st August | 1317.06 | 2.87 |
1–2nd September | 107.67 | 0.23 |
2–3rd September | 229.57 | 0.50 |
Mean Value | 1177.37 | 2.59 |
Duration → Districts ↓ | 13–14 August | 14–15 August | 19–20 August | 23–24 August | 25–26 August | 28–29 August | 29–30 August | Mean Area |
---|---|---|---|---|---|---|---|---|
Kishanganj | 10.48 | 40.11 | 0.16 | 0 | 0.27 | 0.85 | 0 | 7.41 |
Araria | 45.44 | 178.88 | 3.72 | 0 | 5.33 | 6.17 | 3.42 | 34.71 |
Supaul | 1.67 | 218.53 | 10.31 | 85.41 | 77.6 | 59.15 | 50.23 | 71.84 |
Purnia | 260.63 | 286.49 | 109.92 | 48.91 | 67.65 | 18.43 | 43.16 | 119.31 |
Katihar | 244.78 | 263.59 | 387 | 357.08 | 388.27 | 266.05 | 360.94 | 323.96 |
Saharsa | 6.3 | 15.88 | 239.34 | 235.06 | 160.12 | 141.44 | 123.21 | 131.62 |
Bhagalpur | 185.97 | 196.37 | 109.11 | 284.4 | 251.44 | 90.58 | 183.05 | 185.85 |
Madhepura | 104.89 | 110.7 | 135.09 | 135.96 | 148.82 | 113.12 | 131 | 125.65 |
Darbhanga | 0 | 1.18 | 104.06 | 496.23 | 452.16 | 396.09 | 433.6 | 269.05 |
Begusarai | 0 | 20.4 | 51.82 | 64.85 | 62.37 | 24.68 | 76.2 | 42.9 |
Khagaria | 88.87 | 117.82 | 304.41 | 389.69 | 351.08 | 293.95 | 274.87 | 260.1 |
Samastipur | 0 | 19.16 | 193.22 | 299.66 | 284.87 | 289.53 | 318.52 | 200.71 |
Vaishali | 0 | 0 | 23.74 | 15.16 | 31.8 | 22.07 | 35.02 | 18.26 |
Madhubani | 0 | 80.15 | 29.87 | 126.14 | 107 | 105.05 | 80.45 | 75.52 |
Sitamarhi | 0 | 3.3 | 9.48 | 76.3 | 91.17 | 88.89 | 68.36 | 48.21 |
Sheohar | 0 | 0 | 0.06 | 0 | 2.87 | 2.7 | 3.06 | 1.24 |
Mujjafarpur | 0 | 0.54 | 20.33 | 82.78 | 187.95 | 205.03 | 221.63 | 102.61 |
Purba Champaran | 0 | 0 | 6.05 | 249.13 | 276.65 | 158.62 | 119.39 | 115.69 |
Paschim Champaran | 0 | 0 | 0 | 14.32 | 21.38 | 14.9 | 18.74 | 9.91 |
Total Area | 949.03 | 1553.1 | 1737.69 | 2961.08 | 2968.8 | 2297.3 | 2544.85 | 2144.55 |
Duration → | HFL | DL | 16 August | 17 August | 18 August | 19 August | 20 August | 26 August | 27 August | 28 August | 29 August | 30 August |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stations ↓ | ||||||||||||
Ahirwalia | 61.2 | 59.6 | 57.5 | 58.3 | 59.2 | 59.8 | 60.3 | 59.4 | 59.3 | 59 | 58.3 | 58 |
Baltara | 36.4 | 33.85 | 36 | 36.1 | 35.85 | 35.8 | 35.8 | 35.5 | 35.4 | 35.4 | 35.3 | 35.2 |
Dumariaghat | 63.6 | 62.22 | 63.9 | 64 | 63.9 | 63.4 | 63 | 62.3 | 62.2 | 62.18 | 62 | 62 |
Dhengraghat | 38 | 35.6 | 36.8 | 36.4 | 36.3 | 36 | 36 | 34.6 | 35.2 | 35.7 | 35.6 | 35.4 |
Ekmighat | 49.5 | 46.9 | 47.2 | 47.7 | 48.3 | 48.4 | 48.5 | 48.2 | 48.1 | 48 | 47.9 | 47.5 |
Khagaria | 39.3 | 36.6 | 36.1 | 36.3 | 36.4 | 36.5 | 36.6 | 37 | 37 | 37 | 37 | 37 |
Muzzafarpur | 49.2 | 47.8 | 51.4 | 51.9 | 52.4 | 52.9 | 53.3 | 53.5 | 53.4 | 48.1 | 53.2 | 53.1 |
Rosera | 46.4 | 42.6 | 41.3 | 41.7 | 42.4 | 42.7 | 43.1 | 45.5 | 45.6 | 45.6 | 45.5 | 43.4 |
Samastipur | 49.4 | 46 | 44.3 | 44.6 | 45.1 | 45.6 | 46 | 48 | 48.1 | 48.1 | 48 | 47.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, G.; Parida, B.R.; Pandey, A.C. Spatio-Temporal Rainfall Variability and Flood Prognosis Analysis Using Satellite Data over North Bihar during the August 2017 Flood Event. Hydrology 2019, 6, 38. https://doi.org/10.3390/hydrology6020038
Tripathi G, Parida BR, Pandey AC. Spatio-Temporal Rainfall Variability and Flood Prognosis Analysis Using Satellite Data over North Bihar during the August 2017 Flood Event. Hydrology. 2019; 6(2):38. https://doi.org/10.3390/hydrology6020038
Chicago/Turabian StyleTripathi, Gaurav, Bikash Ranjan Parida, and Arvind Chandra Pandey. 2019. "Spatio-Temporal Rainfall Variability and Flood Prognosis Analysis Using Satellite Data over North Bihar during the August 2017 Flood Event" Hydrology 6, no. 2: 38. https://doi.org/10.3390/hydrology6020038
APA StyleTripathi, G., Parida, B. R., & Pandey, A. C. (2019). Spatio-Temporal Rainfall Variability and Flood Prognosis Analysis Using Satellite Data over North Bihar during the August 2017 Flood Event. Hydrology, 6(2), 38. https://doi.org/10.3390/hydrology6020038