Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Standardized Precipitation Index (SPI), Aridity Index (AI), and Ped Index
2.3. Description of the SWAT Model
2.4. The Hydrological Drought Index (KDrought)
2.5. SWAT Model Setup
2.6. Evaluation Model
3. Results and Discussion
3.1. Drought Frequency with the J, SPI, and Ped Indices
3.2. Drought Classification with the J, SPI, and Ped Indices
3.3. Statistics Concerning the Greatest Number of Drought Years with the J Index
3.4. Calibration and Validation of the SWAT Model
3.5. Establishment of Drought Classification Maps
4. Conclusions
- (1)
- The J index best shows the frequency of drought in accordance with the climate patterns in the Central Highlands, in which the drought was mainly concentrated in the winter months, and the highest frequency was concentrated from January to the end of April, with a frequency of over 60%.
- (2)
- From the results of the drought indices and the drought classification at typical stations in the Central Highlands, index J was found to be the most suitable choice in this area. In addition, considering the J index, the most extreme drought occurs at the Ayunpa station, then at the An Khe station, and, finally, at the MDrak station.
- (3)
- Based on the statistics and analysis of 35 years of severe droughts during the period 1981–2016, and based on the J index, 2016 was used as a typical year for the simulation and evaluation of drought, and the construction of drought classification maps, from January to April in the Ba River basin.
- (4)
- The results show that the SWAT model can be applied to simulate the outflow of sub-catchments during the dry season in the study area, with good results from the calibration and verification of the model. The simulation results of the SWAT model will provide and fully supply the necessary data to calculate the hydrological drought index of the study area. Drought classification maps, based on the results of the calculation of the drought index (KDrought), have yielded a number of assessments of drought impacts on the study area in a spatial and temporal scope.
- (1)
- Drought in the Central region is related to the moisture regime. Therefore, future research should calculate additional related indices to soil moisture, such as the Palmer Drought Severity Index (PDSI) and the Crop Moisture Index (CMI).
- (2)
- The number of calibrations and validations in the SWAT model is low. This number may not be sufficient to evaluate the adequacy of the model in the study area.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought as a natural hazard: concepts and definitions. In Drought: A Global Assessment; Routledge: New York, NY, USA, 2000; pp. 3–18. Available online: http://digitalcommons.unl.edu/droughtfacpub/69 (accessed on 6 June 2019).
- Van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the drought phenomenon: the role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Dastorani, M.T.; Massah Bavani, A.R.; Poormohammadi, S.; Rahimian, M.H. Assessment of potential climate change impacts on drought indicators (Case study: Yazd station, Central Iran). Desert 2011, 16, 159–167. [Google Scholar]
- Dai, A.; Trenberth, K.E.; Qian, T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Benjamin, L.H.; Mark, A. European drought climatology and prediction using the Standardised Precipitation Index (SPI). In Proceedings of the 8.11 13th Conference on Applied Meteorology, Orlando, FL, USA, 13–17 January 2002; American Meteorological Society: Boston, MA, USA; pp. 13–16. [Google Scholar]
- Hayes, M.J.; Svobova, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Niemeyer, S. New drought indices, options méditerranéennes. Sér. A: Sémin. Méditerr. 2008, 80, 267–274. Available online: http://om.ciheam.org/om/pdf/a80/00800451.pdf (accessed on 6 June 2019).
- Bazrafshan, J.; Khalili, A. Spatial Analysis of Meteorological Drought in Iran from 1965 to 2003. Desert 2013, 18, 63–71. [Google Scholar]
- Shahabfar, A.R.; Eitzinger, J. Spatio-Temporal Analysis of Droughts in Semi-Arid Regions by Using Meteorological Drought Indices. Atmosphere 2013, 4, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Asefjaha, B.; Faniana, F.; Feizia, Z.; Abolhasania, A.; Paktinat, H.; Naghiloua, M.; Molaei Atanic, A.; Asadollahia, M.; Babakhania, M.; Kouroshni, A.; et al. Meteorological drought monitoring using several drought indices (case study: Salt Lake Basin in Iran). Desert 2014, 19, 155–165. [Google Scholar]
- Van-Rooy, M.P. A rainfall anomaly index (RAI) independent of time and space. Notos 1965, 14, 43–48. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators. Melbourne: Bureau of Meteorology. 1967. Available online: https://trove.nla.gov.au/version/25447946 (accessed on 6 June 2019).
- Bhalme, H.N.; Mooley, D.A. Large-scale drought/floods and monsoon circulation. Mon. Weather Rev. 1980, 108, 1197–1211. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, C. Trend of surface humid index in the arid area of northern China. Acta Meteorol. Sin. 2001, 59, 737–746. (In Chinese) [Google Scholar]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- McKee, T.B.; Doeskin, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Loukas, A.; Vasiliades, L. Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat. Hazards Earth Syst. Sci. 2004, 4, 719–731. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought. Research Paper No. 45. U.S. Department of Commerce Weather Bureau: Washington, DC, USA, 1965. Available online: https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf (accessed on 6 June 2019).
- Bazrafshan, J. A comparative study of several meteorological drought indices in some climatic zones of Iran. Master’s Thesis, University of Tehran, Karaj, Iran, 2002. [Google Scholar]
- Vu, T.H.; Ngo, T.T.H.; Nguyen, Q.T.; Trinh, T.L. Projected drought conditions in the Central of Vietnam during 2011-2050 using the output of Regional Climate Model RegCM3. VNU J. Sci. 2011, 27, 21–31. [Google Scholar]
- Nguyen, Q.K. Study on drought forecasting in the South Central and Highland regions and establishing prevention sollutions, government project, grand number: KC.08.22. 2005; 354. [Google Scholar]
- Nguyen, T.H.; Nguyen, V.T.; Pham, T.T.H.; Vu, V.T. Impact of cliamte change on drought in climatic regions in Vietnam. Sci. Tech. Hydro-Meteorol. J. 2010, 598, 21–25. (In Vietnamese) [Google Scholar]
- Mo, K.C. Model-based drought indices over the United States. J. Hydrometeorol. 2008, 9, 1212–1230. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A. Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric. Forest Meteorol. 2010, 150, 1030–1045. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Shukla, S. Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeorol. 2010, 11, 46–68. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- William, C.; Pabst, A.; Peters, J. The Hydrologic Modeling System (HEC-HMS): Design and Development Issues; Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 1995; Available online: https://www.hec.usace.army.mil/publications/TechnicalPapers/TP-149.pdf (accessed on 6 June 2019).
- U.S. Army Corps of Engineers. HEC-HMS Hydrologic Modeling System User’s Manual; Ver. 4.2; Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation model. J. Geophys. Res. 1994, 99, 415–428. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Res. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F.; Wechsung, F. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrol. Process. 2005, 19, 763–783. [Google Scholar] [CrossRef]
- Verzano, K. Climate Change Impacts on Flood Related Hydrological Processes: Further Development and Application of a Global Scale Hydrological Model. Ph.D. Dissertation, International Max Planck Research School on Earth System Modelling, University of Kassel, Kassel, Germany, 2009. [Google Scholar]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Res. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Liem, N.D.; Hong, N.T.; Minh, T.P.; Loi, N.K. Assessing Water Discharge in Be River Basin, Vietnam using GIS and SWAT model. In Proceedings of the National GIS Conference, Da Nang, Vietnam, 17–18 December 2011. [Google Scholar]
- Tram, V.N.Q.; Liem, N.D.; Loi, N.K. Assessing Water Availability in PoKo Catchment using SWAT model. Khon Kaen Agric. J. 2014, 42, 73–84. [Google Scholar]
- Singh, H.V.; Kalin, L.; Morrison, A.; Srivastava, P.; Lockaby, G.; Pan, S. Post-validation of SWAT model in a coastal watershed for predicting land use/cover change impacts. Hydrol. Res. 2015, 46, 837–853. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chang, J.X.; Luo, L.F.; Wang, Y.M.; Guo, A.J.; Ma, F.; Fan, J.J. Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol. Res. 2018, 50, 244–261. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Ngo, L.A.; Doan, Q.T.; Tran, T.D.; Dang, T.M.; Dinh, D.T. Research on forecasting and warning methods in hydrometeorological drought: case study at Dak Lak province, highland in vietnam. VN J. Hydrometeorol. 2019, 699, 30–41. (In Vietnamese) [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin. China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H. Simulation of watershed hydrology and stream water quality under landuse and climate change scenarios in Teshio River watershed, northern Japan. Ecol. Indic. 2015, 50, 79–89. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, Y.; Chen, Y.; Xu, C.Y.; Gao, Y.; Du, J. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J. Hydrol. 2013, 485, 113–125. [Google Scholar] [CrossRef]
- Pandey, R.P.; Dash, B.B.; Mishra, S.K.; Singh, R. Study of indices for drought characterization in KBK districts in Orissa (India). Hydrol. Process. 2008, 22, 1895–1907. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Analysis of drought severity-area-frequency curves using ageneral circulation model and scenario uncertainty. J. Geophys. Res. 2009, 114, D06120. [Google Scholar] [CrossRef]
- Roudier, P.; Mahe, G. Study of water stress and droughts with indicators using daily data on the Bani River (Niger Basin, Mali). Int. J. Climatol. 2010, 30, 1689–1705. [Google Scholar] [CrossRef]
- Stricevic, R.; Djurovic, N.; Djurovic, Z. Drought classification in Northern Serbia based on SPI and statistical pattern recognition. Meteorol. Appl. 2011, 18, 60–69. [Google Scholar] [CrossRef]
- Jain, V.K.; Pandey, R.P.; Jain, M.K.; Byun, H.R. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Clim. Extrem. 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zou, X.K.; Xiao, F.J.; Lü, H.Q.; Liu, H.B.; Zhu, C.H.; Zhu, S.Q. An Classification of Meteorological Drought; China Meteorological Press: Beijing, China, 2008; pp. 33–53. (In Chinese)
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.; Singh, V.P.; Li, J. Regionalization and spatial changing properties of droughts across the Pearl River basin, China. J. Hydrol. 2012, 472, 355–366. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Cancelliere, A.; Rossi, G. Probabilistic forecasting of drought class transitions in Sicily (Italy) using standardized precipitation index and North Atlantic oscillation index. J. Hydrol. 2015, 526, 136–150. [Google Scholar] [CrossRef]
- Park, J.; Lim, Y.J.; Kim, B.J.; Sung, J.H. Appraisal of drought characteristics of representative drought indices using meteorological variables. KSCE J. Civ. Eng. 2018, 22, 2002–2009. [Google Scholar] [CrossRef]
- Edwards, D.C.; Mckee, T.B. Characteristics of 20th century drought in the United States at multiple time scales. Atmos. Sci. Pap. 1997, 63, 1–30. [Google Scholar]
- Walton, K. The Arid Zone; Aldine Publishing Co.: Chicago, IL, USA, 1969. [Google Scholar]
- Stadler, S.J. Aridity indexes. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Heidelberg, Germany, 2005; pp. 89–94. [Google Scholar]
- IPCC. Climate change 2007: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.ipcc.ch/report/ar4/wg2/ (accessed on 6 June 2019).
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Map of the World Distribution of Arid Regions: Map at Scale 1:25,000,000 with Explanatory Note; MAB Technical Notes 7; UNESCO: Paris, France, 1979. [Google Scholar]
- Penman, H. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. 1948, A193, 120–145. [Google Scholar]
- De Martonne, E. Aréisme et indice artidite; Comptes Rendus de L’Acad Sci: Paris, France, 1926; Volume 182, pp. 1395–1398. [Google Scholar]
- Pedey, D.A. On indicators of droughts and wet conditions (in Russian). Proc. USSR Hydrometeorol. Centre Russian Meteorol. Hydrol. 1975, 156, 19–39. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool (SWAT) User’s Manual, Version 2000, Grassland Soil and Water Research Laboratory. Blackland Research Center, Texas Agricultural Experiment Station, Texas Water Resources Institute, Texas Water Resources Institute: College Station, TX, USA, 2002. Available online: https://swat.tamu.edu/media/1294/swatuserman.pdf (accessed on 6 June 2019).
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Glavan, M.; Ceglar, A.; Pintar, M. Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment – lesson for policy and decision makers. Hydrol. Process. 2015, 29, 3124–3144. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Wang, L.; Lei, X.; Liao, W.; Hui, Y.; Meng, X. Spatiotemporal response of the water cycle to land use conversions in a typical hilly-gully basin on the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2017, 21, 6485–6499. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Yu, D.; Xie, P.; Dong, X.; Su, B.; Hu, X.; Wang, K.; Xu, S. The development of land use planning scenarios based on land suitability and its influences on eco-hydrological responses in the upstream of the Huaihe River basin. Ecol. Model. 2018, 373, 53–67. [Google Scholar] [CrossRef]
- Ghane, M.; Alvankar, S.R.; Eslamian, S.; Mahboubeh, A.K.; Gandomkar, A.; Zamani, E.; Maryam, M.B.; Kazemi, M.; Soltani, M.; Dehghan, S.; et al. Sensitivity Analysis of Runoff Model by SWAT to Meteorological Parameters: A Case Study of Kasillian Watershed, Mazandaran, Iran. Int. J. Res. Stud. Agric. Sci. 2017, 3, 17–36. [Google Scholar]
- Bazrkar, M.H.; Eslamian, S. Ocean Oscillation and Drought Indices: Application. In Handbook of Drought and Water Scarcity; Vol. 1: Principles of Drought and Water Scarcity; Eslamian, S., Eslamian, F., Eds.; Francis and Taylor, CRC Press: Boca Raton, FL, USA, 2017; Chapter 8; pp. 127–136. [Google Scholar]
- Lin, Z.; Radcliffe, D.E. Automatic Calibration and Predictive Uncertainty Analysis of a Semidistributed Watershed Model. Vadose Zone J. 2006, 5, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.Q.; Nguyen, D.L.; Nguyen, D.N.; Nguyen, T.; Bui, T.L.; Nguyen, K.L. Zoning Drought Reply on Drought Index and Simulation Hydrological Regime in Srepok Watershed Tay Nguyen Area. VNU J. Sci. Earth Env. Sci. 2017, 33, 65–81. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-a discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Andersen, J.; Refsgaard, J.C.; Jensen, K.H. Distributed hydrological modelling of the Senegal River basin–Model construction and validation. J. Hydrol. 2001, 247, 200–214. [Google Scholar] [CrossRef]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe efficiency Index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Nejadhashemi, A.P.; Wardynski, B.J.; Munoz, J.D. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrol. Earth Syst. Sci. 2011, 8, 3421–3468. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Tian, W.; Li, Y.; Liang, K.; Liu, C.; Li, Y.; Yang, X. Pan coefficient sensitivity to environment variables across China. J. Hydrol. 2019, 572, 582–591. [Google Scholar] [CrossRef]
- Di, C.; Wang, T.; Yang, X.; Li, S. Technical note: An improved Grassberger–Procaccia algorithm for analysis of climate system complexity. Hydrol. Earth Syst. Sci. 2018, 22, 5069–5079. [Google Scholar] [CrossRef]
No. | Values | Degree of Drought |
---|---|---|
1 | <0 | Wet |
2 | 0–1 | Normal |
3 | 1–2 | Light drought |
4 | 2–3 | Moderate drought |
5 | >3 | Extreme drought |
Degree of Drought | J Values | SPI Values | Ped Values |
---|---|---|---|
Normal | ≥30 | ≥−0.49 | <1 |
Light Drought | 20–30 | −0.5– −0.99 | 1–2 |
Moderate Drought | 5–20 | −1.0– −1.49 | 2–3 |
Extreme Drought | ≤5 | <−1.5 | >3 |
State | Criterion | Description |
---|---|---|
0 | Kdrought < 0.5 | No drought |
1 | 0.5 < Kdrought ≤ 0.6 | Normal drought |
2 | 0.6 < Kdrought ≤ 0.8 | Light drought |
3 | 0.8 < Kdrought ≤ 0.9 | Moderate drought |
4 | 0.9 < Kdrought ≤ 1 | Extreme drought |
Station | Index | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
An Khe | J | 91.7 | 100 | 100 | 83.3 | 22.2 | 52.8 | 38.9 | 25 | 5.6 | 2.8 | 8.3 | 47.2 |
Ped | 11.1 | 22.2 | 25 | 25 | 36.1 | 27.8 | 25 | 25 | 25 | 25 | 22.2 | 19.4 | |
SPI | 41.7 | 38.9 | 47.2 | 36.1 | 36.1 | 41.7 | 38.9 | 33.3 | 36.1 | 30.6 | 38.9 | 25 | |
Ayunpa | J | 100 | 100 | 100 | 69 | 19 | 44 | 31 | 11 | 6 | 17 | 42 | 92 |
Ped | 19 | 19 | 42 | 39 | 36 | 44 | 31 | 25 | 25 | 28 | 25 | 22 | |
SPI | 0 | 0 | 50 | 33 | 36 | 39 | 33 | 36 | 33 | 33 | 42 | 17 | |
MDrak | J | 78 | 94 | 83 | 64 | 14 | 33 | 31 | 42 | 0 | 0 | 3 | 17 |
Ped | 19 | 25 | 31 | 28 | 25 | 25 | 28 | 22 | 25 | 31 | 19 | 22 | |
SPI | 42 | 39 | 42 | 31 | 31 | 33 | 31 | 44 | 36 | 39 | 39 | 33 |
Drought Classification | An Khe | Ayunpa | MDrak | ||||||
---|---|---|---|---|---|---|---|---|---|
J | Ped | SPI | J | Ped | SPI | J | Ped | SPI | |
Extreme drought | 15.7 | 2.3 | 2.3 | 29.9 | 2.8 | 1.4 | 9 | 2.5 | 3 |
Moderate drought | 22.2 | 5.8 | 9 | 13.7 | 6 | 10.6 | 19.7 | 6.5 | 6 |
Light drought | 10.2 | 16 | 26.4 | 9 | 20.9 | 21.3 | 9.5 | 16.2 | 28 |
No drought | 51.9 | 75.9 | 62.3 | 47.5 | 70.5 | 66.7 | 61.6 | 75 | 63 |
Station | January | February | March | April |
---|---|---|---|---|
An Khe | 1993 | 1982, 1983, 2000, 2004, 2014 | 1984, 1988,1996, 2016 | 1986 |
Ayunpa | 1986, 1987, 1990, 1993, 1998, 2002, 2005, 2006, 2007, 2014, 2016 | 1982, 1992, 1993, 1994, 2003, 2004, 2005, 2006, 2007, 2011, 2014, 2015, 2016 | 1983, 1988, 1996, 1998, 2004–2005, 2014–2016 | 2004 |
MDrak | 1997 | 2007 | 1992 | 2015 |
No. | Criterial | An Khe | Cung Son | ||
---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | ||
1 | NSE | 0.74 | 0.75 | 0.73 | 0.72 |
2 | PBIAS | 0.63 | 0.45 | 0.52 | 0.68 |
3 | R2 | 0.67 | 0.72 | 0.65 | 0.80 |
Sub-basin | SCS Runoff Curve Number (%) (r_CN2) | Surface Runoff Lag Time (day) (v_SURLAG) | Soil Evaporation Compensation Factor (v_ESCO) | Available Water Capacity of the Soil Layer (v_SOL AWC) | Moist Bulk Density of First Soil Layer (g/cm3) (v_SOL BD) | Manning’s n Value for Main Channel (v_CH_N2) | Base Flow Alpha Factor (v_ALPHA_BF) | Groundwater Delay Time (day) (v_GW_DELAY) | Threshold Depth of Water in Shallow Aquifer for Return Flow to Occur (mm) (v_GWQMN) | Groundwater Revap. Coefficient (v_GW_REVAP) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 45.00 | 3.75 | 0.03 | 0.47 | 0.89 | 0.12 | 0.46 | 91.00 | 900.00 | 0.15 |
2 | 53.00 | 3.75 | 0.03 | 0.47 | 0.89 | 0.12 | 0.46 | 116.00 | 1177.00 | 0.15 |
3 | 57.00 | 3.75 | 0.03 | 0.35 | 1.66 | 0.12 | 0.27 | 124.00 | 1193.00 | 0.16 |
4 | 60.00 | 4.00 | 0.03 | 0.47 | 0.89 | 0.12 | 0.46 | 115.00 | 953.00 | 0.15 |
5 | 56.00 | 4.75 | 0.03 | 0.35 | 0.89 | 0.12 | 0.46 | 116.00 | 1765.00 | 0.15 |
6 | 54.00 | 5.00 | 0.03 | 0.35 | 1.79 | 0.12 | 0.46 | 119.00 | 982.00 | 0.15 |
7 | 52.00 | 5.00 | 0.03 | 0.35 | 1.79 | 0.12 | 0.46 | 108.00 | 1059.00 | 0.15 |
8 | 54.00 | 4.00 | 0.03 | 0.35 | 1.79 | 0.12 | 0.56 | 108.00 | 1154.00 | 0.16 |
9 | 52.00 | 4.00 | 0.03 | 0.19 | 1.79 | 0.12 | 0.56 | 116.00 | 1457.00 | 0.16 |
10 | 59.00 | 4.00 | 0.03 | 0.35 | 1.79 | 0.12 | 0.56 | 101.00 | 1676.00 | 0.16 |
11 | 55.00 | 4.00 | 0.03 | 0.35 | 1.79 | 0.12 | 0.56 | 108.00 | 1436.00 | 0.16 |
12 | 51.00 | 4.00 | 0.03 | 0.55 | 1.79 | 0.05 | 0.56 | 113.00 | 1021.00 | 0.16 |
13 | 59.00 | 3.55 | 0.03 | 0.55 | 1.79 | 0.05 | 0.56 | 102.00 | 1023.00 | 0.16 |
14 | 48.00 | 3.55 | 0.02 | 0.55 | 1.79 | 0.05 | 0.56 | 119.00 | 1606.00 | 0.16 |
15 | 41.00 | 3.55 | 0.02 | 0.55 | 2.22 | 0.05 | 0.56 | 114.00 | 1390.00 | 0.16 |
16 | 43.00 | 3.75 | 0.02 | 0.55 | 1.34 | 0.05 | 0.54 | 114.00 | 1583.00 | 0.16 |
17 | 46.00 | 4.25 | 0.02 | 0.21 | 1.34 | 0.05 | 0.32 | 126.00 | 1734.00 | 0.16 |
18 | 41.00 | 4.25 | 0.02 | 0.23 | 1.34 | 0.05 | 0.32 | 107.00 | 1043.00 | 0.16 |
19 | 40.00 | 8.60 | 0.02 | 0.45 | 1.34 | 0.04 | 0.52 | 120.00 | 1330.00 | 0.16 |
20 | 60.00 | 4.25 | 0.03 | 0.32 | 1.34 | 0.04 | 0.55 | 116.00 | 1211.00 | 0.16 |
21 | 46.00 | 4.25 | 0.03 | 0.21 | 1.34 | 0.04 | 0.43 | 97.00 | 774.00 | 0.16 |
22 | 53.00 | 2.25 | 0.03 | 0.21 | 1.34 | 0.04 | 0.43 | 98.00 | 1938.00 | 0.16 |
23 | 52.00 | 3.15 | 0.03 | 0.21 | 1.34 | 0.04 | 0.41 | 122.00 | 587.00 | 0.16 |
24 | 53.00 | 3.15 | 0.03 | 0.34 | 2.14 | 0.04 | 0.41 | 94.00 | 744.00 | 0.16 |
25 | 46.00 | 3.15 | 0.03 | 0.26 | 2.14 | 0.04 | 0.41 | 109.00 | 633.00 | 0.16 |
26 | 47.00 | 3.15 | 0.03 | 0.26 | 1.67 | 0.03 | 0.41 | 91.00 | 1691.00 | 0.16 |
27 | 54.00 | 5.20 | 0.02 | 0.26 | 2.14 | 0.03 | 0.41 | 119.00 | 1394.00 | 0.16 |
28 | 49.00 | 5.20 | 0.02 | 0.47 | 3.41 | 0.03 | 0.26 | 121.00 | 526.00 | 0.16 |
29 | 44.00 | 3.65 | 0.02 | 0.47 | 0.93 | 0.03 | 0.26 | 130.00 | 908.00 | 0.16 |
30 | 56.00 | 3.65 | 0.02 | 0.47 | 0.93 | 0.03 | 0.26 | 100.00 | 584.00 | 0.16 |
31 | 48.00 | 3.65 | 0.02 | 0.42 | 0.93 | 0.03 | 0.26 | 109.00 | 1018.00 | 0.16 |
32 | 44.00 | 2.75 | 0.02 | 0.42 | 2.26 | 0.03 | 0.47 | 118.00 | 969.00 | 0.16 |
33 | 46.00 | 2.75 | 0.02 | 0.42 | 3.56 | 0.03 | 0.26 | 112.00 | 1814.00 | 0.16 |
34 | 53.00 | 2.75 | 0.02 | 0.42 | 3.56 | 0.03 | 0.47 | 121.00 | 1540.00 | 0.16 |
35 | 55.00 | 3.75 | 0.02 | 0.31 | 0.89 | 0.03 | 0.47 | 130.00 | 1676.00 | 0.16 |
36 | 50.00 | 2.25 | 0.02 | 0.31 | 0.89 | 0.03 | 0.47 | 123.00 | 564.00 | 0.16 |
37 | 46.00 | 2.25 | 0.03 | 0.33 | 1.13 | 0.03 | 0.54 | 116.00 | 1193.00 | 0.16 |
38 | 45.00 | 2.25 | 0.03 | 0.32 | 1.76 | 0.03 | 0.54 | 117.00 | 1869.00 | 0.16 |
39 | 51.00 | 2.25 | 0.03 | 0.31 | 2.65 | 0.03 | 0.54 | 112.00 | 1162.00 | 0.16 |
40 | 55.00 | 2.75 | 0.03 | 0.33 | 3.42 | 0.03 | 0.42 | 120.00 | 544.00 | 0.16 |
41 | 40.00 | 1.75 | 0.03 | 0.33 | 2.61 | 0.03 | 0.42 | 127.00 | 1003.00 | 0.16 |
42 | 41.00 | 1.75 | 0.03 | 0.28 | 2.61 | 0.03 | 0.26 | 124.00 | 881.00 | 0.16 |
43 | 50.00 | 1.75 | 0.03 | 0.28 | 2.61 | 0.03 | 0.42 | 108.00 | 786.00 | 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quang Tri, D.; Tho Dat, T.; Duc Truong, D. Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam. Hydrology 2019, 6, 49. https://doi.org/10.3390/hydrology6020049
Quang Tri D, Tho Dat T, Duc Truong D. Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam. Hydrology. 2019; 6(2):49. https://doi.org/10.3390/hydrology6020049
Chicago/Turabian StyleQuang Tri, Doan, Tran Tho Dat, and Dinh Duc Truong. 2019. "Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam" Hydrology 6, no. 2: 49. https://doi.org/10.3390/hydrology6020049
APA StyleQuang Tri, D., Tho Dat, T., & Duc Truong, D. (2019). Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam. Hydrology, 6(2), 49. https://doi.org/10.3390/hydrology6020049