Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska
Abstract
:1. Introduction
2. Study Area
3. Data Sources and Methods
3.1. Data and Imagery Used
3.2. Data Preprocessing
3.3. Imagery Analysis
4. Results
5. Discussion
5.1. Mapped and Quantified Perennial Snowfield Areas
5.2. Trends in Perennial Snowfield Area Changes
5.3. Perennial Snowfield PE Changes
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oechel, W.C.; Vourlitis, G.L.; Hastings, S.J.; Zulueta, R.C.; Hinzman, L.; Kane, D. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 2000, 406, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, O.M.; Bengtsson, L.; Miles, M.W.; Kuzmina, S.I.; Semenov, V.A.; Alekseev, G.V.; Cattle, H.P. Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A Dyn. Meteorol. Oceanogr. 2004, 56, 328–341. [Google Scholar] [CrossRef]
- Chapin, F.S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; Welker, J.M. Role of land-surface changes in Arctic summer warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Yoshikawa, K. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections. Geophys Res Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Wolken, G.J. High-resolution multispectral techniques for mapping former Little Ice Age terrestrial ice cover in the Canadian High Arctic. Remote Sens. Environ. 2006, 101, 104–114. [Google Scholar] [CrossRef]
- Hoffman, M.J.; Fountain, A.G.; Achuff, J.M. 20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains, Colorado, USA. Ann. Glaciol. 2007, 46, 349–354. [Google Scholar] [CrossRef]
- Higuchi, K.; Iozawa, T.; Fujii, Y.; Kodama, H. Inventory of perennial snow patches in Central Japan. GeoJournal 1980, 4, 303–311. [Google Scholar] [CrossRef]
- Kuhn, M. The mass balance of very small glaciers. Z. Gletscherkd. Glazialgeol. 1995, 31, 171–179. [Google Scholar]
- Kuhn, M. Redistribution of snow and glacier mass balance from a hydrometeorological model. J. Hydrol. 2003, 282, 95–103. [Google Scholar] [CrossRef]
- Lehning, M.; Löwe, H.; Ryser, M.; Raderschall, N. Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Dadic, R.; Mott, R.; Lehning, M.; Burlando, P. Wind influence on snow depth distribution and accumulation over glaciers. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Lewkowicz, A.G.; Young, K.L. Hydrology of a perennial snowbank in the continuous permafrost zone, Melville Island, Canada. Geogr. Annaler. Ser. Aphysical Geography. 1990, 72, 13–21. [Google Scholar] [CrossRef]
- Berrisford, M.S. Evidence for enhanced mechanical weathering associated with seasonally late-lying and perennial snow patches, Jotunheimen, Norway. Permafr. Periglac Process. 1991, 2, 331–340. [Google Scholar] [CrossRef]
- Luetschg, M.; Stoeckli, V.; Lehning, M.; Haeberli, W.; Ammann, W. Temperatures in two boreholes at Flüela Pass, Eastern Swiss Alps: The effect of snow redistribution on permafrost distribution patterns in high mountain areas. Permafr. Periglac Process. 2004, 15, 283–297. [Google Scholar] [CrossRef]
- Rosvold, J. Perennial ice and snow-covered land as important ecosystems for birds and mammals. J. Biogeogr. 2016, 43, 3–12. [Google Scholar] [CrossRef]
- Barclay, D.J.; Wiles, G.C.; Calkin, P.E. Holocene glacier fluctuations in Alaska. Quat. Sci. Rev. 2009, 28, 2034–2048. [Google Scholar] [CrossRef]
- Evison, L.H.; Calkin, P.E.; Ellis, J.M. Late-Holocene glaciation and twentieth-century retreat, northeastern Brooks Range, Alaska. Holocene 1996, 6, 17–24. [Google Scholar] [CrossRef]
- Ion, P.G.; Kershaw, G.P. The selection of snow patches as relief habitat by woodland caribou (Rangifer tarandus caribou), Macmillan Pass, Selwyn/Mackenzie Mountains, NWT, Canada. Arct. Alp. Res. 1989, 203–211. [Google Scholar] [CrossRef]
- Saperstein, L.B. Winter forage selection by barren-ground caribou: Effects of fire and snow. Rangifer 1996, 16, 237–238. [Google Scholar] [CrossRef]
- Toupin, B.; Huot, J.; Manseau, M. Effect of insect harassment on the behaviour of the Riviere George caribou. Arctic 1996, 49, 375–382. [Google Scholar] [CrossRef]
- Anderson, J.R.; Nilssen, A.C. Do reindeer aggregate on snow patches to reduce harassment by parasitic flies or to thermoregulate? Rangifer 1998, 18, 3–17. [Google Scholar] [CrossRef]
- Rattenbury, K.; Kielland, K.; Finstad, G.; Schneider, W. A reindeer herder’s perspective on caribou, weather and socio-economic change on the Seward Peninsula, Alaska. Polar Res. 2009, 28, 71–88. [Google Scholar] [CrossRef]
- Joly, K. Modeling influences on winter distribution of caribou in northwestern Alaska through use of satellite telemetry. Rangifer 2011, 31, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Joly, K.; Klein, D.R. Complexity of caribou population dynamics in a changing climate. Alsk. Park Sci. 2011, 10, 26–31. [Google Scholar]
- Joly, K.; Klein, D.R.; Verbyla, D.L.; Rupp, T.S.; Chapin, F.S. Linkages between large-scale climate patterns and the dynamics of Arctic caribou populations. Ecography 2011, 34, 345–352. [Google Scholar] [CrossRef]
- Braem, N.M. Subsistence Wildlife Harvests in Ambler, Buckland, Kiana, Kobuk Shaktoolik and Shishmaref, Alaska, 2009–2010; Alaska Department of Fish and Game Division of Subsistence: Fairbanks, AK, USA, 2012; Special Publication No. SP2012-003. [Google Scholar]
- Dixon, E.J.; Manley, W.F.; Lee, C.M. The emerging archaeology of glaciers and ice patches: Examples from Alaska’s Wrangell-St. Elias National Park and Preserve. Am. Antiq. 2005, 70, 129–143. [Google Scholar] [CrossRef]
- Alix, C.; Hare, P.G.; Andrews, T.D.; MacKay, G. A thousand years of lost hunting arrows: Wood analysis of ice patch remains in northwestern Canada. Arctic 2012, 65, 95–117. [Google Scholar] [CrossRef]
- Andrews, T.D.; MacKAY, G.; Andrew, L. Archaeological investigations of alpine ice patches in the Selwyn Mountains, Northwest Territories, Canada. Arctic 2012, 65, 1–21. [Google Scholar] [CrossRef]
- Hare, P.G.; Thomas, C.D.; Topper, T.N.; Gotthardt, R.M. The archaeology of Yukon ice patches: New artifacts, observations, and insights. Arctic 2012, 65, 118–135. [Google Scholar] [CrossRef]
- Meulendyk, T.; Moorman, B.J.; Andrews, T.D.; MacKAY, G. Morphology and development of ice patches in Northwest Territories, Canada. Arctic 2012, 65, 43–58. [Google Scholar] [CrossRef]
- VanderHoek, R.; Dixon, E.J.; Jarman, N.L.; Tedor, R.M. Ice patch arch in Alaska: 2000–10. Arctic 2012, 65, 153–164. [Google Scholar] [CrossRef]
- Tedesche, M.E. Snow Patches in the Brooks Range; United States National Park Service Science: Fairbanks, AK, USA, 2015. [Google Scholar]
- Tedesche, M.E.; Rasic, J. Perennial Snowfields of the Central Brooks Range: Valuable Park Resources. Alaska Park Sci. 2017, 16, 50–53. [Google Scholar]
- Armstrong, R.L.; Brodzik, M.J. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett. 2001, 28, 3673–3676. [Google Scholar] [CrossRef]
- Kääb, A.; Paul, F.; Maisch, M.; Hoelzle, M.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: II. First results. Ann. Glaciol. 2002, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Fountain, A.G. Digital outlines and topography of the glaciers of the American West. Available online: http://pubs.usgs.gov/of/2006/1340/ (accessed on 17 June 2019).
- Wolken, G.J.; Sharp, M.J.; England, J.H. Changes in late-Neoglacial climate inferred from former equilibrium-line altitudes in the Queen Elizabeth Islands, Arctic Canada. Holocene 2008, 18, 629–641. [Google Scholar] [CrossRef]
- Paul, F.; Barry, R.G.; Cogley, J.G.; Frey, H.; Haeberli, W.; Ohmura, A.; Zemp, M. Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol. 2009, 50, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Wolken, G.J.; England, J.H.; Dyke, A.S. Changes in late-Neoglacial perennial snow/ice extent and equilibrium-line altitudes in the Queen Elizabeth Islands, Arctic Canada. Holocene 2008, 18, 615–627. [Google Scholar] [CrossRef]
- Swanson, D.K. Trends in Greenness and Snow Cover in Alaska’s Arctic National Parks, 2000–2016. Remote Sens. 2017, 9, 514. [Google Scholar] [CrossRef]
- Macander, M.J.; Swingley, C.S.; Joly, K.; Raynolds, M.K. Landsat-based snow persistence map for northwest Alaska. Remote Sens. Environ. 2015, 163, 23–31. [Google Scholar] [CrossRef]
- Nolin, A.W.; Dozier, J. A Hyperspectral Method for Remotely Sensing the Grain Size of Snow. Remote Sens. Environ. 2000, 74, 207–216. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Molotch, N.P.; Fassnacht, S.R.; Bales, R.C.; Helfrich, S.R. Estimating the distribution of snow water equivalent and snow extent beneath cloud cover in the Salt-Verde River basin, Arizona. Hydrol. Process. 2004, 18, 1595–1611. [Google Scholar] [CrossRef]
- McFadden, E.M.; Ramage, J.; Rodbell, D.T. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [Google Scholar] [CrossRef]
- Rundquist, D.C.; Collins, S.C.; Barnes, R.B.; Bussom, D.E.; Samson, S.A.; Peake, J.S. The use of Landsat digital information for assessing glacier inventory parameters. Int. Assoc. Hydrol. Sciences. 1980, 126, 321–331. [Google Scholar]
- Dozier, J. Snow reflectance from Landsat-4 thematic mapper. IEEE Trans. Geosci. Remote Sens. 1984, 3, 323–328. [Google Scholar] [CrossRef]
- Dozier, J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Dozier, J. Estimation of properties of alpine snow from Landsat thematic mapper. Adv. Space Res. 1989, 9, 207–215. [Google Scholar] [CrossRef]
- Jacobs, J.D.; Simms, É.L.; Simms, A. Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. J. Glaciol. 1997, 43, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Ormsby, J.P.; Bindschadler, R.A.; Siddalingaiah, H. Characterization of Snow and Ice Reflectance Zones on Glaciers Using Landsat Thematic Mapper Data. Ann. Glaciol. 1987, 9, 104–108. [Google Scholar] [CrossRef]
- Hall, D.K.; Chang, A.T.C.; Siddalingaiah, H. Reflectances of Glaciers as Calculated Using Landsat-5 Thematic Mapper Data. Remote Sens. Environ. 1988, 25, 311–321. [Google Scholar] [CrossRef]
- Hall, D.K.; Chang, A.T.C.; Foster, J.L.; Benson, C.S.; Kovalick, W.M. Comparison of In Situ and Landsat Derived Reflectance of Alaskan Glaciers. Remote Sens. Environ. 1989, 28, 23–31. [Google Scholar] [CrossRef]
- Painter, T.H.; Brodzik, M.J.; Racoviteanu, A.; Armstrong, R. Automated mapping of Earth’s annual minimum exposed snow and ice with MODIS. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Forster, R.R. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions. Remote Sens. 2015, 8, 21. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Forster, R.R. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat. ISPRS J. Photogramm. Remote Sens. 2016, 117, 126–140. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; Le Bris, R.; Paul, F. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, W.; Dozier, J. Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour. Res. 1996, 32, 115–130. [Google Scholar] [CrossRef]
- Crawford, C.J.; Manson, S.M.; Bauer, M.E.; Hall, D.K. Multi-temporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sens. Environ. 2013, 135, 224–233. [Google Scholar] [CrossRef]
- Bishop, M.P.; Olsenholler, J.A.; Shroder, J.F.; Barry, R.G.; Raup, B.H.; Bush, A.B.; Copland, L.; Dwyer, J.L.; Fountain, A.G.; Haeberli, W.; et al. Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s Cryosphere. Geocarto. Int. 2004, 19, 57–84. [Google Scholar] [CrossRef]
- Allen, T.R. Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana. Geomorphology. 1998, 21, 207–216. [Google Scholar] [CrossRef]
- Langer, M.; Damm, B. CRYOSNOW: An approach for mapping and simulation of mountain permafrost distribution based on the spatial analyses of perennial snow patches. Geophys. Res. Abstr. 2008, 10, EGU2008-A-11263. [Google Scholar]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The Use of Satellite and Airborne Imagery to Inventory Outlet Glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens. 1996, 62, 1361–1369. [Google Scholar]
- Gratton, D.J.; Howarth, P.J.; Marceau, D.J. Using Landsat-5 Thematic Mapper and Digital Elevation Data to Determine the Net Radiation Field of a Mountain Glacier. Remote Sens. Environ. 1993, 43, 315–331. [Google Scholar] [CrossRef]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Raup, B.; Kääb, A.; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S.; et al. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Comput. Geosci. 2007, 33, 104–125. [Google Scholar] [CrossRef]
- Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Env. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Davey, C.A.; Redmond, K.T.; Simeral, D.B. Weather and Climate Inventory, National Park Service, ARCN. In Natural Resource Technical Report NPS/ARCN/NRTR-2007/005; CreateSpace: Fort Collins, CO, USA, 2007. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat Sensor Performance: History and Current Status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Candela, S.G.; Howat, I.; Noh, M.J.; Porter, C.C.; Morin, P.J. ArcticDEM Validation and Accuracy Assessment. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, December 2017. [Google Scholar]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Howard, S.M.; Lacasse, J.M. An evaluation of gap-filled Landsat SLC-off imagery for wildland fire burn severity mapping. Photogramm. Eng. Remote Sens. 2004, 70, 877–880. [Google Scholar]
- Maxwell, S.K.; Schmidt, G.L.; Storey, J.C. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. Int. J. Remote Sens. 2007, 28, 5339–5356. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Amro, I.; Mateos, J.; Vega, M.; Molina, R.; Katsaggelos, A.K. A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011, 2011, 79. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B. Effects of pansharpening on vegetation indices. ISPRS Int. J. Geo-Inform 2014, 3, 507–522. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Painter, T.H.; Rittger, K.E.; Schmidt, G.; Forster, R. The USGS Landsat Snow Covered Area Products: Methods and Preliminary Validation. In Automated Approaches for Snow and Ice Cover Monitoring Using Optical Remote Sensing; University of Utah: Salt Lake City, UT, USA, 2017; pp. 76–119. [Google Scholar]
- Muller, F. Inventory of glaciers in the Mount Everest region. In Perennial Ice and Snow Masses: A guide for Compilation and Assemblage of Data for a World Inventory; United Nations Educational, Scientific and Cultural Organization: Paris, France, 1970; pp. 47–53. [Google Scholar]
- DeVisser, M.H.; Fountain, A.G. A century of glacier change in the Wind River Range, WY. Geomorphology 2015, 232, 103–116. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218. [Google Scholar] [CrossRef]
- Li, X.; Coll, J.M. Building a Cloud-based Global Snow Observatory. In AGU Fall Meeting Abstracts; American Geophysical Union: San Francisco, CA, USA, December 2016. [Google Scholar]
- Zeltner, N. Using the Google Earth Engine for Global Glacier Change Assessment. Master’s Thesis, University of Zürich, Zürich, Switzerland, 2016. [Google Scholar]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 2017; 549, 257–260. [Google Scholar]
- Alifu, H.; Hirabayashi, Y.; Johnson, B.; Vuillaume, J.F.; Kondoh, A.; Urai, M. Inventory of Glaciers in the Shaksgam Valley of the Chinese Karakoram Mountains, 1970–2014. Remote Sens. 2018, 10, 1166. [Google Scholar] [CrossRef]
- Zhang, M.M.; Chen, F.; Tian, B.S. An automated method for glacial lake mapping in High Mountain Asia using Landsat 8 imagery. J. Mt. Sci. 2018, 15, 13–24. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Meyer, L.A. IPCC, 2014: Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.M.; Maycock, T.K.; Stewart, B.C. USGCRP, 2018. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume II. [Google Scholar]
- Fountain, A.G.; Glenn, B.; Basagic IV, H.J. The geography of glaciers and perennial snowfields in the American West. Arct. Antarct. Alp. Res. 2017, 49, 391–410. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alekseev, G.V.; Bekryaev, R.V.; Bhatt, U.; Colony, R.L.; Johnson, M.A.; Yulin, A.V. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 2002, 29, 25-1–25-4. [Google Scholar] [CrossRef]
- Jefferies, M.O.; Richter-Menge, J. The Arctic [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc. 2015, 95, S127–S148. [Google Scholar]
- Berkes, F.; Jolly, D. Adapting to climate change: Social-ecological resilience in a Canadian western Arctic community. Conserv. Ecol. 2002, 5. [Google Scholar] [CrossRef]
- Larsen, P.H.; Goldsmith, S.; Smith, O.; Wilson, M.L.; Strzepek, K.; Chinowsky, P.; Saylor, B. Estimating future costs for Alaska public infrastructure at risk from climate change. Glob. Environ. Chang. 2008, 18, 442–457. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Romanovsky, V.E. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafr. Periglac. Process. 1999, 10, 17–37. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.; Marchenko, S. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef]
- Young, K.L.; Lewkowicz, A.G. Surface energy balance of a perennial snowbank, Melville Island, Northwest Territories, Canada. Arct. Alp. Res. 1990, 22, 290–301. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Hauck, C.; Hilbich, C.; Mulsow, C.; Bühler, Y.; Buchroithner, M. New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. Geomorphology 2017, 290, 101–113. [Google Scholar] [CrossRef]
- King, L. Zonation and ecology of high mountain permafrost in Scandinavia. Geogr. Ann. Ser. Aphysical Geogr. 1986, 68, 131–139. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Farbrot, H.; Guðmundsson, Á.; Humlum, O.; Tveito, O.E.; Björnsson, H. The regional distribution of mountain permafrost in Iceland. Permafr. Periglac. Process. 2007, 18, 185–199. [Google Scholar] [CrossRef]
- Cline, D.W.; Bales, R.C.; Dozier, J. Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling. Water Resour. Res. 1998, 34, 1275–1285. [Google Scholar] [CrossRef]
- Blöschl, G. Scaling issues in snow hydrology. Hydrol. Process. 1999, 13, 2149–2175. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Dressler, K.A.; Bales, R.C. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Benn, D.I.; Lehmkuhl, F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat. Int. 2000, 65, 15–29. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Braithwaite, R.J.; Raper, S.C.B. Estimating equilibrium-line altitude (ELA) from glacier inventory data. Ann. Glaciol. 2009, 50, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Sapiano, J.J.; Harrison, W.T.; Echelmeyer, K.A. Elevation, volume and terminus changes of nine glaciers in North America. J. Glaciol. 1998, 44, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Vincent, C.; Wagnon, P.; Shea, J.; Immerzeel, W.; Kraaijenbrink, P.; Shrestha, D.; Soruco, A.; Arnaud, Y.; Brun, F.; Berthier, E.; et al. Reduced melt on debris-covered glaciers: Investigations from Changri Nup Glacier, Nepal. Cryosphere 2016, 10, 1845–1858. [Google Scholar] [CrossRef]
- Sidjak, R.W. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int. J. Remote Sens. 1999, 20, 273–284. [Google Scholar] [CrossRef]
- Nuth, C.; Kohler, J.; Aas, H.F.; Brandt, O.; Hagen, J.O. Glacier geometry and elevation changes on Svalbard (1936–90): A baseline dataset. Ann. Glaciol. 2007, 46, 106–116. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
(a) Supervised sub-classification error assessment results for L4/L5 | ||||||||
Landsat 4/5 - 30m Pixel Scale | ||||||||
Not Snow | Equilibrium Areas | Ablation Areas | Overall Accuracy (%) | Kappa Index | ||||
Year | EC | EO | EC | EO | EC | EO | ||
1985 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
1986 | 0.00 | 0.00 | 1.00 | 0.83 | 0.95 | 1.00 | 96 | 0.88 |
1987 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
1988 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
1989 | 0.00 | 0.00 | 1.00 | 0.50 | 0.88 | 1.00 | 89 | 0.61 |
1990 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 100 | N/A |
1991 | 0.00 | 0.00 | 1.00 | 0.89 | 0.97 | 1.00 | 98 | 0.93 |
1992 | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.98 | 96 | N/A |
1993–1994 | No Data | |||||||
1995 | 0.00 | 0.00 | 0.80 | 1.00 | 1.00 | 0.97 | 97 | 0.87 |
1996–1998 | No Data | |||||||
1999 | 0.00 | 0.00 | 1.00 | 0.50 | 0.86 | 1.00 | 86 | 0.60 |
2000–2004 | No Data | |||||||
2005 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
2006 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
2007 | 0.00 | 0.00 | 1.00 | 0.50 | 0.97 | 1.00 | 97 | 0.65 |
2008 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
2009 | 0.00 | 0.00 | 1.00 | 0.50 | 0.98 | 1.00 | 98 | 0.66 |
2010 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 100 | N/A |
2011 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
(b) Supervised sub-classification error assessment results for L7/L8 | ||||||||
Landsat 7/8 - 15m Pixel Scale | ||||||||
Not Snow | Equilibrium Areas | Ablation Areas | Overall Accuracy (%) | Kappa Index | ||||
Year | EC | EO | EC | EO | EC | EO | ||
1999 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.91 | 91 | 0.00 |
2000 | 0.00 | 0.00 | 1.00 | 0.60 | 0.93 | 1.00 | 94 | 0.72 |
2001 | 0.00 | 0.00 | 0.67 | 1.00 | 1.00 | 0.98 | 99 | 0.79 |
2002 | 0.00 | 0.00 | 0.88 | 0.88 | 0.86 | 0.86 | 87 | 0.73 |
2003 | 0.00 | 0.00 | 1.00 | 0.96 | 0.95 | 1.00 | 98 | 0.96 |
2004 | 0.00 | 0.00 | 0.60 | 1.00 | 1.00 | 0.88 | 90 | 0.69 |
2005 | 0.00 | 0.00 | 0.86 | 1.00 | 1.00 | 0.92 | 95 | 0.88 |
2006 | 0.00 | 0.00 | 1.00 | 0.75 | 0.94 | 1.00 | 95 | 0.83 |
2007 | 0.00 | 0.00 | 0.00 | 0.00 | 0.86 | 0.86 | 75 | 0.14 |
2008 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
2009 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.91 | 92 | 0.00 |
2010 | 0.00 | 0.00 | 0.80 | 0.80 | 0.95 | 0.95 | 92 | 0.75 |
2011 | 0.00 | 0.00 | 0.98 | 0.96 | 0.97 | 0.98 | 97 | 0.95 |
2012 | 0.00 | 0.00 | 1.00 | 0.83 | 0.97 | 1.00 | 97 | 0.89 |
2013 | 0.00 | 0.00 | 0.00 | 0.00 | 0.78 | 0.88 | 70 | 0.15 |
2014 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
2015 | 0.00 | 0.00 | 0.50 | 1.00 | 1.00 | 0.67 | 75 | 0.50 |
2016 | 0.00 | 0.00 | 0.33 | 1.00 | 1.00 | 0.67 | 71 | 0.36 |
2017 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedesche, M.E.; Trochim, E.D.; Fassnacht, S.R.; Wolken, G.J. Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska. Hydrology 2019, 6, 53. https://doi.org/10.3390/hydrology6020053
Tedesche ME, Trochim ED, Fassnacht SR, Wolken GJ. Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska. Hydrology. 2019; 6(2):53. https://doi.org/10.3390/hydrology6020053
Chicago/Turabian StyleTedesche, Molly E., Erin D. Trochim, Steven R. Fassnacht, and Gabriel J. Wolken. 2019. "Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska" Hydrology 6, no. 2: 53. https://doi.org/10.3390/hydrology6020053
APA StyleTedesche, M. E., Trochim, E. D., Fassnacht, S. R., & Wolken, G. J. (2019). Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska. Hydrology, 6(2), 53. https://doi.org/10.3390/hydrology6020053