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Abstract: In Lake Ziway watershed in Ethiopia, the contribution of river inflow to the water level
has not been quantified due to scarce data for rainfall-runoff modeling. However, satellite rainfall
estimates may serve as an alternative data source for model inputs. In this study, we evaluated
the performance and the bias correction of Climate Hazards Group InfraRed Precipitation (CHIRP)
satellite estimate for rainfall-runoff simulation at Meki and Katar catchments using the Hydrologiska
Byråns Vattenbalansavdelning (HBV) hydrological model. A non-linear power bias correction method
was applied to correct CHIRP bias using rain gauge data as a reference. Results show that CHIRP has
biases at various spatial and temporal scales over the study area. The CHIRP bias with percentage
relative bias (PBIAS) ranging from −16 to 20% translated into streamflow simulation through the
HBV model. However, bias-corrected CHIRP rainfall estimate effectively reduced the bias and
resulted in improved streamflow simulations. Results indicated that the use of different rainfall
inputs impacts both the calibrated parameters and its performance in simulating daily streamflow of
the two catchments. The calibrated model parameter values obtained using gauge and bias-corrected
CHIRP rainfall inputs were comparable for both catchments. We obtained a change of up to 63% on
the parameters controlling the water balance when uncorrected CHIRP satellite rainfall served as
model inputs. The results of this study indicate that the potential of bias-corrected CHIRP rainfall
estimate for water balance studies.

Keywords: CHIRP; satellite rainfall; rainfall-runoff simulation; bias correction; Lake Ziway; Meki;
Katar; Ethiopia

1. Introduction

Rainfall-runoff modeling requires accurate rainfall input data. The accuracy of the rainfall input
significantly influences the performance of hydrological models. However, accurate and consistent
rainfall observations are limited in many regions, particularly in developing countries, due to limited
rain gauge networks and density of deployment [1,2]. Satellite rainfall estimates (SREs) may serve
as an alternative data source for model inputs, as they provide rainfall datasets at various temporal
and spatial coverage, including ungauged basins [3,4]. Nevertheless, the results of previous studies
indicate that SREs can be subjected to substantial biases [5–7]. Hence, it is necessary to either minimize
or remove the bias before the SREs can be used in any subsequent applications.

SREs derive rainfall datasets from either passive microwave (PMW) or thermal infrared (TIR), or
a combination of both [8]. PMW depends on the relationship between the radiance in the microwave
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channel and precipitation, such as Asian Precipitation Highly Resolved Observational Data Integration
Towards Evaluation of water resources (APHRODITE; [9]). TIR estimate relies on cloud top temperature
threshold values and is relatively available at high temporal resolutions. Examples of TIR include
Global Precipitation Climatology Centre (GPCC; [10]), Climate Prediction Centre Morphing Technique
(CMORPH; [11]), and Climate Hazards Group InfraRed Precipitation (CHIRP; [12]), among others.
However, very few of these satellite products have been evaluated over eastern Africa [5,13,14].

Previous studies on validation and inter-comparison of satellite products indicate that they are
subjected to systematic (i.e., bias) and random errors [5,15,16]. The sources of these errors may arise
from an error in sampling, rain gauge data coverage, bias correction, and retrieval algorithms, among
others. These studies have also shown that biases can be minimized or removed by applying a bias
correction algorithm to compare with rain gauge data. A bias correction algorithm may vary from
linear [17] to a multiple moment distribution matching [18] of a variable at a time. The selection of the
bias correction method depends on the accuracy, the data requirement, and the hydrologic application
that the bias-corrected dataset can be used in [5].

Bias corrections have been applied in a number of previous satellite studies, such as [5,7,19].
Yuan et al. [7] showed that linear bias correction applied to Global Precipitation Measurement (GPM)
and Tropical Rainfall Measuring Mission (TRMM) effectively improved the streamflow simulations.
Habib et al. [5] showed that applying space and time fixed bias correction schemes in CMORPH revealed
improved runoff simulation. Yong et al. [20] indicated that a bias-corrected rainfall product as the model
input instead of an uncorrected product revealed improved performance on rainfall-runoff simulation.

Several studies also reported that a hydrologic model parameter requires recalibration when
satellite rainfall data replace rain gauge data as model inputs [16,21,22]. They indicated an increase of
hydrological model performance when the model was calibrated using SREs rather than rain gauge
data. However, Worqlul et al. [23] calibrated the hydrological model for gauge, uncorrected, and
bias-corrected Multi-Sensor Precipitation Estimate-Geostationary (MPEG) rainfall inputs in the upper
Blue Nile basin in Ethiopia. They found that calibration of the model using different rainfall inputs
resulted in different parameter values. Yong et al. [6] showed the requirement of recalibrating sensitive
parameters that control the hydrologic model using different rainfall inputs during the validation
period. Similar findings were also reported in other studies such as [5,24]. It is expected that different
inputs might affect model performance and require different sets of parameters. However, studies
that incorporate model parameters and rainfall input uncertainties are limited. Furthermore, the
results of error tolerance and propagation into hydrologic model prediction are not consistent and
need further assessment.

In the Central Rift valley lakes basin, rain gauge stations are sparse and unevenly distributed.
Furthermore, some of the available rain gauge networks are inadequate to simulate reliable
rainfall-runoff modeling, mainly due to sparse spatial coverage, a short length of records, and
substantial missing data. Hence, satellite rainfall estimates at high spatiotemporal resolution may
help to overcome these shortcomings. Therefore, the evaluation of satellite rainfall product over
Lake Ziway watershed is crucial to fill the data gap in water budget studies. Most of the previous
studies in Ethiopia over other parts of the basin have been conducted using coarse-resolution satellite
rainfall products. In the present study, we focus on the use of relatively high space–time resolutions
(0.05◦ × 0.05◦, daily) and Climate Hazards Group InfraRed Precipitation (CHIRP) satellite rainfall for
rainfall-runoff simulation at Meki and Katar catchments.

The main objectives of this study are: (i) to evaluate the performance of CHIRP satellite product at
different spatiotemporal scales, (ii) to assess the effect of gauge, uncorrected, and bias-corrected CHIRP
satellite rainfall inputs on calibrated model parameters and the model performance on streamflow
simulations. To achieve these objectives, we devised the following steps: first, CHIRP satellite estimate
was compared with the rain gauge rainfall at various spatial and temporal scales using graphical
comparison and different statistical measures. Next, a non-linear power bias correction method was
applied to correct the CHIRP rainfall estimate using available rain gauge stations in the study area.
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Then, a semi-distributed Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model was
used to calibrate and simulate streamflow driven by gauge, uncorrected, and bias-corrected CHIRP
satellite rainfall inputs at Meki and Katar catchments.

The CHIRP satellite was selected in this study due to its relatively high spatiotemporal resolutions
and its availability at consistent time series matching the rain gauge data interval and the time step
of the hydrological model used in this study. Although the performances of satellite products are
highly variable in space and time, previous inter-comparison studies of satellite rainfall products over
the eastern Africa region indicate that the CHIRP satellite rainfall product performance is slightly
better than other products due to high spatiotemporal resolutions [13,25,26]. Hence, in this study,
CHIRP was selected. The results of this study provide information for the product users regarding the
applicability of the CHIRP rainfall product for estimating catchment runoff in data scarce regions. In
the Lake Ziway area, this study can contribute to filling the data gap in water budget studies, which
play a significant role for water resources development programs in the study area.

2. Study Area and Datasets

2.1. Study Area

The study area is Meki and Katar catchments, which are the major tributaries of Lake Ziway,
located in the Central Rift Valley (CRV) lakes basin of Ethiopia with a total land surface area of 7022 km2.
They are situated between 7.43◦–8.58◦ N latitudes and 38.20◦–39.25◦ E longitudes and drain the western
and the eastern plateaus, respectively. The catchment area covers 6570 km2, of which the gauged
catchment covers 5783 km2 (82% of the total Lake Ziway drainage area). The basin topography is
characterized by mountainous terrain over east and west boundaries with an elevation ranging from
1600 to 4200 m above sea level (Figure 1).

Lake Ziway subbasin has tropical climate conditions with a mean monthly average temperature of
the catchments ranging from 15.6 to 22.5 ◦C. The average annual rainfall of the catchment ranges from
740 to 1170 mm and from 750 to 1220 mm on the Meki and the Katar catchments, respectively. The rainfall
in the rainy season (June to September) accounts for almost 60–70% of the total annual rainfall. Figure 1
shows the location of the study area with meteorological, river gauge and elevations indicated.
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2.2. Rain Gauge Data

Daily rain gauge data for 20 meteorological stations from 1984 to 2014 were obtained from the
National Meteorological Agency of Ethiopia. The dataset includes precipitation, maximum and
minimum temperature, wind speed, humidity, and sunshine duration. Existing meteorological records
in the study area are limited in both space and time. Data quality checks, homogeneity, and outlier
tests were performed. After data screening, 14 rain gauge stations out of 20 stations were found to
be reliable with relatively consistent records. In this study, these rain gauge datasets were used to
simulate gauge-based streamflow and as a reference for comparison and bias correction of the satellite
rainfall data.

Daily river discharge data are available for Meki and Katar Rivers, which are gauged at Meki and
Abura town, respectively (Figure 1). Those data were obtained from the Ministry of Water, Irrigation
and Electricity hydrology department database of Ethiopia. The data cover the period 1984–2000
at daily time steps. These observed data were used as a reference to compare and calibrate the
hydrological model parameters as a result of different rainfall inputs.

2.3. Satellite Rainfall Data

The Climate Hazards Group InfraRed Precipitation (CHIRP) satellite product was used in this
study. The CHIRP satellite was recently developed by the US Geological Survey (USGS) in collaboration
with the Climate Hazards Group at the University of California. CHIRP uses TIR satellite rainfall
estimates combined with the globally gridded satellite from National Oceanic and Atmospheric
Administration (NOAA) to produce the rainfall dataset.

The CHIRP product has the potential to produce a near-real time satellite estimate at relatively
high spatiotemporal resolution covering regions between 50◦ S to 50◦ N latitudes and all longitudes.
The CHIRP rainfall datasets are available for the period 1981 to near-present at http://chg.geo.uscb.
edu/data. In this study, the CHIRP rainfall estimate at daily and at 0.05◦ × 0.05◦ spatial scales for the
period 1984-2014 are used. For detailed descriptions about the CHIRP product, refer to [12,27].

3. Methods

3.1. Evaluation of CHIRP Satellite Rainfall

We applied a graphical comparison plot and statistical measures to evaluate the performance
of CHIRP satellite data at various spatiotemporal scales. First, we evaluated the CHIRP satellite
product through visual inspection of scatter plots at catchment average daily and monthly scales. Then,
the CHIRP satellite rainfall was quantitatively evaluated against rain gauge observations using five
performances of statistical measures at point and catchment scales on a daily and a monthly basis.
The selected performance statistical measures included Pearson correlation coefficient (CC), percentage
relative bias (PBIAS), mean error (ME), mean absolute error (MAE), and root mean square error (RMSE).
The CC indicates the agreement in terms of dynamics between the satellite estimate and the rain gauge
observation. The PBIAS represents the relative systematic bias of the satellite rainfall from the rain
gauge observation. The ME and the MAE provide information on average and magnitude of error,
respectively. The RMSE measures the average absolute errors of satellite rainfall, with smaller values
indicating the closure between the two datasets.

In addition to the numerical statistical measures, three categorical validation statistics were used
to assess the performance of the satellite in rain intensity detection capability. These verification
statistics included probability of detection (POD), false alarm ratio (FAR), and critical success index
(CSI), following [6,19,25]. POD was used to assess the observed rain events that were correctly detected
by the satellite. FAR represents the observed rain events that were incorrectly detected by the satellite.
The CSI measured the overall correspondence between the satellite and the rain gauge occurrence
of rain events. These categorical verification statistics referred to the skill of a satellite estimate for
detection of observed rainfall events, taking into account a threshold value for the presence of rain or

http://chg.geo.uscb.edu/data
http://chg.geo.uscb.edu/data
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no rain to separate events at any time scale (e.g. daily, monthly, etc.). The metrics were derived from
a contingency term in which the letters H, F, and M represent, respectively, hits (event forecasted to
occur and did occur), false alarms (event forecasted to occur but did not occur), and missing (event
forecasted not to occur but did occur). A threshold value of 1 mm day−1 in each grid cell and rain
gauge station was assumed in this study, following [6,13,25]. The values of POD and CSI varied from 0
to 1, with a perfect score when a value of 1 registered with a value of 0 for FAR. The statistical measures
were evaluated at various spatial (point, catchment) and temporal (daily, monthly) scales from 1985
to 2000. The equations for all numerical and categorical metrics along with their descriptions are
summarized in Table 1.

To further assess the season variation between the satellite and the rain gauge, the mean monthly
rainfall amounts of the respective datasets for Meki and Katar catchments were compared. The rain
gauge rainfall was from an ensemble of 14 rainfall stations (6 for Meki and 8 for Katar catchments),
and the satellite data were from 215 grid cells aggregated to mean monthly for both catchments.
Then, the mean monthly rainfall pattern and the season rainfall difference for the rainy season
(June–September) and the dry season (October–February) were compared between the two datasets.

Table 1. Statistical measures used for performance evaluation of the satellite product.

S. No Statistical Measures Equation Unit Best Fit

1 Pearson correlation coefficient (CC) CC =
∑n

i=1(Gi−G)(Si−S)√∑n
i=1(Gi−G)

2
√∑n

i=1(Si−S)
2 - 1

2 Percentage relative bias (PBIAS) PBIAS =
∑n

i=1(Si−Gi)∑n
i=1 Gi

× 100% % 0

3 Mean error (ME) ME = 1
n

n∑
i=1

(Si −Gi) mm 0

4 Mean absolute error (MAE) MAE = 1
n

n∑
i=1
|Si −Gi| mm 0

5 Root mean squared error (RMSE) RMSE =

√∑n
i=1(Si−Gi)

2

n
mm 0

6 Probability of detection (POD) POD = H
H+M - 1

7 False alarm ratio (FAR) FAR = F
H+F - 0

8 Critical success index (CSI) CSI = H
H+M+F - 1

Note: Gi, gauged rainfall; Si, satellite rainfall; n, number of samples of rainfall data pair time series; G and S are the
mean of gauge and satellite rainfall dataset, respectively; H (Hit) represents the number of rain events correctly
detected by the satellite; M (missed) refers to the number rain events not detected by the satellite, F (false) represents
the number of rain events detected by the satellite but not observed by the rain gauge.

3.2. CHIRP Satellite Bias Correction

We note that satellite rainfall estimates are subject to substantial systematic errors [5–7]. These
errors may produce uncertainty in the hydrological model, which could result in under or overestimation
of the simulated streamflow. Furthermore, model parameter values obtained using uncorrected SREs
inputs into the model might not respond with reliable estimates of the watershed characteristics [28].
Therefore, biases in rainfall estimate must be corrected before it can be used as input into a hydrological
model for streamflow simulation. In this study, the bias of the uncorrected CHIRP satellite estimate was
corrected using the non-linear power transformation bias correction method [16,29]. The approach is
based on matching the probability distribution function (such as mean, standard deviation, coefficient
of variation) of the CHIRP with that of the rain gauge data. The equation reads:

Pc = aPo
b (1)

where Pc is bias-corrected CHIRP rainfall, Po is original satellite-only (uncorrected) rainfall, and a and
b are bias factors.
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The values of bias factors were determined iteratively until the observed value matched with the
CHIRP satellite by jointly arranging the whole daily data of both data sources for each month over the
period 1985–2000. First, the bias factor (b) was estimated with a coefficient of variance of the satellite
that matched with that of the rain gauge. Then, the bias factor (a) was determined by adjusting the
mean of the satellite and the rain gauge datasets [30]. The bias factor at the selected 14 grid pixels was
estimated at a minimum zero error objective function using the Excel Solver function available in the
Microsoft Excel program. Then, the bias factors were applied on a monthly basis for the entire dataset.
For other grid cells that did not contain rain gauge stations, the bias factors were interpolated using
inverse distance weighted (IDW) methods. The bias-corrected areal CHIRP rainfall for the respective
catchments was estimated using the Thiessen polygon from representative grid pixels and was then
used as input in the hydrological model.

To verify the bias correction algorithm and to show the improvement obtained after bias correction,
we applied a comparison of all statistical measures between daily bias-corrected satellite and rain gauge
datasets. In addition, plots of cumulative distribution function (CDF) between gauge, uncorrected,
and bias-corrected satellite rainfall at areal catchment average basis were compared for both Meki and
Katar catchments.

3.3. HBV Hydrological Model

In this study, we applied the Integrated Hydrological Modeling System (IHMS) version 6.3 HBV
rainfall-runoff model for streamflow simulation. The HBV model was selected in this study due to
its proven performance over Ethiopian catchments [5,31–34]. The model also allowed us to divide
the modeling domain into multiple sub-catchments, elevation, and land use zones. The climate
and the hydrological input data for the simulation included daily rainfall, temperature, potential
evapotranspiration, and river discharge. The catchment potential evapotranspiration was estimated
by the Penman–Monteith [35] method from eleven meteorological stations. The areal potential
evapotranspiration over the catchment was computed using the Thiessen polygon method from
representative stations and then used as input of the hydrological model.

The HBV model consists of subroutines for precipitation, soil moisture accounting, runoff

generation, and routing routine. Precipitation routines ensure that precipitation is either simulated
as snow or rain. In the Lake Ziway catchment area, precipitation was simulated only in the form
of rainfall. The soil moisture routine controls the formation of runoff based on FC, BETA, and LP
parameters. FC is the field capacity at maximum soil moisture storage. BETA accounts for non-linearity
of indirect runoff from the soil layer. LP is the limit of potential evaporation, which indicates the
soil moisture value above which actual evapotranspiration reaches its potential value. The runoff

generation routine transforms excess water from the soil moisture zone to runoff. The relation of runoff

routine is expressed by:
Qu=Ku·UZ(1+Al f a) (2)

QL = K4·LZ (3)

where Qu and QL are the runoff components from upper and lower reservoir zones, respectively; Ku is
the recession coefficient in the upper zone, and K4 is the recession coefficient in the lower zone; UZ
and LZ are the actual storages in the upper and the lower zones, respectively; Alfa is a measure of the
non-linearity of the flow in the upper reservoir zone. The total sum of Equations (2) and (3) yields the
amount of the streamflow generated at the catchment outlet.

In this study, the parameters used for model calibration were selected from previous
studies [23,32,34]. Accordingly, eight model parameters (FC, BETA, LP, K4, Khq, Alfa, CFLUX,
and PREC) were selected for model calibration. The ranges and the initial values of these parameters
were defined as recommended by [36]. A detailed description of the HBV model is available in [36,37].
Table 2 presents the summary of the descriptions, the value ranges (minimum–maximum), and the
initial values of the selected calibrated parameters.
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Table 2. Hydrologiska Byråns Vattenbalansavdelning (HBV) model calibrated parameters and
their descriptions.

Parameter Description Unit Value Range Initial Value

FC Field capacity at maximum soil moisture storage mm 100–1500 200
BETA The exponent in drainage from the soil layer - 1–4 2.0

LP The limit for the potential evapotranspiration - 0.1–1 0.9
K4 The recession coefficient for the lower zone d−1 0.001–0.1 0.01

Khq The recession coefficient for the upper zone d−1 0.005–0.5 0.1
Alfa The coefficient for non-linearity of flow - 0–1.5 0.6

CFLUX The maximum capillary flow from the upper zone mm 0–2 1.0
PERC Percolation capacity from upper to the lower zone mm d−1 0.01–6 0.5

Model Calibration and Evaluation

In this study, the HBV model was calibrated and verified for an independent validation period
using three rainfall datasets. These were gauge, uncorrected, and bias-corrected CHIRP satellite
rainfall data. For each dataset, the HBV model parameters were calibrated by comparing the simulated
streamflow against the observed discharge data at Meki and Katar river gauge stations. To aid model
calibration, sensitive model parameters were identified based on the model performance objective
function values. For comparison of sensitive calibrated model parameter values over a common scale,
we normalized between the minimum and the maximum value range. A manual model calibration by
changing one parameter value at a time within the allowable range was applied to obtain the optimal
parameter values. Then, the most sensitive parameters that control runoff volume were calibrated first,
followed by the routing parameters. The model calibrations run from 1986–1991 periods for Meki and
Katar catchments. Then, the model was validated for an independent period from 1996–2000 for both
catchments. The 1984–1985 periods was used as the warm-up period for initializing the levels of the
model reservoirs. Note that substantial data records from 1992–1995 are missing, hence this period
was not considered either for calibration or validation.

The simulated streamflows from the three datasets were compared to the observed streamflow to
assess the model performance for rainfall-runoff simulations. The model performance was evaluated
using Nash–Sutcliffe efficiency (NSE) and relative volume error (RVE) in addition to visual inspection
of the simulated hydrograph. NSE measures the agreement between the simulated and the observed
hydrographs. RVE measures the average volume difference between the simulated and the observed
streamflow. The equations for both objective functions are:

NSE = 1−

∑n
i=1

(
Qsim,i −Qobs,i

)2

∑n
i=1

(
Qobs,i −Qobs

)2 (4)

RVE =


∑n

i=1

(
Qsim,i −Qobs,i

)
∑n

i=1 Qobs,i

× 100% (5)

where Qsim and Qobs represent simulated and observed streamflow, respectively (m3s−1), and the
over-bar symbol denotes the mean of the statistical values; i is the time step; n is the number of a
sample size of a paired data time series. NSE has a dimensionless value ranging from −∞ to 1.0, 1.0
corresponding to a perfect fit. RVE ranges between −∞ and∞, but the model performs best when a
value of 0 is obtained. A value between +5% and −5% indicates that a model performs very well while
a value between ±5 and ±10% indicates that a model has reasonably good performance.
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4. Results and Discussion

4.1. Evaluation of CHIRP Data at Multiple Spatiotemporal Scales

The scatter plots in Figure 2 compare the satellite products (uncorrected) and the gauge rainfall
at daily and monthly time scales for Meki and Katar catchments. The data plots are shown for
areal average at the catchment level covering the period from 1985 to 2000. There was wide scatter
for both catchments, indicating strong disagreement between the uncorrected and the rain gauge
observation at daily time scales. Few data points were spread along the 45◦ degree line, indicating
a poor correlation between the two datasets with correlations of 0.37 and 0.40 for Meki and Katar
catchments, respectively. On average, rainfall amounts up to 45 mm per day were missed by CHIRP
for both catchments. However, for monthly time scale comparison, more data points were close to the
45◦ degree line, indicating a better agreement of the satellite estimate with the rain gauge observation.
This phenomenon might be related to the performance of the CHIRP satellite estimate at seasonal
time scales.
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Figure 2. Scatter plots of Climate Hazards Group InfraRed Precipitation (CHIRP) satellite rainfall
products against rain gauge rainfall for a time series from 1985–2000, for (a) and (b) daily at Meki and
Katar catchment, (c) and (d) monthly at Meki and Katar catchments, respectively.

4.1.1. Point-Scale Daily Rainfall Comparison

The performance of the CHIRP satellite estimate was evaluated by comparing it with 14 rain
gauge stations based on statistical measures at daily scales from 1985 to 2000. We selected six stations
(i.e., Bui, Butajira, Koshe, Meki, Tora, and Ziway) that are located at Meki catchment and eight
stations (i.e., Arata, Assela, Bekoji, Dagaga, Ketera Genet, Kulumsa, Merero, and Ogolcho) from Katar
catchment to evaluate the performance of the CHIRP satellite estimate.

Table 3 shows the result of both numerical and verification statistical measures obtained by
comparing each grid with rain gauge stations at daily time scales. We note that CHIRP showed poor
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performance in the majority of the stations at a daily time step. The CC values ranged from 0.17 to 0.4
(less than 0.5), which indicated a poor correlation of the CHIRP satellite with gauge rainfall. The results
show that the correlation varied from one station to another—lower at Arata, Tora, and Ogolcho
stations and relatively higher at Merero, Bekoji, and Dagaga stations. This phenomenon is related to
the performance of the CHIRP satellite at lower and higher rainfall regions, respectively.

The PBIAS result showed that CHIRP overestimated in most of the stations except for
underestimations in Tora (−15%) and Assela (−16%), where they revealed a negative PBIAS (Table 3).
The possible reason for this could be that both stations are located in relatively higher elevation regions
as compared to the other stations. Dinku [3] and Khandu et al. [26] reported similar results over Eastern
Africa and Bhutan, respectively. The mean error revealed to be relatively smaller compared to other
performance measures. Butajira and Kulumsa stations showed a smaller error with relatively similar
altitude locations. In terms of MAE and RMSE, most of the stations contained similar error magnitude.

The categorical measures also showed POD values ranging from 0.51 to 0.69, indicating that the
CHIRP satellite correctly detected the observed rain events by a maximum of 69% over the study
area (Table 3). According to Table 3, the FAR values for most of the rain gauge stations were greater
than 0.5, implying that over 50% of observed rain events were incorrectly detected by the satellite.
Furthermore, the values of CSI registered smaller values less than 0.5 in all the rain gauge stations and
the corresponding grid cells, indicating the error of the CHIRP satellite with the rain gauge dataset.
It is in this aspect that the application of bias correction is necessary to remove the bias before it can be
used for streamflow simulation.

Table 3. Daily comparison of 14 rain gauges and the CHIRP satellite at point scale from 1985–2000.

Statistical Measures

Catchment Stations CC
(-)

PBIAS
(%)

ME
(mm d−1)

MAE
(mm d−1)

RMSE
(mm d−1)

POD
(-)

FAR
(-)

CSI
(-)

Bui 0.29 8.99 0.25 3.50 6.88 0.69 0.56 0.36
Butajira 0.23 2.05 0.06 3.98 7.97 0.57 0.55 0.39

Meki Koshe 0.22 6.87 0.16 3.38 7.32 0.56 0.67 0.30
Meki 0.22 5.76 0.12 3.04 6.71 0.66 0.66 0.29
Tora 0.17 −15.99 −0.41 3.46 7.52 0.62 0.65 0.29

Ziway 0.20 18.46 0.36 3.09 6.49 0.69 0.68 0.28
Arata 0.17 10.29 0.23 3.27 7.19 0.56 0.60 0.31
Assela 0.26 −14.96 −0.43 3.34 6.70 0.69 0.46 0.43
Bekoji 0.32 14.64 0.43 3.47 6.76 0.51 0.34 0.49

Katar Dagaga 0.28 11.23 0.32 3.48 6.81 0.67 0.36 0.49
K.Genet 0.23 19.64 0.44 3.08 6.35 0.68 0.51 0.40
Kulumsa 0.21 3.67 0.08 3.20 6.81 0.56 0.52 0.35
Merero 0.40 18.96 0.53 2.90 5.43 0.59 0.26 0.48

Ogolcho 0.18 6.51 0.14 3.14 6.97 0.67 0.63 0.32

4.1.2. Point-Scale Monthly Rainfall Comparison

Figure 3 shows the selected statistical measures for 14 rain gauge stations compared against the
grid cells at a monthly period from 1985 to 2000. The figures illustrate that the agreement between
the CHIRP satellite and the rain gauge stations significantly improved when the daily data were
aggregated to a monthly scale. We note that the correlations for all stations were increased above 0.5.
The probable reason for this improvement was because the CHIRP satellite might have captured the
temporal pattern of seasonal rainfall over the study area.

The PBIAS for monthly basis remained the same as the daily scale. However, higher values of
MAE and RMSE error magnitude revealed up to 44 and 62 mm, respectively, indicating the error
between the satellite and the rain gauge stations. In general, at a monthly time scale, the CHIRP
satellite performed relatively poorly at Ogolcho, Butajira, Arata, and Tora stations as compared to
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other stations, which showed relatively lower CC and higher values of PBIAS, ME, MAE, and RMSE
(Figure 3).
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Figure 3. Monthly comparison of CHIRP rainfall estimate against 14 rain gauge stations time series
from 1985–2000 (a) PBIAS and CC; (b) error (ME, MAE, and RMSE).

4.1.3. Catchment-Scale Rainfall Comparison

To evaluate the performance of the CHIRP satellite at the catchment scale, the comparison was
performed between daily areal average rainfall from the rain gauge and the satellite. Figure 4 shows the
daily rainfall time series comparison of the rain gauge and the satellite at Meki and Katar catchments.
The figure indicates that the CHIRP satellite rainfall better captured the temporal variations of the daily
gauge rainfall at both catchments. However, the agreement for Katar catchment was better than for
Meki catchment, as there were some observed extreme peaks not effectively captured by the satellite.
This phenomenon was partly attributed to the sparse rain gauge network in Meki catchment compared
to Katar.

Table 4 shows the comparison of the CHIRP satellite with the gauge counterparts at a daily
catchment level. At a daily time scale, the CHIRP satellite showed poor correlation with the rainfall from
the rain gauges for both catchments, with CC values of 0.37 and 0.40 for Meki and Katar catchments,
respectively. PBIAS results showed that CHIRP overestimated at Meki with a positive bias of 3.8% and
underestimated over Katar catchment with a negative bias value of −2.0%. The ME revealed a smaller
value of 0.1 mm for Meki and 0.3 mm for Katar catchment. The magnitude of the error in terms of
RMSE and MAE revealed almost similar error values for both catchments.
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Figure 4. Comparison of daily CHIRP rainfall estimate against the gauge rainfall at Meki and Katar
catchments for a time series from 1985 to 2000.

The POD results showed that 62% and 70% of the rain gauge rainfall events were correctly detected
by the CHIRP for Meki and Katar catchments, respectively. The observed rainfalls that were not
detected by the satellite reached up to 39% for Meki and 25% for Katar catchments (Table 3). The CSI
resulted in 0.45 and 0.50 for Meki and Katar catchments, respectively, which measured the overall
correspondence of the satellite and the rain gauge occurrence of rain events. Overall, the results
showed relatively better performance for Katar than Meki catchment in terms of all statistical measures.
Possible reasons for the better performance of Katar catchment were due to a relatively higher rainfall
in the region and a larger number of rain gauge networks compared to Meki catchment. Khandu et al.’s
study [26] also indicated that the CHIRP satellite performed slightly better in the higher rainfall region
over Bhutan.

Table 4. Catchment scale daily average rainfall comparison from the rain gauge and the CHIRP satellite
from 1985–2000.

Statistical Measures

Catchment CC
(-)

PBIAS
(%)

ME
(mm d−1)

MAE
(mm d−1)

RMSE
(mm d−1)

POD
(-)

FAR
(-)

CSI
(-)

Meki 0.37 3.8 0.1 1.0 4.9 0.62 0.39 0.45
Katar 0.40 −2.0 0.3 1.1 4.1 0.70 0.25 0.50

To further evaluate the seasonal difference between the two datasets, the mean monthly rainfall
patterns of the CHIRP satellite and the rain gauge stations for Katar and Meki catchments from
1985–2000 are shown in Figure 5. The results revealed that the mean monthly rainfall better captured
the pattern of rainfall for the rain gauge. However, it did not satisfactorily capture the gauged rainfall
amount, especially for the rainy season (June–September). The highest difference between the two
datasets was in the month of July, with values of 17 and 41 mm for Meki and Katar catchments,
respectively. During the dry season (October–February), the highest difference of the satellite from
the rain gauge was −16 mm for Meki and −19 mm for Katar catchments. This clearly showed that an
overestimation of the CHIRP satellite estimate during wet seasons and an underestimation during dry
seasons. These results showed the magnitude of the CHIRP satellite bias varied at seasonal scales over
the study area.
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4.2. CHIRP Satellite Bias Correction

We note that the CHIRP satellite has biases at various spatial and temporal scales. Furthermore,
several studies have also indicated that SREs must be corrected for use in various applications [5,7,38,39].
In this study, we applied a non-linear power bias correction approach (described in Section 3.2) using
Equation (1) to estimate bias-corrected CHIRP satellite rainfall datasets. The bias factors were
determined by comparing satellite and rain gauge data with established constraints and objective
functions. The results from an ensemble of 14 rain gauge stations indicated that bias factors varied at
spatial and temporal scales for both catchments. The results showed that, on average, the bias factor a
varied from 0.01 to 1.72 and b from 1 to 4 over the two catchments.

Table 5 shows the statistical measures between the daily bias-corrected CHIRP estimate and
the rain gauge after applying bias correction. Improvements were found in all numerical statistical
measures (CC, PBIAS, ME, MAE, and RMSE) and categorical statistics (POD, FAR, and CSI). This
indicated better performance and improvement after bias correction of the CHIRP rainfall estimate as
compared to the uncorrected CHIRP estimate. Hence, the bias-corrected CHIRP satellite effectively
reduced the bias of the original uncorrected CHIRP rainfall. The POD result showed that more
than 76 and 82% of the observed rainfall events from the rain gauge were correctly detected by the
bias-corrected CHIRP satellite in Meki and Katar catchments, respectively. Moreover, smaller values
of FAR and larger CSI values were registered after bias correction of the CHIRP satellite rainfall for
both catchments, indicating better agreement of the bias-corrected satellite estimate and the rain gauge
observation over the study area.
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Table 5. Daily catchment average rainfall comparison between the bias-corrected CHIRP satellite and
the rain gauge dataset after bias correction from 1985–2000.

Statistical Measures

Catchment CC
(-)

PBIAS
(%)

ME
(mm d−1)

MAE
(mm d−1)

RMSE
(mm d−1)

POD
(-)

FAR
(-)

CSI
(-)

Meki 0.56 −0.7 0.1 0.8 4.0 0.76 0.28 0.57
Katar 0.64 0.3 0.1 0.8 3.5 0.82 0.19 0.64

Figure 6 presents the cumulative distribution function (CDF) plot between gauge, uncorrected,
and bias-corrected CHIRP rainfall at a monthly average catchment scale from 1985 to 2000. The figure
indicates that the bias-corrected CHIRP rainfall estimate was very close to the rain gauge at all
rainfall measurement values except for low rainfall (less than 50 mm month−1) for Meki catchment.
This phenomenon was mainly related to the sparse rain gauge network in Meki catchment and the
uncertainty of the bias-correction method for the satellite rainfall estimate. A similar result was
reported by previous studies of Ayehu et al. [25] over the upper Blue Nile basin in Ethiopia. Overall,
the bias-corrected satellite rainfall very well predicted the cumulative gauge rainfall distribution.
It showed significant improvement and a better correlation between the satellite and the rain gauge
data when the CHIRP data were corrected. However, the uncorrected CHIRP satellite data were
below the rain gauge data at most of the data points as compared to the bias-corrected data for both
catchments. Therefore, the results indicated that bias-correction significantly lowered the error of the
CHIRP satellite rainfall estimate.
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Figure 6. Cumulative distribution function (CDF) of monthly rainfall time series of gauge, CHIRP
uncorrected, and bias-corrected estimate for Meki and Katar catchments.

4.3. Model Calibration and Evaluation

For each calibration run, the HBV model parameter was independently calibrated for different
rainfall inputs by comparing each simulated streamflow time series with the observed streamflow.
First, the sensitive model parameter was evaluated. The result indicated that the parameters controlling
the water balance (BETA, FC, and LP) were found to be the most sensitive parameters, while routing
parameters (K4 and Khq) were relatively less sensitive. Parameters Alfa, PERC, and CFLUX were
the least sensitive model parameters. Worqlul et al. [23] reported similar results at Gilgel Abbay
and Gumara watersheds in Ethiopia. Next, we assessed how the calibrated model parameters and
the performance of the hydrological model were affected as a result of gauge, uncorrected, and
bias-corrected CHIRP satellite rainfall inputs at Meki and Katar catchments from 1986–1991. We chose
to use the observed streamflow as a reference to compare the simulated streamflow for the three
rainfall inputs.
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Figure 7 shows the simulated and the observed daily hydrograph at Meki gauge stations for
calibration periods (1986–1991) as input from the gauge, the uncorrected, and the bias-corrected CHIRP
satellite rainfall datasets. For all rainfall inputs, the simulated streamflow captured the pattern of the
observed hydrograph. However, it was reasonably captured over the simulation period when the
model was forced by bias-corrected CHIRP satellite rainfall. We note that the simulated peaks for the
three rainfall datasets were lower than the observed peaks. This phenomenon was partly attributed to
poor quality and sparsely distributed rain gauge networks over Meki catchment. The uncertainties
of bias-correction of the satellite estimate were also possible reasons for poor capture of the peak
discharge during the model driven by bias-corrected satellite rainfall. Figure 5 shows that CHIRP
overestimated during most of the rainy season for the two catchments. However, this did not cause
higher streamflow to be simulated. This indicated that some of the excess rainfall might have been
stored in the soil moisture zone and behaved as a low-pass filter instead of generating runoff. A similar
finding was also reported by Habib et al. [5] for Gilgel Abbay catchment.
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bias-corrected CHIRP satellite rainfall input.

Table 6 presents the calibrated model parameter values and the model performance of Meki
catchment using gauge, uncorrected, and bias-corrected CHIRP satellite rainfall inputs. The results
showed that the bias-corrected CHIRP satellite significantly improved the performance of streamflow
flow simulations. In terms of objective functions, the simulations for the gauge and the bias-corrected
CHIRP satellite resulted in comparable values. In Meki catchment, the gauge and the bias-corrected
CHIRP satellite indicated NSE of 0.67 and 0.71, respectively, and an RVE of less than 5%. This indicated
good performance of the HBV model in the study area for the two datasets. Furthermore, the calibrated
model parameter values for gauge and bias-corrected were also very close, except for a few routing
parameters such as K4, Khq, and Alfa.

The calibrated model parameter values were within the allowable range for all rainfall inputs.
However, parameter values were significantly changed when the uncorrected CHIRP served as model
input. The model performance simulated using the uncorrected CHIRP satellite revealed lower
performance than the gauge and the bias-corrected models in terms of both NSE and RVE. In Meki
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catchment, the CHIRP satellite rainfall overestimated gauge rainfall by 3.8% at a catchment average
scale (Table 4) and underestimated by 16% at Tora station (Table 3). The simulated streamflow when
the uncorrected CHIRP satellite rainfall served as model input revealed underestimation of runoff

volume by 13.5% (Table 6). The results indicated that overestimation bias in rainfall translated into
underestimation in streamflow. This was related to a proportion of the rainfall inputs in the model
being stored as excess rainfall in the reservoir instead of contributing to streamflow simulations.

This study also indicated that rainfall input errors were compensated using independent model
calibration by changing the best-fitted parameter values. The best-fitted parameter values were
significantly varied when the uncorrected CHIRP rainfall served as model input as compared to the
gauge rainfall. We note that parameters that control baseflow, water balance, and routing noticeably
varied. For instance, in the HBV model, parameter FC (field capacity) corresponded to the maximum
soil moisture storage, which affected the runoff volume. A higher value of FC tends to generate
higher total runoff. Table 6 shows that the calibrated parameter FC increased from 850 mm for the
gauged-based simulation to 960 mm for the uncorrected CHIRP satellite rainfall. This indicated that
soil moisture storage should have been increased at least by 110 mm to minimize the reduction in
runoff as a result of rainfall difference.

Parameters Khq and Alfa also related to peak flows, and a higher value of these parameters
resulted in higher peaks and more dynamic response in the hydrograph. A value of Khq increased
from 0.02 in the gauge-based model simulation to 0.2 in the uncorrected CHIRP rainfall estimate to
cope with few extreme flows. The parameters related to baseflow and recession parameters (PERC, K4,
and CFLUX) were increased to respond to the catchment characteristics for the uncorrected CHIRP
rainfall inputs. Hence, this study indicates that different rainfall inputs result in different calibrated
model parameters.

Table 6. Calibrated model parameter values and their performance for gauged, uncorrected, and
bias-corrected CHIRP rainfall estimate for Meki catchment.

Parameters Gauge Rainfall CHIRP Uncorrected Rainfall CHIRP Bias-Corrected Rainfall

FC 850 960 860
BETA 1.94 1.95 1.96

LP 0.5 0.5 0.5
K4 0.07 0.1 0.1

Khq 0.02 0.2 0.1
Alfa 1.05 1.2 0.8

CFLUX 0.01 0.2 0.01
PERC 1.5 4.5 1.15

Calibration NSE (-) 0.67 0.65 0.71
RVE (%) −1.63 −13.5 −1.47

Validation NSE (-) 0.70 0.64 0.64
RVE (%) 1.27 −4.96 3.84

Note: NSE, Nash–Sutcliffe efficiency; RVE, relative volume error.

Figure 8 presents the monthly time series scatter plots between the observed and the simulated
streamflows for gauge, uncorrected, and bias-corrected CHIRP satellite rainfall datasets at Meki
catchment. When the model was driven by the gauge and the uncorrected CHIRP rainfall estimate,
few streamflow data points were scattered and revealed a lower correlation than the bias-corrected
CHIRP estimate. Part of this scatter may have been attributed to the uncertainty of the rain gauge
data and the bias of the uncorrected CHIRP satellite estimates. However, the bias-corrected CHIRP
estimate had less scatter and higher correlation as compared to the gauge and the uncorrected CHIRP
estimates. These results indicated improvement of streamflow simulation after bias correction at the
monthly time scale.
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Figure 8. Monthly scatter plots of the observed flow against the simulated flow using gauge-based,
uncorrected, and bias-corrected CHIRP rainfall data at Meki catchment from 1986–1991.

Figure 9 shows a comparison of the simulated and the observed streamflows for the calibration
period (1986–1991) using gauge, uncorrected, and bias-corrected CHIRP rainfall inputs at Katar gauge
stations. The figure demonstrates that observed peaks were better captured in most of the simulation
period by the simulated streamflow when the model was forced by gauge and bias-corrected CHIRP
satellite rainfall estimates. However, the pattern and some observed peaks were not satisfactorily
captured by the simulated hydrograph when the uncorrected CHIRP served as model input. This was
mainly because excess rainfall might have been stored in different reservoirs zones instead of generating
runoff in addition to the underestimation of higher rainfall values of the rain gauge by the CHIRP
rainfall (Figure 5). As compared to Meki, in Katar, the simulated peaks in the gauge-based simulation
better captured the observed peaks, similar to the bias-corrected satellite rainfall inputs. This was
mainly related to the relatively larger number of rain gauge stations used to simulate the gauge-based
streamflow and evaluate bias correction at Katar catchment.
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Table 7 presents the calibrated model parameter values and the model performance of Katar
catchment using gauge, uncorrected, and bias-corrected CHIRP rainfall inputs. In Katar catchment,
the gauge and the bias-corrected rainfall resulted in comparable model performances with NSE of 0.78
and 0.80, respectively, and an RVE of less than 5%. Similarly, the calibrated model parameter values for
gauged and bias-corrected CHIRP were closer, except FC, Khq, and BETA parameters. However, when
the uncorrected CHIRP satellite was used to derive the simulation run, most sensitive parameters
were significantly varied. The model performance deteriorated with NSE of 0.70 and −13.4% RVE as
compared to the gauge and the bias-corrected CHIRP rainfall inputs. This result was mainly related to
underestimation of the CHIRP satellite estimate at a catchment average level (PBIAS −2%, Table 4) and
point scales (PBIAS −20%, Table 3).

In Katar catchment, the best-fitted model parameters also remained within the allowable parameter
range for all rainfall inputs. However, there were significant differences in the calibrated model
parameter values when the uncorrected CHIRP rainfall served as model input. Parameters that control
the water balance (FC, BETA, and LP), the routing parameters (Khq and K4), and the baseflow parameter
(PERC) showed significant change during uncorrected CHIRP inputs. For instance, FC increased from
860 mm in the gauge rainfall input to 930 mm in the uncorrected CHIRP input. The recession (Khq and
K4) and the percolation (PERC) parameters were also changed during the uncorrected CHIRP rainfall
input. Overall, when the uncorrected CHIRP rainfall input replaced the calibration process, changes
up to 63% and 55% were obtained in water balance and routing parameters, respectively, as compared
to the rain gauge rainfall. Hence, this study shows that common optimized parameter values could
not be achieved for different rainfall inputs over the study area. Therefore, the biases of streamflow
simulation are not only derived from rainfall estimates but also the uncertainty in the hydrological
model parameters as a result of different rainfall inputs.

Table 7. Calibrated model parameter values and their performance for gauged, uncorrected,
and bias-corrected CHIRP rainfall data for Katar catchment.

Parameters Gauge Rainfall CHIRP Uncorrected CHIRP Bias-Corrected Rainfall

FC 860 930 820
BETA 2.98 2.95 3.05

LP 0.7 0.6 0.7
K4 0.1 0.08 0.1

Khq 0.08 0.2 0.12
Alfa 1.15 1.2 1.1

CFLUX 0.002 0.015 0.005
PERC 2.15 3.5 2.75

Calibration NSE (-) 0.78 0.70 0.80
RVE (%) −0.80 −13.4 −1.28

Validation NSE (-) 0.70 0.67 0.74
RVE (%) 1.96 −16.8 3.04

Figure 10 shows the monthly time series scatter plots between the observed and the simulated
streamflows for gauge, uncorrected, and bias-corrected CHIRP satellite rainfall datasets at Katar
catchment. The scatters for streamflow simulated using the gauge and the uncorrected CHIRP rainfall
estimates were higher than the bias-corrected CHIRP rainfall, implying the bias correction of the
CHIRP rainfall estimate effectively improved the streamflow simulation.
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Figure 10. Monthly scatter plots of the observed flow against the simulated flow using the gauge-based,
the uncorrected, and the bias-corrected CHIRP rainfall data at Katar catchment from 1986–1991.

The calibrated process was verified through validation for an independent period from 1986–2000
for the three rainfall inputs at Meki and Katar gauge stations. Note that we did not recalibrate the model
for different rainfall inputs during validation. We used calibrated model parameters of the respective
rainfall inputs in all model simulations. Figure 11 compares the daily observed and the simulated
streamflows for Meki and Katar catchments simulated by gauge, uncorrected, and bias-corrected
CHIRP satellite rainfall. The figure illustrates that, for both catchments, the simulated streamflows
better captured the patterns of the observed hydrographs for all rainfall inputs, except for a slight
underestimation of observed peaks.
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and Katar catchments using gauge, uncorrected, and bias-corrected CHIRP rainfall inputs.

The model performance deteriorated slightly in the validation period as compared to the calibration
period for all rainfall inputs. The model performance for both stations indicated acceptable results,
with NSE greater than 0.70 and RVE less than 5% when the model was forced by gauge and bias-corrected
CHIRP satellite rainfall. However, when the uncorrected CHIRP satellite served as model input,
the model performance significantly deteriorated, with NSE of 0.64 and −4.96 RVE for Meki (Table 6)
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and NSE of 0.70 and −16.8% RVE for Katar catchment (Table 7). This indicated that systematic error
(biases) of the CHIRP satellite propagated through the HBV model in the streamflow simulations.

This study indicated that, for both catchments, the bias-corrected CHIRP satellite simulation
performed slightly better than the gauge-based simulation. Such results could be partly attributed to
sparsely distributed rain gauge networks over the study area and the availability of CHIRP satellite
data at relatively high spatiotemporal scales. Similar results have been reported in other satellite
studies by [7,21,22,40], which they found an increased performance of the hydrological model when
the model was calibrated using SREs rather than gauge rainfall. Therefore, this study suggests that
bias-corrected CHIRP satellite rainfall can be used as a potential alternative data source for water
budget studies in Lake Ziway watershed.

4.4. Evaluating the Value of Bias Correction on Streamflow

To evaluate the contribution of bias correction on streamflow and error propagation, we used
the calibrated model parameter with gauge rainfall to simulate streamflow using the uncorrected
and the bias-corrected CHIRP rainfall estimates. This helped to minimize the uncertainty related to
model parameters. To offset the effect of rainfall input errors, gauge-based simulated streamflow was
used as a reference for comparison and to quantify the model performance objective functions. In this
study, we followed Habib et al.’s [5] approach, who assessed the effect of CMORPH bias correction on
streamflow of Gilgel Abbay catchment. To quantify the magnitude of error propagation in streamflow
simulation, rainfall bias (BIAS) and relative volumetric error (RVE) performance measures were used.
The rainfall bias (BIAS) was calculated as a ratio of the total sum of the satellite and gauge rainfall, and
the RVE was calculated using Equation (5).

Table 8 shows the rainfall bias and the RVE for the uncorrected and the bias-corrected CHIRP
satellites compared with the gauge-based estimation. For Meki catchment, the uncorrected CHIRP
satellite rainfall amount was smaller by 18% (BIAS = 82%, Table 8) than the gauge rainfalls, which
resulted in a 17% reduction in streamflow volume. In Katar catchment, the rainfall difference was −16%
(BIAS = 84%, Table 8), which contributed 11% in streamflow volume difference. However, after bias
correction, the error propagation significantly reduced. The bias obtained between the bias-corrected
CHIRP and the gauge-based was smaller than the uncorrected CHIRP satellite. After applying the
bias-corrected CHIRP rainfall estimate, the rainfall bias was reduced to 4% (BIAS = 96%, Table 8) and
translated to only 5% in streamflow bias in Meki catchment, whereas 10% rainfall bias (BIAS = 90%,
Table 8) translated to 3% in streamflow volume difference in Katar catchment. The results indicated
that the bias in the CHIRP satellite rainfall was translated through the HBV model in streamflow
simulations. Table 8 clearly shows that the bias correction added value to the satellite estimate by
effectively reducing the error magnitude in rainfall and streamflow simulations. Habib et al. [5] and
Yuan et al. [7] reported similar results over Ethiopian and China basins, respectively.

Table 8. Comparison of rainfall and streamflow differences between uncorrected and bias-corrected
CHIRP satellites against gauge-based datasets from 1996–2000.

Catchment Performance Measure CHIRP Uncorrected CHIRP Bias-Corrected

Meki
BIAS 0.82 0.96
RVE 17 5.0

Katar
BIAS 0.84 0.90
RVE 11 3.0

5. Conclusions

Satellite rainfall estimates are subject to substantial systematic biases. However, only a few studies
have been conducted over eastern Africa that incorporate uncertainties of the satellite estimate in
streamflow simulations. In this study, we evaluated the performance and the bias correction of the
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Climate Hazards Group InfraRed Precipitation (CHIRP) satellite rainfall for rainfall-runoff simulation
at Meki and Katar catchments. The study is unique, as it considers the performance of the CHIRP
satellite at various spatiotemporal scales and contains a hydrological assessment of this product
for rainfall-runoff modeling. We also evaluated the effect of gauge, uncorrected and bias-corrected
CHIRP satellite rainfall inputs on calibrated model parameters and model performance on streamflow
simulations using the HBV hydrological model. The results of this study contribute to guiding
satellite product users in the applicability of the CHIRP satellite product for rainfall-runoff simulations.
The main conclusions drawn from the result of this study are as follows:

i. The results showed that the CHIRP satellite rainfall had biases at various spatial and temporal
scales over Lake Ziway watershed. CHIRP had PBIAS ranging from −16 to 20% and lower
correlation at a daily time step with the rain gauge data. Overall, CHIRP performance better
improved at monthly and areal catchment scales.

ii. We found comparable calibrated model parameters and model performances for the gauge and
the bias-corrected CHIRP satellite rainfalls in simulating daily streamflow of the two catchments.
However, calibrated model parameters significantly changed when the uncorrected CHIRP
rainfall input served as model input. Changes up to 55% and 63% were obtained for water balance
and routing controlling parameters, respectively, as compared to the gauge-based simulations.
Hence, this study shows that common optimized parameter values could not be achieved for
different rainfall inputs over the study area.

iii. The simulated streamflow better captured the observed hydrographs when using the
bias-corrected CHIRP satellite rainfall input compared to the uncorrected CHIRP satellite.
We note that biases in satellite rainfall inputs were translated to simulated streamflow through
the HBV hydrological model. The application of non-linear bias correction effectively reduced the
rainfall bias and revealed improved streamflow simulation compared to the uncorrected product.

In general, this study shows that the bias-corrected CHIRP rainfall estimate can serve as an
alternative data source in rainfall-runoff simulations for water budget studies. The study also suggests
that bias correction is necessary to improve the performance of the satellite rainfall for accurate
estimation of the hydrological response of the watershed. Future studies should incorporate a
comparison of various bias correction algorithms to further explore the reported changes.
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