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Abstract: Flooding from the Indus river and its tributaries has regularly influenced the region of Pakistan.
Therefore, in order to limit the misfortune brought about by these inevitable happenings, it requires taking
measures to estimate the occurrence and effects of these events. The current study uses flood frequency
analysis for the forecast of floods along the Indus river of Pakistan (Tarbela). The peak and volume are
the characteristics of a flood that commonly depend on one another. For progressively proficient hazard
investigation, a bivariate copula method is used to measure the peak and volume. A univariate analysis
of flood data fails to capture the multivariate nature of these data. Copula is the most common technique
used for a multivariate analysis of flood data. In this paper, four Archimedean copulas have been tried
using the available information, and in light of graphical and measurable tests, the Gumbel Hougaard
copula was found to be most appropriate for the data used in this paper. The primary (TAND, TOR),
conditional and Kendall return periods have been also determined. The copula method was found to be
a powerful method for the distribution of marginal variables. It also gives the Kendall return period for
the multivariate analysis the consequences of flooding.

Keywords: flood-frequencyanalysis; returnperiod; bivariatecopula; taildependence; Gumbel-Hougaardcopula

1. Introduction

The environment plays an important role in our lives and has an impact on mother earth. The world
is inhabited by approximately 7.7 billion people living in different regions and places. Winter, summer,
spring and autumn have a bearing on people’s life; the food they eat, the cloth they wear and the crops
they reap all depend upon the environment. Events are planned through the information access in
advance through meteorological reports according to the weather pattern. If accurate weather changes
are able to be predicted, like heavy rains resulting in floods, then lives, properties, and crops can
be saved.

An analysis of flood peaks just gives limited information on flood characteristics, which includes
the volume, duration, and hydrograph shape of the flood, in addition to the flood peak.

A univariate display cannot catch the reliance among the factors. A portion of these investigations
have thought about the reliance among flood factors, however the expectation is that all flood properties
are very much described by a solitary likelihood distribution (e.g., ordinary distribution, if there should
be an occurrence of bivariate typical conveyance). Previously, a flood occasion was considered as
a multivariate occasion and inferred the relationship between flood factors: The peak, volume and
duration utilizing an incomplete procedure technique by [1,2]. Lee used a Gumbel mixed model for the
assessment of the seriousness of floods utilizing a comparison among bivariate and univariate return
periods [3]. Various bivariate probability conveyances have been utilized by specialists on flood factors
(peak, volume and duration). For example, Yue connected the Gumbel mixed model and Gumbel
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logistic model on the sets of flood factors (peak, volume and duration) in [4,5] and [6–9] respectively,
the two of which are bivariate extreme value distributions type I. These two models have been created
from Gumbel marginals and the correlation of these two models has been done by [10,11]. The copula
capacities have turned out to be progressively mainstream and as often as possible utilized factual
apparatuses amid the previous couple of years. The expression, copula, has been first begat by Abe [12],
which rose as a ground-breaking multivariate procedure for a productive examination of reliance
structures among factors. In the accompanying discussion, brief subtleties of copula applications
pertinent to the present investigation are discussed. Flood recurrence investigations have been studied
by a few experts around the world [13–17]. De Michele and Salvadori first used copula in the field
of hydrology [18] and from that point onward, various researchers have used the same approach for
analysis [14,19]. Many other scientists [14,20,21] argued that the suspicion of flood factors having a
similar sort of marginal probability distribution has been doubtful, and they compared copula-based
bivariate distributions and the Gumbel mixed and Box-Cox transformed normal distribution. Klein
connected copulas for the estimation of bivariate probabilities of produced hydrological situations for
the hazard examination of a flood control framework [22]. Ben Aissia contemplated the multivariate
conduct of flood arrangement with Archimedean copulas [23]. The strategy is better than multivariate
distributions, since it separates the process of fitting the marginal distribution to variables from
modeling the dependence among them. Ten bivariate copulas from three diverse copula families
have been tried on flood information of the Sava River in Slovenia by [24]. The Gumbel-Hougaard
copula has been considered as the most reasonable one for the pair’s peak and volume of the flood,
and the peak and duration factors, while the student’s t copula was observed to be the most suitable
one for the peak and duration pair of factors. [15] broke down the three flood factors, peak, volume
and duration, and at the same time, utilizing a trivariate copula. For the best choice among Clayton,
Gumbel– Hougaard, Frank and the student’s t copula has been made based on the goodness-of-fit
and tail-dependence tests and bolstered by a graphical investigation. It has been inferred that the
student’s t copula was the best fit for their information. As of late, another system’s entropy copula
implied for a multivariate examination of commonly depending factors was tried on three flood factors
(P, V and D) at two distinct stations of China [25]. In a study on the effect of calamitous weather
on the crop insurance industry, Vergara et al. (2008) observed that 93% of crop damage is directly
linked to unfavorable weather. Jones et al. (2000) are of the opinion that modeling of many variable
quantities would enable farmers to make good decisions for decreasing their risk to weather exposure.
Two important variables in relation to weather are rainfall and temperature that have a big effect on
crop harvest (Runge 1968; Abbate et al., 2004; Calderini et al., 1999; Medori et al., 2012). In financial
economics, copulas have been utilized for a long period of time (Malevergne & Sornette 2003; Patton
2009; Genest et al., 2009). In order to select the best copula, some techniques are available out of which
one of the techniques to select the best copula is based on distance measures relating to the distributions
of the copulas and the observed distribution of the data (Gregoire et al., 2008; Kole et al., 2007).

In this paper, a bivariate flood frequency analysis based on copula on the peak flow and volume
of the flood in Tarbela dam has been performed. The Archimedean copulas, namely, Clayton copula,
Frank copula, Gumbel Hougaard copula and Joe copula, have been tested. The copulas have been
compared through the goodness-of-fit statistics, upper tail-dependence coefficients and graphical
analysis. In order to understand the risk of occurrences of flood, the primary, conditional and Kendall
return periods have been also calculated for a better understanding of the river flow in Pakistan.

2. Methodology

2.1. Copula Theory

Copula was first time used in a statistical point of view by [12] and a significant number of the
essential outcomes on copula can be followed by the early work of Wassily Hoeffding [26,27].
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2.1.1. Sklar’s Theorem

The Sklar’s theorem states the idea of a joint cumulative function FX1X2 of any couple (x, y) of
continuous random variables at (x, y) is given as:

FXY(x, y) = C(FX(x), FY(y)) x, y ∈ R (1)

where F(x) = s and F(y) = t are the marginal distribution function. If F(x) and F(y) are continuous,
then the copula function is uniquely defined by the equation:

C(s, t) = FXY
(
F−1(s), F−1(t)

)
, 0 ≤ s, t ≤ 1 (2)

where the inverse marginal distribution functions are F−1(s) and F−1(t). Conversely, it can be established
that if C is a copula and FX(x) and FY(y) are the marginal distribution functions, then the function
FXY (x, y) (as defined by Equation (1)) is a bivariate distribution function with marginal distribution
functions FX(x) and FY (y). Furthermore, if FX(x) and FY (y) are continuous, then C is unique [27].

2.1.2. Copula Function

Mathematically, a bivariate copula C can be defined as a function that takes random variables as
input marginal distribution functions and gives a joint distribution of these variables.

C : [0, 1] × [0, 1]→ [0, 1], subject to the conditions that

â C(1, s) = C(s, 1) = s,
â C(0, s) = C(s, 0) = 0 and
â C(s1, s2) + C(t1, t2) −C(s1, s2) −C(t1, t2) ≥ 0,

whenever s1 ≥ t1, s2 ≥ t2, where s, t, s1, s2, t1, t2 ∈ [0, 1].
A bivariate distribution of x1 and x2, i.e., F(x1, x2), can be expressed in terms of the copula function

C(u1, u2;θ) and the marginal distributions s1 = F1(x1) and s2 = F2(x2) :

F(x1, x2) = C(F1(x1), F2(x2);θ) = C(s1, s2;θ) (3)

where θ is the parameter of the chosen copula function, describing the dependence between x1 and x2.

2.2. Dependence and Copula Fitting

Copula represents the joint distributions of correlated variables. Therefore, it is important to
analyze the dependence between the variables. A graphical analysis of dependence can be done using
a scatterplot of the data, a scatterplot of standardized ranks of the variables, Chi-plot and K-plot.
Chi-plot is the plot of a rank-based measure of the location of each of the observations versus a measure
of the Chi-squared test of independence. The dependence is positive (negative), if the transformed
data are scattered above (below) the region defined by the confidence interval of the Chi-plot [28].
The K-plot proposed by [29] is the plot between the order statistics of the data and the values of
these statistics expected in case of independence. If the plotted data lies near the 45-degree line,
the variables are independent. While the data has strong positive dependence if the scatter of data
shows curvature above the 45-degree line. Dependence measures, namely, the Pearson’s correlation
coefficient, r, Kendall’s rank correlation coefficient (or Kendall’s tau), τ and Spearman’s rho, ρ can be
computed in order to quantify the dependence between variables. The p-values associated with these
measures can be calculated under the null-hypothesis that the value of the association measures is
0. The statistical independence is rejected if p-value is less than the significance level. Out of these
three measures of association, Kendall’s tau is considered as the most important one in the theory of
copulas, especially Archimedean copulas, where its relation with the generating function is utilized for
the parameter estimation of the copula.
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The inversion of Kendall’s tau is one of the most common methods for the estimation of the
parameter θ of the Archimedean copula, as mentioned earlier in this section. In this method, the relation
shown in Table 1, between Kendall’s tau and the parameter θ is employed for the estimation of θ. This
relation depends upon the generating function φ of the Copula function, thus different values of θ are
obtained for different copula models.

τ = 1 + 4
∫ 1

0

φ(t)
φ′(t)

dt (4)

whereφ andφ′ are the generating function and derivative of the generating function of the Archimedean
copula, respectively. This relation depends upon the generating function φ of the copula function,
thus different values of θ are obtained for different copula models given in Table 1. The important
characteristics of Archimedean families of copula, used in this paper, are described in Table 1.

Table 1. Copula function, generating function φ(t) and the functional relationship of Kendal (τθ) with
the Copula parameter for selected Archimedean Copulas.

Copula Cθ(u,v) φ(t) θ Space Kendall
′

s Tau (τθ)

Clayton
{
u−θ + v−θ − 1

} −1
θ 1

θ

(
t−θ − 1)

)
[−1,∞) θ

θ+2

Frank −
1
θ ln

{
+
(e−θu

−1)(e−θv
−1)

e−θ−1

}
−ln e−θt

−1
e−θ−1

(−∞,∞) 1 + 4
θ (*D1 (θ)-1)

Gumbel-Hougaard exp
{
−((− ln u)θ + (− ln v)θ)

1
θ

}
(−lnt)θ [1,∞) θ−1

θ

Joe
1−{

(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ
}
−ln

(
1− (1− t)θ

)
[1,∞) 1 + 4

Dk
(θ)

* DK(x) is the Debye function for any positive integer k, Dk(x) = k
xk

∫ x
0

tk

et−1 dt.

2.3. Goodness-of-Fit

After fitting the copula models, the goodness-of-fit of the models under consideration needs to be
assessed, so as to find the most appropriate model. For graphical analysis of the fit of the models to the
data, a scatter plot is used to compare random pairs generated from the model and the rank-based
pseudo-observations generated from the data. In order to analyze complete picture of the fit of the
model including the marginal distributions, the marginal distributions can be fitted to the random pairs
obtained from the model and compared with the data through a scatterplot. The K-plot [30] is also a
useful graphical tool for checking the fit of Archimedean copula functions. The Kendall function is the
cumulative distribution of the copula. The K-plot compares the non-parametric estimate of the Kendall
function with the parametric estimate of the Kendall function of the copula. If the plot is scattered near
the 45-degree line that passes through the origin, the model is considered to be fitted well. The K-plot
for the Archimedean copula is analogous to the Q-Q plot for normal distribution. Besides, graphical
analyses of some more statistics are also needed to quantify the fit of the models. The two measures of
goodness-of-fit—RMSE (root-mean square error) and AIC (Akaike Information Criterion)—were used
in this paper. These statistics [31] compare the joint cumulative density function (CDF) calculated from
the copulas with the empirical non-exceedance probabilities from the Gringorten plotting position
formula [32] as used by [33] for the bivariate case, given as:

FXY(xi, yi) =

∑i
m=1

∑i
l=1 nml − 0.44

N + 0.12
, (5)

where nml is the number of pairs
(
x j, y j

)
for which x j ≤ xi and y j ≤ yi and N are the total number of

observations. AIC and RMSE were calculated as follows:
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AIC = Nlog(MSE) + 2k, MSE = 1
N−k

N∑
i=1

(xc(i) − xo(i))
2,

RMSE =
√

MSE,
(6)

where k is the number of parameters used in the model, while xc(i) and xo(i) represent the ith values
computed from the model and calculated from the empirical formula. The model with the smallest
value of AIC and/or RMSE is considered as the most appropriate one.

Besides AIC and RMSE, the rank-based versions of well-known Cram’er-von Mises statistic Sn

proposed by [33,34] were also used in this paper. This statistic is available in the copula package of R
(Hofert et al., 2016) and its p-value can be calculated using the parametric bootstrap method.

2.4. Tail-Dependence Test

Tail dependence is the asymptotic dependence of the data in the upper and lower extreme sides.
A copula model should not only give a good fit to the data, but also model dependence in the tails in
an appropriate way. The failure to model the tail dependence might give wrong predictions of extreme
events and the return periods. In this work, the authors are mainly interested in modeling the upper
tail dependence of the data, appropriately. The upper-tail dependence coefficient for a copula C can be
expressed as:

λU = lim
u→1−

1−C(u, u)
1− u

(7)

Using the above formula, λU can be estimated for each copula and can be compared with the
estimate of the tail-dependence from the data. A non-parametric estimator of tail dependence proposed
by Frahm et al., (2005) and used in this paper is given as:

λ̂CFG = 2− 2exp

 1
n

n∑
i=1

log


√

log 1
Ui

log 1
Vi

log 1
max(Ui ,Vi)

2


 (8)

The above estimator has been derived under the assumptions that the data follows an extreme-value
copula, but the estimator works well even if the assumption is not satisfied [35].

2.5. Return Periods

The main purpose of a flood-frequency analysis is to quantify the risk of the occurrence of future
events. For this reason, several bivariate return periods based on copulas have been developed by
various researchers. Salvadori and De Michele (2004) emphasized the use of “OR” and “AND” return
periods as defined in the following equations.

TOR
u,v =

µ

1−C(u, v)
, TAND

u,v =
µ

1− u− v + C(u, v)
(9)

where µ is the mean-inter-arrival time of two consecutive events. Apart from these unconditional
return periods, certain conditional return periods are also considered useful in hydrological studies,
which are given in following equations.

TU>u|V≤v =
µ

1− C(u,v)
u

, TU>u|V>v =
µ

1− u
1

1− u− v + C(u, v)
(10)

On the other hand, a secondary return period, also known as Kendall’s return period, is defined
by [36] as follows.

T>x =
µ

1−Kc(t)
(11)

where Kc is the Kendall’s distribution function for theoretical copula function.
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2.6. Description of Study Area

Tarbela dam, on the River Indus, is considered one of the world’s largest earth filled and second
largest dams in structural volume. The dam forms the Tarbela reservoir, which is 8.5 km long with
the surface area of 250 square kilometers and holds 14.3 cubic kilometers of water. It is located in the
region of Haripur, Hazara Division, region of Khyber Pakhtunkhua, approximately 50 km northwest
of Islamabad, Pakistan (Figure 1). The dam is 148 m high over the riverbed. The sources of the
flooding in the river Indus are heavy rainfall and snow melt to the river runoff from glaciers through
the Himalayas.

Pakistan is a water lacking agrarian nation. In this way, the water control is executed on the
water system prerequisite and the power generation is restricted to the water system necessity and
flood control.

The high flow season is in the Kharif season. Therefore, the annual maximum upstream flow has
been recorded in the Kharif season (i.e., 6 months from April to September) for 36 years (1977–2012).

 

Figure 1. Location map of Tarbela dam.

3. Results and Discussion

The proposed methodology has been applied to the data obtained for Tarbela dam of Pakistan.
There are two variables of a flood used, namely the peak (P) and volume (V). Table 2 depicts statistical
properties of the flood variables (P, V) for the period from 1977 to 2012 (36 events). The methodology
for considering the events has been published earlier [37]. The positively skewed flood parameters
(P, V) of natural surroundings suggest that they can be best modelled by heavy tail distributions.

Table 2. Statistical characteristics of the peak flow and volume.

Statistical Measures
Tarbela Dam

P(m3/s) V(Day-m3/s)

Minimum 4231 154,900
Median 6602 293,500

Maximum 15,340 450,000
Mean 7073 293,000

St. Deviation 1929.8 75,594.0
Skewness 2.3143 12,599
Kurtosis 8.4322 1.108
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3.1. Dependence of Flood Variables (Peak and Volume)

To measure the statistical dependence between two given flood variables (P, V), the Pearson’s linear
correlation, and rank based correlations (Kendall and Spearmen’s method) were used. The Pearson’s
correlation is used for examining the linear dependence between the flood variables provided that the
variables are normally distributed. However, Kendall’s and Spearman’s method is used for ranking
the variable values rather than real values and mostly, it is used in copula because they are invariant
under monotonic non-linear transformations. Table 3 illustrates the dependence measures between the
peak and volume of a flood with corresponding p-values. It can be seen that the Kendall and Spearman
correlation is statistically significant (5%) for Tarbela.

Table 3. Dependence measures of flood peak—volume.

Dependence Measures Station: Tarbela Dam

Pearson’s coefficient r (p-value) 0.358(0.031)
Kendall’s τ (p-value) 0.311(0.007)

Spearman’s ρ -(p-value) 0.358(0.031)

Marginal Distribution Analysis

Copulas can be divided into two parts for the procedure of making a joint distribution:
(1) Marginal distribution and (2) dependence structure.
For given station, marginal distributions are analyzed through the traditional single variable technique.

In this study, suitable probability density functions for given data were applied namely: Generalized
extreme value (GEV), Gumbel, three-parameter log-logistic, log Pearson type-III, three-parameter lognormal
and Weibull distributions have been fitted to each of the two variables (P, V) (cf. Figure 2) using the
software Easy Fit (http://www.mathwave.com/easyfit-distribution-fitting.html). The density distribution
and corresponding parameters of the distribution are summarized in Table 4. It reveals that GEV is the
most appropriate distribution function for modeling the peak and volume, based on the K-S statistic.
Figure 2 also gives the same result.
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Figure 2. Histogram and marginal distributions for the peak flow and volume of Tarbela dam.

Table 4. Marginal distributions parameters and K-S and χ2 —statistics with p-value for the peak and
volume of Tarbela dam.

Distribution
Parameters K-S-Statistic (p-Value) χ2-Statistic (p-Value)

Peak Volume Peak Volume Peak Volume

Gen. Extreme
value

Shape = 0.1268
Scale = 1220.6
Location = 6194.8

Shape = 0.1519
Scale = 68724
Location = 262770

0.148
(0.37)

0.07906
(0.964)

5.387
(0.249)

0.899
(0.924)

Gumbel Location = 6186.1
Scale = 1536.6

Location = 56707
Scale = 260230

0.167
(0.236)

0.1061
(0.773)

5.9323
(0.204)

2.3925
(0.663)

http://www.mathwave.com/easyfit-distribution-fitting.html
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Table 4. Cont.

Distribution
Parameters K-S-Statistic (p-Value) χ2-Statistic (p-Value)

Peak Volume Peak Volume Peak Volume

Log-Logistic
(3P)

Shape = 5.306
Scale = 4529.9
Location = 2227.7

Shape = 8.478
Scale = 3555530
Location = −68915

0.116
(0.675)

0.0977
(0.849)

3.582
(0.465)

2.4461
(0.654)

Log-Normal
(3P)

Sigma = 0.36208
Mu = 8.4098
Gamma = 2268.0

Shape = 0.16487
Scale = 12.971
Loc. = −142830

0.147
(0.378)

0.09037
(0.904)

3.5234
(0.474)

2.0659
(0.723)

Log-Pearson 3
Alpha = 7.1597
Beta = 0.09151
Gamma = 8.1778

Alpha = 80.337
Beta = −0.02833
Gamma = 14.83

0.1636
(0.260)

0.0849
(0.937)

7.8324
(0.097)

2.0659
(0.723)

Weibull Shape = 5.4169
Scale = 7403.1

Shape = 4.6145
Scale = 315230

0.1530
(0.333)

0.12602
(0.963)

5.6771
(0.224)

0.19392
(0.978)

3.2. Dependence Structure between Peak and Volume Using Copula Function

The dependence between the two given flood variables (P, V) is shown through the scatter plot
of standardized ranks in Figure 3a. The scatter plot shows that there is a positive relation between
the peak and volume of the flood. Moreover, other rank based scatter plots, the Chi-plot and K-plot,
are displayed in Figure 3b,c respectively. In the Chi-plot, mostly the values are located inside the
region defined by the confidence intervals, which shows that positive dependency between the two
variables (peak and volume) is weak. Moreover, the K-plot also reveals the same result. Table 4 depicts
the value of dependence of the flood variables that are measured relative to p- values. The values of
Pearson (linear correlation), Spearman’s and Kendall’s rank-based dependence measures verify the
results obtained from the graphical methods.
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Figure 3. (a): Scatter plot between u and v of the peak flow and volume of Tarbela dam (b): Chi- plot
between λ and χ of the peak flow and volume of Tarbela dam and (c): K-plot between Wi,n and H of
the peak and volume of Tarbela.

Copula Modeling

After the selection of marginal distribution of the random variables, the selection of suitable
copula is performed. Therefore, four different Archimedean copulas were considered: Clayton, Frank,
Gumbel-Hougaard and Joe. Copula function and parameter space, generating function and admissible
function of dependence Kendall τ is shown in Table 1. The value of the Kendall’s coefficient of
correlation lies within the permissible ranges of these copulas [38]. The graphical comparison among
the copulas under consideration is depicted in Figure 4. Ten thousand random pairs generated from
the copula were compared with pairs of pseudo-observations that were weekly positively associated.
Actually, the points tend to place themselves along a diagonal, while the measured values of P and V
are compared with random numbers generated by the copula and marginal distributions of P and V.
The Q-Q plot of the fitted copula is obtained by plotting Kendall’s function of the empirical copula
versus Kendall’s function of the copula (under consideration). The empirical and theoretical copula
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functions are compared. The solid grey line shows empirical copula and the dashed red line represents
theoretical copula. The joint c.d.f function of selected copula (Gumbel- Hougaard) is given. It is difficult
to decide the most appropriate copula merely using graphical analysis, since all the four copulas seem
to fit well to the empirical data. The values of AIC, RMSE and Sn statistic with their p-value, along with
the parameter estimated for each of these copulas are provided. This statistic is available in the copula
package of R [39] and its p-value can be calculated using the parametric bootstrap method. On the
basis of AIC and RMSE and Sn statistics, it can be concluded that Clayton, Frank and Gumbel copulas
fit better to the data than Joe copula. These results are given in Table 5.
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Figure 4. (a,b) The comparison of observed data (black dots) and 10,000 random pairs generated data
(blue dots) from the copula for peak-flow and volume. (c) The QQ-plot of the copula (Kendall function
from the data and the copula). (d) The comparison between empirical and theoretical copula.

Table 5. Estimated value of the copula parameter (θ), RMSE, AIC and Crammer-von Misses goodness-of-fit
test (Sn) and p-values based on parametric bootstrap samples.

Copula θ RMSE AIC Sn p-Value

Clayton 0.9032 0.546 −29.513 0.0264 0.7028
Frank 3.044 0.555 −28.298 0.0227 0.898

Gumbel 1.452 0.562 −27.481 0.029 0.499
Joe 1.814 0.5679 −26.728 0.037 0.1803
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3.3. Analysis Tail Dependence Coefficient

For the adequacy of the selected copula, the function is obtained from the tail dependence test.
In order to decide the most appropriate copula between the Frank and Gumbel copulas, the tail-dependence
test is performed. The current study is more interested in the upper-tail dependence of the data, since the
flooding conditions occur when the values of the variables P and V are high. The empirical tail-dependence
coefficient of the observed data obtained by Equation (8) λCFG

U came out to be 0.345. The upper-tail
dependence coefficient, λU for the Clayton and Frank copula is 0, while λU Gumbel-Hougaard copula
is closer to the empirical value (cf. Table 6). This indicates that the Clayton and Frank copulas may
underestimate the risk of flood, since they fail to fit to the empirical tail dependence coefficient and do
not show asymptotic dependence in the upper tail of the data [40]. Gumbel-Hougaard copula is thus
considered to be the most appropriate one for the given data out of the four copulas under consideration.
This outcome is in accord with [16].

Table 6. Upper tail dependence coefficient of used the copula.

Copulas ^
λU(θ) Θ

^
λU

Clayton 0 0.9032 0
Frank 0 3.044 0

Gumbel 2− 2
1
θ 1.452 0.387

Joe 2− 2
1
θ 1.814 0.535

The c.d.f value of Gumbel Hougaard is estimated using one hundred thousand simulated values
of flood variable which is plotted in Figure 5. It gives a good result because c.d.f values are tending to
be 1. The c.d.f value of Gumbel-Hougaard copula is used for calculating the return periods.
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3.4. Primary Return Periods (T AND, TOR)

The c.d.f have been calculated using Equation (5) for Gumbel-Hougaard copula (cf. Figure 5).
The primary return periods of flood variables (peak and volume) were calculated using Equation (9)
for the Gumbel-Hougaard copula. The c.d.f is useful for the calculation of the bivariate joint return
period. There may exist more than one possible combination of flood variables which is not facilitated
in the univariate return period. The contour lines for particular return periods are shown in Figure 6a,b.
Figure 6a shows “TOR

u,v ” return period, in which the flood variables (peak and volume) exceeded (TOR
u,v )



Hydrology 2019, 6, 79 11 of 15

outward bounds, and Figure 6b illustrates TAND
u,v return period, in which the flood variables (peak and

volume) exceeded inward bounds. The TAND
u,v return period is greater than TOR

u,v return period obtained
for the same peak and volumes values. For example, in the year 2010, for the annual peak flow of the
corresponding volume, the primary return period for the flood event TAND

u,v is 280 years and that for
TOR

u,v is 34 years which verifies Equation (8). The calculated return periods value at the median values
of the peak is 6625 m3/sec flow and that of volume is 2, 93,800days-mˆ3/sec and the maximum value of
the peak is 15,340 mˆ3/sec and that of volume is 449,961.63 days-mˆ3/sec of the hydrograph as shown
in Table 2
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3.5. Conditional Return Period (TP>p|V≤v and TP>p|V>v)

The conditional return periods of the flood peak given the volume (TP>p|V>v) and return periods of
the flood volume given peak (TV>v|P>p) have been calculated by Equation (10) for the Gumbel-Hougaard
Copula as shown in Figure 7a,b. The return periods calculated for median and maximum values of the
peak flow and volume are shown in Table 7. The conditional return period TV>v|P>p is always bigger
than TAND

U,V , and the primary return period TOR
U,V is always less than TV>v|P>p. Moreover, the differences

between the maximum values of flood variables return period are considerably broader as compared
to the median values.

Hydrology 2019, 6, x FOR PEER REVIEW 11 of 15 

years and that for ௨ܶ,௩
ைோ is 34 years which verifies Equation (8). The calculated return periods value at 

the median values of the peak is 6625 m3/sec flow and that of volume is 2, 93,800days-m^3/sec and 
the maximum value of the peak is 15,340 m^3/sec and that of volume is 449,961.63 days-m^3/sec of 
the hydrograph as shown in Table 2 

 
(a) 

 
(b) 

  

Figure 6. Primary return periods T OR. Primary return periods TAND. 

3.5. Conditional Return Period ( ܶ வ|ஸ ௩ and ܶ வ |வ௩) 

The conditional return periods of the flood peak given the volume ( ܶவ|வ௩) and return periods 
of the flood volume given peak ( ܶவ௩|வ) have been calculated by Equation (10) for the Gumbel-
Hougaard Copula as shown in Figure 7a,b. The return periods calculated for median and maximum 
values of the peak flow and volume are shown in Table 7. The conditional return period ܶவ௩|வ is 
always bigger than ܶ,

ே , and the primary return period ܶ,
ைோ  is always less than ܶவ௩|வ. Moreover, 

the differences between the maximum values of flood variables return period are considerably 
broader as compared to the median values.  

 
(a) 

 
(b) 

  

Figure 7. (a) Conditional return periods (ܶ வ௩ |  ஸ ), (b) Conditional return periods (ܶ வ௩ |வ ). 

Table 7. Primary and conditional return periods for copulas at the median and maximum values of P 
and V. 

Return Periods Copula Gumbel Frank Clayton 

Figure 7. (a) Conditional return periods T(V>v|P≤p), (b) Conditional return periods T(V>v|P>p).



Hydrology 2019, 6, 79 12 of 15

Table 7. Primary and conditional return periods for copulas at the median and maximum values of P
and V.

Return Periods Copula Gumbel Frank Clayton

TOR Median 1.507 1.704 1.505

Max. 34.114 30.936 30.669

TAND Median 3.154 2.541 3.166

Max. 280.48 1820.808 3737.91

T(U>u|V≤v)
Median 3.248 6.643 3.224

Max. 41.1464 36.603 36.227

T(U>u|V>v)
median 6.139 4.946 6.161

Max. 54, 585 353,889.807 726,495.046

3.6. Kendall or Secondary Return Period

The Kendall’s return period was calculated by Equation (11) as described in Section 2.5 at values
t = 0.90, 0.99, 0.999, 0.9999 (cf. Table 8). The relation between TOR

≤ TKEN
≤ TAND shows that the

Kendall return period neither overestimates, which may increase the cost, nor underestimates that
may increase the risk of failure compared to the primary return period. Figure 8a shows a relation
between t (levels) and the Kendall return period. On the other hand, Figure 8b illustrates through a
contour plot of the peak and volume, the secondary return period over 100 years. This plot shows the
critical region for the value of the peak and volume.

Table 8. Kendall return period for different t values.

t (Levels) T (Years) Kc(t) TKEN

0.9 10 0.932 28.82
0.99 100 0.9932 301.84

0.999 1000 0.99932 3267.97
0.9999 10000 0.99932 37037.037
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4. Conclusions

In this study, bivariate Archimedean copula-based models have been tested on hydrological
data for the analysis of flood risks. It has been found that a generalized extreme value distribution
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fits better as the marginal distribution to both the peak flow and flood volume of the hydrograph,
whereas, Gumbel-Hougaard copula is adequate for modeling the dependency among the two variables.
The return periods in a single variable analysis give overestimated results as bivariate copula modeling.
For example, a return period gives many peaks for different volumes and vice versa which is useful in
hydrological planning and the design of flood-protection infrastructure.

The study and research undertaken for Tarbela region during the last thirty-six years show that
the risk of high flood really exists within the time span of the coming ten years. The risk of occurrence
of high flood is depicted in Table 7 according to which chances lie between the ranges of 1.5 years to
34 year for Tor i.e., the return period. In the future, the work can be replicated to the data of flood
duration along with the peak flow and volume data by performing a bivariate analysis on pairs of
flood variables. Furthermore, a three-way analysis of data can also be performed by using these three
variables, which would give more reliable risk assessments. The extreme-value copulas and elliptical
copulas were not considered in this work since this study was limited to the application of a bivariate
Archimedean copula.

The risk and uncertainty analysis provides very important information to managers to make
better judgments and decisions based on modeled outcomes. These results allow administrators of
the dam to identify events with the potential for failure and improved understanding of the critical
parameters needed for monitoring. Society has become more developed and through the cutting-edge
technology available, now floods can be predicted, monitored and controlled to some extent which is
in fact instrumental in saving precious lives and properties resulting in greater improvements in the
world economy.

Author Contributions: This work was carried out in collaboration between all authors. Author S.N. designed the
study and wrote the final manuscript. Author M.A. proof read and rewritten the manuscript. Authors S.I. and
T.A.S. reviewed the literature. Author M.I. performed the statistical analysis, wrote the protocol, and wrote the
first draft of the manuscript. All authors read and approved the final manuscript.

Conflicts of Interest: There is no conflict of interest between all authors.

References

1. Ashkar, F.; Rousselle, J. A Multivariate Statistical Analysis of Flood Magnitude, Duration and Volume;
Water Resource Publication: Reston, VA, USA, 1982; pp. 659–669.

2. Ashkar, F. Partial Duration Series Models for Flood Analysis; École Polytechnique de Montréal: Montréal, QC,
Canada, 1980.

3. Lee, H.-T. A copula-based regime-switching GARCH model for optimal futures hedging. J. Futures Markets
2009, 29, 946–972. [CrossRef]

4. Yue, S.; Ouarda, T.B.M.J.; Bobée, B.; Legendre, P.; Bruneau, P. The Gumbel mixed model for flood frequency
analysis. J. Hydrol. 1999, 226, 88–100. [CrossRef]

5. Yue, S. The bivariate lognormal distribution to model a multivariate flood episode. Hydrol. Process. 2000, 14,
2575–2588. [CrossRef]

6. Shiau, J.-T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk
Assess. 2003, 17, 42–57. [CrossRef]

7. Yue, S. A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol. Process.
2001, 15, 1033–1045. [CrossRef]

8. Yue, S. A bivariate extreme value distribution applied to flood frequency analysis. Hydrol. Res. 2001, 32,
49–64. [CrossRef]

9. Yue, S. The Gumbel mixed model applied to storm frequency analysis. Water Resour. Manag. 2000, 14,
377–389. [CrossRef]

10. Yue, S. Applicability of the Nagao–Kadoya bivariate exponential distribution for modeling two correlated
exponentially distributed variates. Stoch. Environ. Res. Risk Assess. 2001, 15, 244–260. [CrossRef]

11. Yue, S.; Wang, C.Y. A comparison of two bivariate extreme value distributions. Stoch. Environ. Res. Risk
Assess. 2004, 18, 61–66. [CrossRef]

http://dx.doi.org/10.1002/fut.20394
http://dx.doi.org/10.1016/S0022-1694(99)00168-7
http://dx.doi.org/10.1002/1099-1085(20001015)14:14&lt;2575::AID-HYP115&gt;3.0.CO;2-L
http://dx.doi.org/10.1007/s00477-003-0125-9
http://dx.doi.org/10.1002/hyp.259
http://dx.doi.org/10.2166/nh.2001.0004
http://dx.doi.org/10.1023/A:1011124423923
http://dx.doi.org/10.1007/s004770100069
http://dx.doi.org/10.1007/s00477-003-0124-x


Hydrology 2019, 6, 79 14 of 15

12. Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959,
8, 229–231.

13. Chowdhary, H.; Escobar, L.A.; Singh, V.P. Identification of suitable copulas for bivariate frequency analysis
of flood peak and flood volume data. Hydrol. Res. 2011, 42, 193–216. [CrossRef]

14. Favre, A.C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency
analysis using copulas. Water Resour. Res. 2004, 40. [CrossRef]

15. Ganguli, P.; Reddy, M.J. Probabilistic assessment of flood risks using trivariate copulas. Theor. Appl. Climatol.
2013, 111, 341–360. [CrossRef]

16. Karmakar, S.; Simonovic, S.P. Bivariate flood frequency analysis. Part 2: A copula-based approach with
mixed marginal distributions. J. Flood Risk Manag. 2009, 2, 32–44. [CrossRef]

17. Requena, A.I.; Mediero, L.; Garrote, L. Bivariate return period based on copulas for hydrologic dam design:
comparison of theoretical and empirical approach. Hydrol. Earth Syst. Sci. Discuss. 2013, 17, 3023–3038.
[CrossRef]

18. De Michele, C.; Salvadori, G. A generalized Pareto intensity-duration model of storm rainfall exploiting
2-copulas. J. Geophys. Res. Atmos. 2003, 108. [CrossRef]

19. De Michele, C.; Salvadori, G.; Passoni, G.; Vezzoli, R. A multivariate model of sea storms using copulas.
Coast.Eng. 2007, 54, 734–751. [CrossRef]

20. Salvadori, G.; De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to
hydrological events. Water Resour. Res. 2004, 40. [CrossRef]

21. Zhang, L.; Singh, V.P. Bivariate flood frequency analysis using the copula method. J. Hydrol. Eng. 2006, 11,
150–164. [CrossRef]

22. Klein, B.; Pahlow, M.; Hundecha, Y.; Schumann, A. Probability analysis of hydrological loads for the design
of flood control systems using copulas. J. Hydrol. Eng. 2009, 15, 360–369. [CrossRef]

23. Ben Aissia, M.A.; Chebana, F.; Ouarda Taha, B.M.J.; Roy, L.; Desrochers, G.; Chartier, I.; Robichaud, É.
Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong
reservoir, Province of Québec, Canada. Hydrol. Process. 2012, 26, 130–142. [CrossRef]

24. Sraj, M.; Bezak, N.; Brilly, M. Bivariate flood frequency analysis using the copula function: A case study of
the Litija station on the Sava River. Hydrol. Process. 2015, 29, 225–238. [CrossRef]

25. Li, F.; Zheng, Q. Probabilistic modelling of flood events using the entropy copula. Adv. Water Resour. 2016,
97, 233–240. [CrossRef]

26. Höffding, W. Masstabinvariante korrelationstheorie. Schriften des Mathematischen Instituts und Instituts fur
Angewandte Mathematik der Universitat Berlin 1940, 5, 181–233.

27. Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer Science Business Media: New York, NY, USA, 2006.
28. Fisher, N.I.; Switzer, P. Chi-plots for assessing dependence. Biometrika 1985, 72, 253–265. [CrossRef]
29. Genest, C.; Boies, J.-C. Detecting dependence with Kendall plots. Am. Stat. 2003, 57, 275–284. [CrossRef]
30. Genest, C.; Rivest, L.-P. Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc.

1993, 88, 1034–1043. [CrossRef]
31. Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007,

332, 93–109. [CrossRef]
32. Gringorten, I.I. A plotting rule for extreme probability paper. J. Geophys. Res. 1963, 68, 813–814. [CrossRef]
33. Karmakar, S.; Simonovic, S.P. Bivariate flood frequency analysis: Part 1. Determination of marginals by

parametric and nonparametric techniques. J. Flood Risk Manag. 2008, 1, 190–200. [CrossRef]
34. Genest, C.; Rémillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: A review and a power study. Insur.

Math. Econ. 2009, 44, 199–213. [CrossRef]
35. Frahm, G.; Junker, M.; Schmidt, R. Estimating the tail-dependence coefficient: Properties and pitfalls. Insur.

Math. Econ. 2005, 37, 80–100. [CrossRef]
36. Salvadori, G.; Durante, F.; De Michele, C. On the return period and design in a multivariate framework. 2011.

[CrossRef]
37. Naz, S.; Iqbal, M.J.; Akhter, S.M.; Hussain, I. The Gumbel Mixed Model for Flood Frequency Analysis of

Tarbela. The Nucleus 2016, 53, 171–179.
38. Michiels, F.; De Schepper, A. A copula test space model how to avoid the wrong copula choice. Kybernetika

2008, 44, 864–878.

http://dx.doi.org/10.2166/nh.2011.065
http://dx.doi.org/10.1029/2003WR002456
http://dx.doi.org/10.1007/s00704-012-0664-4
http://dx.doi.org/10.1111/j.1753-318X.2009.01020.x
http://dx.doi.org/10.5194/hess-17-3023-2013
http://dx.doi.org/10.1029/2002JD002534
http://dx.doi.org/10.1016/j.coastaleng.2007.05.007
http://dx.doi.org/10.1029/2004WR003133
http://dx.doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000204
http://dx.doi.org/10.1002/hyp.8117
http://dx.doi.org/10.1002/hyp.10145
http://dx.doi.org/10.1016/j.advwatres.2016.09.016
http://dx.doi.org/10.1093/biomet/72.2.253
http://dx.doi.org/10.1198/0003130032431
http://dx.doi.org/10.1080/01621459.1993.10476372
http://dx.doi.org/10.1016/j.jhydrol.2006.06.033
http://dx.doi.org/10.1029/JZ068i003p00813
http://dx.doi.org/10.1111/j.1753-318X.2008.00022.x
http://dx.doi.org/10.1016/j.insmatheco.2007.10.005
http://dx.doi.org/10.1016/j.insmatheco.2005.05.008
http://dx.doi.org/10.5194/hess-15-3293-2011


Hydrology 2019, 6, 79 15 of 15

39. Hofert, M.; Kojadinovic, I.; Maechler, M.; Yan, J. Copula: Multivariate dependence with copulas. 2014. R Package
Version 0.999-9. Available online: http://CRAN.R-project.org/package=copula (accessed on 10 June 2019).

40. Poulin, A.; Huard, D.; Favre, A.-C.; Pugin, S. Importance of tail dependence in bivariate frequency analysis.
J. Hydrol. Eng. 2007, 12, 394–403. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://CRAN. R-project. org/package= copula
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(394)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Copula Theory 
	Sklar’s Theorem 
	Copula Function 

	Dependence and Copula Fitting 
	Goodness-of-Fit 
	Tail-Dependence Test 
	Return Periods 
	Description of Study Area 

	Results and Discussion 
	Dependence of Flood Variables (Peak and Volume) 
	Dependence Structure between Peak and Volume Using Copula Function 
	Analysis Tail Dependence Coefficient 
	Primary Return Periods (T AND, TOR) 
	Conditional Return Period (TP > p|V v  and TP > p|V >v ) 
	Kendall or Secondary Return Period 

	Conclusions 
	References

